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Five-dimensional neuroimaging: Localization of the time–frequency
dynamics of cortical activity
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The spatiotemporal dynamics of cortical oscillations across human
brain regions remain poorly understood because of a lack of
adequately validated methods for reconstructing such activity from
noninvasive electrophysiological data. In this paper, we present a novel
adaptive spatial filtering algorithm optimized for robust source time–
frequency reconstruction from magnetoencephalography (MEG) and
electroencephalography (EEG) data. The efficacy of the method is
demonstrated with simulated sources and is also applied to real MEG
data from a self-paced finger movement task. The algorithm reliably
reveals modulations both in the beta band (12–30 Hz) and high gamma
band (65–90 Hz) in sensorimotor cortex. The performance is validated
by both across-subjects statistical comparisons and by intracranial
electrocorticography (ECoG) data from two epilepsy patients. Inter-
estingly, we also reliably observed high frequency activity (30–300 Hz)
in the cerebellum, although with variable locations and frequencies
across subjects. The proposed algorithm is highly parallelizable and
runs efficiently on modern high-performance computing clusters. This
method enables the ultimate promise of MEG and EEG for five-
dimensional imaging of space, time, and frequency activity in the brain
and renders it applicable for widespread studies of human cortical
dynamics during cognition.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

Magnetoencephalography (MEG) and electroencephalography
(EEG) are functional neuroimaging techniques with millisecond
time resolution (Hämäläinen et al., 1993). Traditionally, MEG and
EEG have been used to study evoked responses, i.e., activity that is
both time-locked and phase-locked to a stimulus or task. These
analyses assume a model of neural activity in which responses are
additive and/or phases are reset (Hanslmayr et al., 2007). However,
it has been well-known that ongoing MEG/EEG oscillations can be
suppressed in response to a stimulus or task since the earliest EEG
research (Berger, 1930); this possibility is not accounted for by the
evoked model. Furthermore, the across-trial jitter inherent in
responses to even simple stimuli have been shown to be sufficient
to markedly reduce the amplitude of averaged responses (Micha-
lewski et al., 1986); this effect becomes even more pronounced for
higher frequency bands. Averaging also assumes trial-to-trial phase
locking, which may not be valid for many complex cognitive
paradigms.

Another approach to interpreting MEG and EEG data is to
quantify oscillatory aspects of the signals using time–frequency
methods. Typically, modulations of oscillatory activity are described
as event-related spectral power changes (Pfurtscheller and Aranibar,
1977; Pfurtscheller and Neuper, 1992; Makeig, 1993). By compar-
ing the power of neural activity to a quiescent baseline, these types of
analyses reveal induced responses, i.e., activity that is time-locked
but not necessarily phase-locked. Additionally, the power change
may be negative, termed an event-related desynchronization (ERD),
or positive, termed an event-related synchronization (ERS).
Analyses of ERD and ERS overcome many of the limitations of
evoked response analyses. However, most MEG/EEG time–
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frequency analyses are conducted on the sensor signals without
source localization, providing only vague information as to which
brain structures generated the activity of interest.

Several source reconstruction algorithms, each employing a
different set of assumptions, have been proposed to overcome the
ill-posed inverse problem. Source reconstructions fromMEGdata can
be classified as either parametric or tomographic. Parametric methods
include equivalent current dipole (ECD) fitting techniques; they often
require knowledge about the number of sources and their approximate
locations and poorly modeled sources with a large spatial extent.

Tomographic methods reconstruct source activity at each voxel
(3-D location) in the brain. Spatial filtering techniques avoid the
high number of parameters and the nonlinear iterative search
required by ECD analysis. Nonadaptive spatial filtering techniques,
which include minimum-norm-based methods such as sLORETA
(Pascual-Marqui, 2002), use sensor geometry to construct the
weights for the spatial filter. Adaptive techniques, on the other hand,
additionally use sensor data to create a custom filter depending on
signal characteristics. It has been shown that a class of adaptive
spatial filters known as beamformers (Van Veen and Buckley, 1988)
have the best spatial resolution and performance amongst existing
tomographic methods (Darvas et al., 2004; Sekihara et al., 2005).

Spatial filtering methods have the potential to compute electro-
magnetic source images in both the time and frequency domains
(Robinson and Vrba, 1999; Gross et al., 2001; Sekihara et al., 2001;
Jensen and Vanni, 2002; Dalal et al., 2004). Techniques such as the
synthetic aperture magnetometry (SAM) beamformer have been
employed to examine either the time course of neural sources or the
spatial distribution of power within a specific frequency band
(Robinson and Vrba, 1999). However, published studies typically
employ SAM to generate static fMRI-style images using a large
bandwidth and wide time window—effectively discarding the
temporal resolution advantage of magnetoencephalography. Only a
few studies have attempted time–frequency analysis in source space
(Singh et al., 2002; Cheyne et al., 2003; Brookes et al., 2004; Gaetz
and Cheyne, 2006; Jurkiewicz et al., 2006). These reports describe a
method in which a single set of beamformer weights are first
computed over a wide time window and frequency range; time–
frequency decompositions are then computed from the reconstructed
time series for a few locations of interest. However, aswe show in this
paper, weights computed from unfiltered or wideband data may be
inherently biased towards resolving low-frequency brain activity due
to the power law of typical electrophysiological data. Additionally,
responses of shorter duration or outside the fixed time window used
to generate the weights may not be adequately captured.

In this paper, we propose a novel adaptive spatial filtering algorithm
that is optimized for time–frequency source reconstructions from
MEG/EEG data. Performance of this algorithm will first be evaluated
with simulated data. Then we will demonstrate the method with real
finger movement data, validated with group statistics and intracranial
recordings. The proposed algorithm enables accurate reconstruction of
five-dimensional brain activity from MEG and EEG data, thereby
realizing the ultimate promise ofMEG- and EEG-based neuroimaging.

Methods

Definitions and problem formulation

Throughout this paper, plain italics indicate scalars, lowercase
boldface italics indicate vectors, and uppercase boldface italics
indicate matrices.
We define the magnetic field measured by the mth detector coil
at time t as bm(t) and a column vector b(t)≡ [b1(t), b2(t), …, bM(t)]

T

as a set of measured data, where M is the total number of detector
coils and the superscript T indicates the matrix transpose. The
second-order moment matrix of the measurement is denoted R, i.e.,
Ruhb tð ÞbT tð Þi, where h�i indicates the ensemble average over
trials. When hb tð Þi ¼ 0, R is also equal to the sample covariance
matrix. In practice, the covariance is estimated over a subset of
latencies, t≡ [t1, t2,…, tN], that represents samples from a desired
time window of length N. Defining B(t)≡ [b(t1), b(t2),…, b(tN)], the
covariance estimate then becomes R tð ÞuhB tð ÞBT tð Þi.

We assume that the sensor data arises from elemental dipoles
at each spatial location r, represented by a 3-D vector such that r=
(rx, ry, rz). The orientation of each source is defined as a vector
η(r)≡ [βx, βy, βz], where βx, βy, and βz are the angles between the
moment vector of the source and the x, y, and z axes, respectively.

We define lm
ζ (r) as the output of the mth sensor that would be

induced by a unit–magnitude source located at r and pointing in the
ζ direction. The column vector lζ(r) is defined as lζ(r)≡ [l1

ζ(r),
l2
ζ(r), …, lM

ζ (r)]T. The lead field matrix, which represents the
sensitivity of the whole sensor array at r, is defined as L(r)≡ [lx(r),
ly(r), lz(r)]. The lead field vector for a unit-dipole oriented in the
direction η is defined as l(r, η) where l(r, η)≡L(r)η(r).

Conventional adaptive spatial filtering

This section reviews an adaptive spatial filter called the
minimum variance (MV) scalar beamformer, also referred to as
the synthetic aperture magnetometry (SAM) beamformer (Robin-
son and Vrba, 1999). An adaptive spatial filter estimate of the
source moment ŝ (r, t) is given by

ŝ r; tð Þ ¼ wT rð Þb tð Þ ð1Þ
where w(r) is the weight vector.

The MV scalar beamformer weight vector w(r) is calculated by
minimizing wT(r)R(t)w(r) subject to lT(r, η)w(r)=1. The solution is
known to be (Robinson and Vrba, 1999):

w rð Þ ¼ R�1 tð Þl r;ηð Þ
lT r;ηð ÞR�1 tð Þl r;ηð Þ : ð2Þ

Finally, in the absence of a priori orientation information from,
e.g., MRI, an optimal orientation ηopt(r) must be determined. The
typical approach to determining ηopt is to compute the solution that
maximizes output power with respect to η (Sekihara and Scholz,
1996). Our approach is to compute the solution that maximizes
output SNR (Sekihara et al., 2004):

ηopt rð Þ ¼max
η

lT r;ηð ÞR�1 tð Þl r;ηð Þ
lT r;ηð ÞR�2 tð Þl r;ηð Þ ð3Þ

As shown in the study of Sekihara et al. (2004), the solution
for ηopt is v3, the eigenvector corresponding to the minimum
eigenvalue of:

LT rð ÞR�1 tð ÞL rð Þ� ��1
LT rð ÞR�2 tð ÞL rð Þ� �

vj ¼ gjvj; ð4Þ
The estimated source power P̂s(r, t) can be computed from the

weights w and covariance R(t):

P̂s r; tð Þhŝ r; tð Þ2i ¼ h wT rð ÞB tð Þ� �
BT tð Þw rð Þ� �i ¼ wT rð ÞR tð Þw rð Þ

ð5Þ
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The sensor noise power σ2(t) may be obtained from calibration
measurements of the MEG system or estimated by computing the
minimum eigenvalue of R(t). Then, the power of projected sensor
noise P̂N may be estimated by replacing R(t) with σ2(t)I:

P̂N rð Þ ¼ wT rð Þ r2 tð ÞI� �
w rð Þ ¼ r2 tð ÞwT rð Þw rð Þ ð6Þ

Often, one is interested in the change in power from a control
(i.e., baseline) time window to an active time window, i.e., a dual-
condition paradigm. These windows are denoted as vectors of time
samples, tcon and tact, respectively. In this case:

P̂con rð Þ ¼ P̂s r; tconð Þ ¼ wT rð ÞRconw rð Þ ð7Þ

P̂act rð Þ ¼ P̂s r; tactð Þ ¼ wT rð ÞRactw rð Þ ð8Þ
where Rcon≡R(tcon), the covariance of the control window, and
Ract≡R(tact), the covariance of the active window.

In order to improve numerical stability and ensure an appro-
priately matched baseline period, the same orientation ηopt(r) and
w(r) must be used to compute P̂act(r) and P̂con(r). This ensures that
the magnitude of sources are comparable between the active and
control periods; it also decreases the likelihood of resolving false
sources. Thus, ηopt(r) and w(r) may be computed using the average
covariance of the active and control periods, i.e., by substituting R=
(Ract +Rcon)/2. Note that tcon must be the same length as tact.

The contrast between P̂act and P̂con can then be expressed as a
pseudo-t difference P̂act− P̂con or an F-ratio P̂act / P̂con. If the
contribution of projected sensor noise is subtracted, the ratio
becomes F=(P̂act− P̂N) / (P̂con− P̂N). In this paper, we will use the
noise-corrected F-ratio expressed in units of decibels:

FdB ¼ 10 log10
Pˆ act �PˆN
Pˆ con �PˆN

: ð9Þ

Time–frequency extension of conventional beamformers
It is often desirable to compute contrasts for multiple activation

windows and possibly multiple baseline windows, relative to
specific experimental or cognitive events. The resulting contrasted
spectrogram is a time–frequency representation of source events. In
order to obtain such a representation from the conventional
beamformer, one may directly compute the spectrogram of the
source time series from Eq. (1), contrasting it with the spectrogram
of the control period (Singh et al., 2002; Cheyne et al., 2003).

Another approach is to apply theweightsw(r) computed above—
with R estimated from long time windows tact and tcon spanning the
entire duration of interest—to a new set of covariance estimates
generated from filtered and segmented data. First, the data is passed
through a filter bank and partitioned into several overlapping ac-
tive segments, τact[n], and a control segment, τcon, where the sub-
script n refers to the index of the time window. (These windows
are shorter than tact and tcon.) Then, covariances are computed for each
resulting time–frequency window, yielding R̃act(n, f )≡R(τact[n], f )
and R̃con( f )≡R(τcon, f ), where f corresponds to the index of the
frequency band. Power maps may be computed directly by replacing
Ract and Rcon with R̃act(n, f ) and R̃con( f ), respectively:

P̂con r; n; fð Þ ¼ wT rð Þ R̃con fð Þw rð Þ ð10Þ

P̂act r; n; fð Þ ¼ wT rð Þ R̃act n; fð Þw rð Þ ð11Þ

P̂N r; n; fð Þ ¼ r2 n; fð ÞwT rð Þw rð Þ ð12Þ
Finally,

FdB r; n; fð Þ ¼ 10 log10
P̂act r; n; fð Þ � P̂N r; n; fð Þ
P̂con r; n; fð Þ � P̂N r; n; fð Þ : ð13Þ

However, while spectrograms may be constructed from the
conventional beamformer in this fashion, the weights are still op-
timized for the wide tact and tcon windows used to compute w(r).
MEG/EEG spectra follow the power law, implying that weights
generated from unfiltered data are inherently biased towards low-
frequency activity.

Frequency-dependent weight computation

Therefore, in order to better resolve low-amplitude, high-
frequency activity, one approach is to calculate a different set of
weights for each frequency band:

w r; fð Þ ¼ R�1 fð Þl r;ηð Þ
lT r;ηð ÞR�1 fð Þl r;ηð Þ ð14Þ

where R( f ) is the sample covariance matrix generated from B(t)
filtered for the frequency band of interest, and η=ηopt(r, f ), i.e.,
the optimum orientation computed using R( f ). The corresponding
power at each voxel for each frequency band is:

P̂s r; fð Þ ¼ wT r; fð ÞR fð Þw r; fð Þ ð15Þ
Again, the powers of an active window and a control window

may be computed as follows:

P̂con r; fð Þ ¼ P̂s r; tcon; fð Þ ¼ wT r; fð ÞRcon fð Þw r; fð Þ ð16Þ

P̂act r; fð Þ ¼ P̂s r; tact; fð Þ ¼ wT r; fð ÞRact fð Þw r; fð Þ ð17Þ

The time–frequency representation may be computed either
from the source time series, or, as shown here, by using w(r, f )
from Eq. (14) and replacing R( f ) from Eq. (15) with R̃act(n, f ) and
R̃con( f ):

P̂con r; fð Þ ¼ wT r; fð Þ R̃con fð Þw r; fð Þ ð18Þ

P̂act r; n; fð Þ ¼ wT r; fð Þ R̃act n; fð Þw r; fð Þ ð19Þ

P̂N r; n; fð Þ ¼ r2 n; fð ÞwT r; fð Þw r; fð Þ ð20Þ

FdB r; n; fð Þ ¼ 10 log10
P̂act r; n; fð Þ � P̂N r; n; fð Þ
P̂con r; n; fð Þ � P̂N r; n; fð Þ : ð21Þ

This formulation accounts for amplitude differences between
different frequency bands, but its performance may be degraded in
the presence of activity that is more transient. Sources that are
active only briefly may not be adequately captured. Similarly, the
spatial filters may not be optimized for sources that change po-
sition and orientation over time. Lastly, when analyzing long
epochs, this method might be prone to sources active at different
latencies interfering with each other. For example, if one source has
an early response, and another nearby source becomes active later
in the same frequency band, then generating weights from the
covariance of the whole interval may result in degraded recon-
struction and poor separation of the two sources.



1 The numerical experiments used a coordinate system based on a real
subject's head geometry, described as follows: The midpoint between the
left and right preauricular points was defined as the coordinate origin. The
x-axis was directed from the origin through the nasion, while the y-axis was
directed through the left preauricular point and rotated slightly to maintain
orthogonality with the x-axis. The z-axis is directed upward perpendicularly
from the xy-plane towards the vertex.
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Proposed time–frequency optimized beamforming

To overcome the above mentioned limitations, we propose that
a custom set of weights w(r, n, f ) be generated from the sample
covariances R̃act(n, f ) corresponding to each time–frequency win-
dow. As in the approaches described above, the data is first passed
through a filter bank and subsequently segmented into overlapping
active windows, τact[n], and control windows, τcon[n]. For opti-
mum time–frequency resolution and beamformer performance, it is
desirable to choose larger time windows for lower frequencies and
narrower time windows for higher frequencies.

w r; n; fð Þ ¼ R�1 n; fð Þl rð Þ
lT rð ÞR�1 n; fð Þl rð Þ ð22Þ

where R(n, f )= [R̃act(n, f )+ R̃con( f )] /2. Then,

P̂con r; n; fð Þ ¼ wT r; n; fð Þ R̃con fð Þw r; n; fð Þ ð23Þ

P̂act r; n; fð Þ ¼ wT r; n; fð Þ R̃act n; fð Þw r; n; fð Þ ð24Þ

P̂N r; n; fð Þ ¼ r2 n; fð ÞwT r; n; fð Þw r; n; fð Þ ð25Þ

FdB r; n; fð Þ ¼ 10 log10
P̂act r; n; fð Þ � P̂N r; n; fð Þ
P̂con r; n; fð Þ � P̂N r; n; fð Þ : ð26Þ

Finally, the estimated power of overlapping segments is averaged
to improve numerical stability and better capture transitions in
source activity. The procedure is summarized in Fig. 1.

The computational load of the algorithm scales linearly with the
number of time–frequency bins. In practice, hundreds of weight
vectors must be computed to assemble a complete source spec-
trogram and would require dozens of CPU hours to complete.
However, since the result for each time–frequency window is
essentially an independent computation, the time–frequency array
is well-suited for running on a parallel computing cluster. We used
the shared computing cluster at the California Institute for Quan-
titative Biomedical Research to generate the results shown in this
paper; the total running time for generating images for all time–
frequency windows is less than 20 min when the cluster is un-
loaded and all windows can be processed on approximately 300
nodes simultaneously. Upon conclusion of the cluster run, the
results were assembled and visualized with a development version
of our NUTMEG neuromagnetic source reconstruction toolbox
(Dalal et al., 2004), freely available from http://bil.ucsf.edu.

The filter bank approach provides an inherent potential ad-
vantage over FFT and wavelet-based techniques, since frequency
bins can be of variable size and customized according to the
experimenter's hypothesis. For example, it has been suggested that
the spectral peak of high gamma activity may vary across subjects
and even within an individual (Crone et al., 2001a; Edwards et al.,
2005); therefore, those bands may be defined with a larger
bandwidth. We chose to follow traditional MEG/EEG power band
definitions as best as possible for the experiments presented here:
4–12 Hz (theta–alpha), 12–30 Hz (beta), 30–55 Hz (low gamma),
and 65–90 Hz (high gamma). Additionally, we defined ultrahigh
frequency bands at 90–115 Hz, 125–150 Hz, 150–175 Hz, and
185–300 Hz. The power line frequency (60 Hz) and harmonics
(120 Hz and 180 Hz) were avoided to reduce noise.

The length of the timewindows andwidth of the frequency bands
must be chosen to ensure that stable and well-conditioned estimates
of the covariance matrices are produced. The parameters used in this
paper were determined with this in mind, but may need to be
adjusted for other MEG systems or data characteristics. See the
Supplementary Methods online for an exploration of the effect of
time window length and bandwidth on performance of the proposed
algorithm.

Across-subjects statistics

The significance of activations across subjects was tested with
statistical non-parametric mapping (SnPM) (http://www.sph.umich.
edu/ni-stat/SnPM/). SnPM does not depend on a normal distribution
of power change values across subjects and allows correction for
familywise error of testing at multiple voxels and time–frequency
points. The detailed rationale and procedures of SnPM statistics of
beamformer images are described elsewhere (Singh et al., 2003). In
short, time–frequency beamformer images for each subject were
first spatially normalized to the MNI template brain using SPM
(http://www.fil.ion.ucl.ac.uk/spm). The three-dimensional average
and variance maps across subjects were calculated at each time–
frequency point. The variance estimates can be noisy for a relatively
low number of subjects, so the variance maps were smoothed with a
20×20×20mm3Gaussian kernel. From this, a pseudo-t statistic was
obtained at each voxel, time window, and frequency band. In
addition, a distribution of pseudo-t statistics was also calculated
from 2N permutations of the original N datasets (subjects). Each
permutation consisted of two steps: (1) inverting the polarity of the
power change values for some subjects (with 2N possible com-
binations of negations) and (2) finding the current maximum
pseudo-t value among all voxels and time windows for each
frequency band. Instead of estimating the significance of each non-
permuted pseudo-t value from an assumed normal distribution, it is
then calculated from the position within the distribution of these
maximum permuted pseudo-t values. The comparison against
maximum values effectively corrects for the familywise error of
testing multiple voxels and time windows.

Numerical experiments

Data generation
Numerical experiments were conducted to evaluate the proposed

method and compare it with existing methods. The sensor con-
figuration of the 275-channel CTF Omega 2000 biomagnetic mea-
surement system (VSM MedTech, Coquitlam, British Columbia,
Canada) was used. Data were simulated and processed using a
development version of NUTMEG (Dalal et al., 2004).

Fifty trials of simulated data were generated, spanning −750 ms
to 1000 ms per trial, sampled at 1200 Hz. Two 77 Hz sine wave
sources were synthesized and placed at (10, 50, 60) mm and (15,
60, 75) mm;1 the phases of each source were assigned randomly
and varied between each other and each trial. The sine waves were
windowed such that they represented ERS activity and were not

http://bil.ucsf.edu
http://www.sph.umich.edu/ni
http://www.sph.umich.edu/ni
http://www.fil.ion.ucl.ac.uk/spm


Fig. 1. Algorithm for optimal time–frequency beamforming. Processing of the combined θ–α band is shown in detail; each of the other frequency bands has a
similar workflow. Note that the algorithm is highly parallel and well-suited to run on high performance computing clusters.
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simultaneously active; one source was active from 50 ms to
300 ms, while the other was active from 350 ms to 550 ms. A third
19 Hz source was placed at (25, 30, 100) mm, active from −750 ms
to 50 ms and from 600 ms to 1000 ms to simulate ERD activity.

A sensor lead field was calculated with 5 mm grid spacing
using a single-layer multiple sphere volume conductor as the
forward model (Huang et al., 1999) and the Omega 2000's sensor
geometry with respect to a real subject's head-shape. Spontaneous
MEG recordings from a human subject (“brain noise”) were added
to the generated data such that the signal-to-noise (SNR) was equal
to 1. The SNR was defined as the ratio of the Frobenius norm of
the simulated data matrix to that of the brain noise matrix.

Data processing
Covariances for use with the beamformers were generated by

creating a lattice of time–frequency windows. The original data were
first passed through a bank of 200th–order finite impulse response
(FIR) bandpass filters and subsequently split into 29 overlapping
temporal windowswith a step size of 25ms for all bands. In our filter
design, we chose to follow traditional MEG/EEG power band
definitions as best as possible. Theta–alpha band was defined as 4–
12 Hz with 300 ms windows, beta band 12–30 Hz with 200 ms
windows, low gamma 30–55 Hz with 150 ms windows. Addition-
ally, five high gamma bands were defined, avoiding the 60 Hz power
line frequency and its harmonics: 65–90 Hz, 90–115 Hz, 125–
150 Hz, 150–175 Hz, 185–300 Hz, all with 100 ms windows.
Finally, sample covariances were calculated for this matrix of time–
frequency windows and averaged over trials:

R̃act n; fð Þ ¼ hBf tact n½ �ð ÞBT
f tact n½ �ð Þi ð27Þ

Spatial filter weights were computed for each time–frequency
window, and an FdB(r, n, f ) space–time–frequency power map was
assembled as described earlier.

For comparison, the data was processed in three additional ways.
In the first way, which we will term the “broadband” approach, the
simulated data were processed with a conventional minimum
variance beamformer; i.e., a single weight was computed from
unfiltered data using one large active window and a corresponding
large control window (Eq. (2)). In this case, 0 ms to 500 ms was
chosen as the active window, and −600 ms to −100 ms was chosen
as the control window. This weight was then applied to the sample
covariances for each time–frequency window to calculate estimated
power and contrasted with the estimated power of the control period
to generate the final space–time–frequency representation.

The second way was a frequency-dependent beamformer
approach (Eq. (14)). The original simulated data was passed through
the same filter bank as with our proposed method. However, instead
of segmenting into several time windows, the single large active
window with a corresponding control window was chosen as for the
broadband approach. Thus, weights were computed for filtered data
corresponding to each frequency band. Again, 0 ms to 500 ms was



Fig. 2. (a) Example of a typical frontotemporal ECoG montage in an
intractable epilepsy patient. The implant consists of an 8×8 electrode grid
with 10 mm center-to-center spacing between electrodes. (b) Lateral X-ray
radiograph of the same patient showing electrode locations. The surgical
photograph was used to annotate the locations of visible electrodes on an
MRI rendering, while the coordinates of hidden electrodes were found using
X-ray backprojection to the MRI-derived brain surface (Dalal et al.,
submitted for publication).
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chosen as the active window, with −600 ms to −100 ms as the
control window. Weights, powers, and the final power map were
generated as with the other two techniques.

Finally, the data was analyzed with sLORETA (Pascual-Marqui,
2002) as a representative of minimum norm source reconstruction
techniques. As sLORETA is a nonadaptive spatial filter dependent
only on sensor configuration, the same set of weights was applied to
the sample covariances for each time–frequency window. The
estimated power and contrast with a control period was performed as
described above with the beamformer techniques (Eq. (13)).

Finger movement data

Subjects
Data was collected from 12 right-handed volunteers (6 females

and 6 males, mean age 29.2 years, age range 22–38 years). The
participants were screened for potentially confounding health
conditions and medications. The study protocol was approved by
the UCSF Committee on Human Research.

Data acquisition and processing
Data was acquired with a 275-channel CTF Omega 2000 whole-

head MEG system from VSM MedTech with a 1200 Hz sampling
rate. All post-processing and analysis were performed using a
development version of NUTMEG (Dalal et al., 2004). A digital
filter was used to high-pass the data at 1 Hz. Trials containing
eyeblink and movement artifacts were manually rejected.

Subjects were instructed to press the response button with their
right index finger (RD2) at a self-paced interval of approximately
four seconds, acquiring 100 trials. In a subsequent block, the
subjects completed the same task with their left index finger (LD2)
instead.

The data was processed as in the above simulation, but with
50 ms window step size due to the length of the epochs. For the
broadband and frequency–domain methods, the active window was
chosen to be −250 ms to 250 ms relative to the button press, with
−950 ms to −450 ms as the baseline. These windows were chosen
based on typical results in the literature (Pfurtscheller and Neuper,
1992; Jurkiewicz et al., 2006) and our laboratory's extensive
unpublished clinical data.

As with the simulations, a multiple sphere head model was
calculated for each subject at 5 mm resolution based on individual
head shape and relative sensor geometry. Spectral power changes
were statistically tested across subjects with the SnPM method
described above, with pb0.05 as the threshold for significant
activity.

Intracranial recordings

Preoperative MEG data and corresponding intracranial electro-
corticograms (ECoG) were obtained from two patients undergoing
surgical treatment for intractable epilepsy. Intracranial electrodes
were implanted in these patients for preresection seizure localiza-
tion and functional mapping of critical language and motor areas.
The study protocol, approved by the UCSF and UC Berkeley
Committees on Human Research, did not interfere with the ECoG
recordings made for clinical purposes and presented minimal risk
to the subjects. Upon informed consent, the experiments were
conducted while the patient was alert and on minimal medication.
The implants consisted of an 8×8 grid of platinum–iridium
electrodes (Ad-Tech Medical, Racine, WI) placed over the left
frontotemporal region (Fig. 2(a)). The electrodes had a 2.3 mm
contact diameter and a center-to-center spacing of 10 mm. Elec-
trodes with an impedance greater than 5 kΩ or exhibiting epi-
leptiform activity were rejected from further analyses. An electrode
in the corner of the electrode grid was selected as the reference.
Data was collected with an EEG amplifier (SA Instrumentation,
San Diego, CA) sampling at 2003 Hz with 16-bit resolution. As
with the MEG experiment, patients were asked to move their right
index finger (RD2) at a self-paced interval of approximately four
seconds for a total of 100 trials. Both patients had corresponding
MEG recordings acquired one day prior to their grid implants. The
recordings were conducted identically as with the healthy vol-
unteers (see above).

Electrodes were localized on individual subject MRIs using
visual identification of landmarks on intraoperative photographs
and backprojection from postimplant X-rays as described by Dalal
et al. (submitted for publication) (Fig. 2). Time–frequency analyses



Fig. 3. At top is the spectrogram corresponding to the three simulated sources. In the rows below are the reconstruction results using sLORETA, the broadband
beamformer, the frequency domain beamformer, and the proposed time–frequency beamformer. In each of those panels, the crosshairs mark the spatiotemporal
peak for the reconstructed source, with the corresponding spectrogram shown below it. The time–frequency window plotted on the MRI is highlighted on the
spectrogram. The functional maps are thresholded at 50% of the maximum power (in dB) for the beamformer variants and 75% for sLORETA.

Fig. 4. Shown at top are the grand average reconstruction results for right index finger movement using the broadband beamformer, the frequency domain
beamformer, and the proposed time–frequency beamformer. The functional maps are superimposed on the MNI template brain and are statistically thresholded at
pb0.05 (corrected). In each of the panels, the crosshairs mark the spatiotemporal peak for the reconstructed source, with the corresponding spectrogram shown
below it. The functional map plotted on the MRI corresponds to the time–frequency window highlighted on the spectrogram. Note that the frequency–domain
beamformer localized peaks similar to the other methods, but grossly overestimated the statistically significant spatial extent of the late beta ERS, likely due to
the large baseline shift of inactive voxels.
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of ECoG data were performed using the event-related spectral
perturbation (ERSP) method (Makeig, 1993). Time courses for the
power of single trial data were generated for each frequency band
using a Gaussian filter bank and the Hilbert transform (Edwards,
2007); after averaging across trials, the power time courses were
divided by the mean baseline spectrum to generate the ERSP. These
results were converted to decibels and then rebinned into the same
time–frequency windows used to analyze the MEG data for ease of
comparison.

Results

Numerical experiments

The sLORETA method produced relatively blurry results for all
three simulated sources, with peaks on the periphery of the defined
volume of interest in each case (see Fig. 3). The reconstructions
were not of sufficiently high fidelity to appreciably distinguish the
spectrograms of the different sources. Several regularization para-
meters were tested with similar results.

The broadband beamformer correctly placed the peak of beta
ERD at (25, 30, 100) mm (see Fig. 3). However, the spatiotemporal
extent of both high gamma ERS sources were not as cleanly
resolved. The first source was placed at (20, 50, 60) mm peaking
over 150–175 ms, while the second source was placed at (20, 55,
70) mm, peaking over 450–475 ms. Additionally, the spatial extent
of all sources was blurred.

The frequency domain beamformer found the correct location of
the beta ERD, resolving a more focal peak than the broadband
beamformer (see Fig. 3). It also found the correct locations for both
high gamma ERS sources. However, the activation was spatially
blurred and attenuated for the high gamma ERS sources, especially
over 300–350 ms when one source tapers off and other tapers on.
Additionally, the spatiotemporal extent of all three sources was
compromised. The spectrogram computed for (15, 60, 75) mm shows
contamination from the (10, 50, 60) mm source and vice versa.

Finally, we applied our proposed technique to the data (see Fig.
3). As expected, the beta ERD was accurately resolved. Both high
gamma ERS sources were accurately localized and their temporal
extents accurately captured. Virtually no contaminations between
the two source locations were observed on their respective
spectrograms. This method provided the best reconstruction of the
simulated data.

Finger movement data

The characteristic beta band power decrease in contralateral
sensorimotor cortex was observed and reached statistical
significance across subjects for all three beamformer variants
(see Fig. 4 for corresponding MNI coordinates and corrected p
values for right index finger movement). However, only low-
amplitude early time windows near −400 ms were significant
for the broadband beamformer. In contrast, significant contral-
ateral activation was observed over −500 ms to 250 ms with
both the proposed time–frequency beamformer and the
frequency–domain beamformer, although results were more
spatially focal for the proposed method. Additionally, both of
these methods revealed significant beta band power decreases in
ipsilateral sensorimotor cortex and ipsilateral secondary somato-
sensory cortex approximately 0 ms to 200 ms after movement
onset.
The contralateral decrease in beta power was followed by a
significant contralateral beta rebound for all three methods. Again,
the time–frequency beamformer performed the best, with a
relatively focal activation area. The broadband beamformer
revealed a peak in sensorimotor cortex, but the spatial extent of
the activation extended into areas both implausibly deep as well as
outside the brain. The frequency–domain beamformer placed the
peak nearby, but grossly overestimated the statistically significant
spatial extent, apparently due to a large baseline shift evident in
voxels distant from motor cortex. The time–frequency beamformer
depicts a relatively focal activation in contralateral sensorimotor
cortex. (Individual results for many subjects also showed an
ipsilateral beta rebound, but this did not reach statistical
significance across subjects.) It also found an increase in beta
power peaking at (5, −5, 65) mm (MNI coordinates, pb0.038,
corrected), corresponding to activation of the supplementary motor
area (SMA) (not shown).

Interestingly, both the frequency–domain beamformer and the
time–frequency beamformer localized a focal, statistically sig-
nificant high gamma (65–90 Hz) peak in sensorimotor cortex. This
activity was found to be more spatially focal and temporally bound
to the movement. No significant high gamma activity was ob-
served with the broadband beamformer.

Similarly, the proposed technique revealed similar activity for
left index finger movement (Fig. 5). The typical beta band
desynchronization and late rebound as well as high gamma activity
were found in right sensorimotor cortex, reaching statistical
significance across subjects.

Activation of the cerebellum was also found in 9 of 12 healthy
volunteers and in both of the patients (see Fig. 6). While the
spatiotemporal extent and particular frequency content of cerebel-
lar activations exhibited considerable variability across subjects
and did not reach statistical significance in our across-subject
analyses with whole-brain multiple comparison correction, we did
observe that our method found consistent high-frequency sources
in the cerebellum in either the 65–90 Hz or 90–115 Hz bands.
Examples of distinct cerebellar responses from two subjects are
shown in Fig. 6; see Fig. 7 for responses from the two patients.

Intracranial recordings

As shown in Fig. 7, several locations showing ECoG activity
during the right finger movement task were also found with the
proposed MEG time–frequency beamformer method and exhibited
fairly similar spectrogram patterns. Table 1 lists the coordinates of
each peak in the grid coverage area for beta and high gamma
activations for both patients. MEG peaks were found between
2.8 mm and 10.4 mm from eight ECoG peaks, while two adjacent
electrodes showing low-amplitude beta ERD and one electrode
showing high gamma ERS did not have corresponding MEG
activations.

Note that the MEG reconstruction for both patients show the
largest-amplitude beta desynchronization and high gamma syn-
chronization in left primary motor cortex and the cerebellum in
accordance with the across-subjects analyses above, but these areas
were not covered by the ECoG grid in either patient; therefore, the
ECoG analyses show only lower-amplitude secondary areas of
activation which tend to result in blurrier MEG activations.
Nevertheless, the ECoG analyses supported the validity of MEG
reconstructions of these secondary activations, taking into account
the 1 cm spacing and cortical surface placement of the ECoG grid



Fig. 5. Shown above are the grand average reconstruction results for left index finger movement using the proposed time–frequency beamformer, superimposed on the MNI template brain. The functional maps are
superimposed on the MNI template brain and are statistically thresholded at pb0.05 (corrected). In each panel, the crosshairs mark the spatiotemporal peak for the reconstructed source, with the corresponding
spectrogram shown below it. The functional map plotted on the MRI corresponds to the time–frequency window highlighted on the spectrogram.
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Fig. 6. Above, examples of cerebellum activation for finger movement in two subjects. Above left are the results for RD2 movement in one subject. Above right
are the results for LD2 movement in a different subject. Both functional maps are thresholded at 75% of the maximum power (in dB).
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as well as spatiotemporal blurring inherent to the beamformer
technique.
Discussion

We have shown that, with our novel time–frequency optimized
beamformer techniques, MEG can resolve sources of transient
power changes across multiple frequency bands, including high
gamma activity. The method was validated with across-subjects
statistics and intracranial recordings.

Some secondary activity revealed by the ECoG analyses was not
observed with the MEG source reconstructions; these sources may
have activated a small cortical region and/or were not optimally
oriented for detection by MEG sensor arrays. Additionally, MEG
source reconstructions for any given voxel are linear combinations
of activity from multiple nearby sources due to spatiotemporal blur
and may explain minor spectrogram differences as compared to
ECoG. The degree of spatial blur depends on various factors,
especially SNR as well as the true spatial extent of the sources.

Adaptive spatial filter weights computed in the traditional
manner from unfiltered or wideband data are inherently biased
towards resolving low-frequency brain activity due to the power law
of typical electrophysiological data. By creating a set of weights
customized for each time–frequency window, higher frequency
sources may be characterized with much greater fidelity. Addition-
ally, segmenting the data into time windows can better capture the
temporal extent of oscillatory modulations as well as allow for
sources to change position and orientation. This is particularly
important for experiment designs with long interstimulus intervals
that yield several hundred milliseconds of data per epoch.

In using our proposed method, care must be taken to choose
window lengths and bandwidths that ensure stable and well-
conditioned covariance estimates. Optimal parameters will vary
considerably depending on the type of experiment, background
noise level, number of sensors, and number of trials. Too few time
samples or too little bandwidth would result in poor covariance
estimates and severely degrade performance of the beamformer
reconstruction (Brookes et al., 2008). As we demonstrated in the
Supplementary Methods section (available online), a compromise
must be made between bandwidth and time window length. The
ultimate parameter choice, then, must be driven by experimental
hypotheses. It must be considered that real sources are unlikely to
stay active for several hundreds of milliseconds at a time, making
extremely narrow bandwidths impractical. Conversely, a source at
a given location may generate a power increase in one band
simultaneously with a power decrease in another band (as with
common gamma power increase commonly observed in tandem
with beta power decrease); performance would suffer if both events
were contained by a single wide frequency band. Finally, total data
length (the product of time window length with number of trials)
had a direct impact on performance. Therefore, experiments should
be designed with the duration of hypothesized activations and
bands of interest in mind, increasing the number of trials acquired
as necessary.

Noise is known to significantly impact the performance of
minimum-norm-based methods by increasing localization bias and
decreasing spatial resolution (Greenblatt et al., 2005; Sekihara et
al., 2005), and this likely explains the presented sLORETA
results; ultimately, the regularization parameters and method are
critical in the presence of noise. Perhaps a similar approach to the
proposed method can be taken; i.e., regularization parameters can
be customized for different time–frequency segments, creating a
hybrid adaptive–nonadaptive source reconstruction technique.
This requires additional investigations beyond the scope of this
paper.

ECoG has been shown to clearly resolve high gamma (N60 Hz)
activity and suggests it is more spatiotemporally focal than lower-
frequency activity (Crone et al., 1998, 2001a,b; Edwards et al.,
2005; Canolty et al., 2006). Recently, high gamma activity has
been gaining attention in the MEG/EEG literature as well (Kaiser
et al., 2002; Hoogenboom et al., 2006; Vidal et al., 2006; Siegel
et al., 2007; Osipova et al., 2006). While increases in high gamma
power may coincide with decreases in beta power in many cases,
high gamma may be a better indicator of task-specific neural
processing in local cortical circuits since it is found to be more
focused spatially and temporally. The hand motor data we present
in this paper supports this hypothesis. Additionally, many studies
have recently shown that high gamma activity is positively
correlated with the hemodynamic response measured by functional
MRI (fMRI) (Logothetis et al., 2001; Mukamel et al., 2005;
Niessing et al., 2005; Brovelli et al., 2005; Hoogenboom et al.,
2006; Lachaux et al., 2007). Finally, higher-frequency bands may
be less likely to be temporally correlated even if they are
simultaneously active, and may thereby naturally circumvent the
known limitation of beamformer techniques to resolve highly
temporally correlated sources (Sekihara et al., 2002).



Fig. 7. Shown above are the right finger (RD2) movement activity for two intractable epilepsy patients, using both time–frequency analyses from an 8×8 intracranial electrode grid and the corresponding results from
preoperative magnetoencephalography with the proposed time–frequency beamformer. The spectrogram corresponds to the circled spatial location, while the functional maps show the spatial extent of activation for
the indicated time window and frequency band. The orange outline indicates the region covered by the intracranial electrode grid. Note that MEG reveals strong primary motor cortex and cerebellum activity, but these
areas were not covered with electrodes in either patient; instead, lower-amplitude secondary activations are compared between the two methods.
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Table 1
ECoG peaks vs. MEG reconstruction peaks

Patient Band ECoG coordinates
(mm)

MEG coordinates
(mm)

Difference
(mm)

1 beta −50.6, 3.8, 28.2 −45.8, −1.2, 25.5 7.5
1 beta −55.2, 13.2, 9.4 −50.3, 13.8, 15.3 7.7
1 beta −54.9, −0.7, 20.6 −50.8, −1.1, 25.4 6.3
1 beta −57.7, −5.1, 0.0 – –
1 beta −57.7, 0.6, 7.7 – –
1 high gamma −54.9, −0.7, 20.6 −51.0, −3.1, 30.0 10.4
1 high gamma −53.7, 20.3, 3.9 – –
2 beta −56.9, −24.4, 30.6 −51.3, −28.9, 36.7 9.5
2 beta −58.3, 2.0, 14.1 −61.0, 0.3, 8.9 6.1
2 beta −55.0, −33.7, 33.3 −51.2, −27.5, 32.0 7.4
2 high gamma −64.4, −26.4, 23.5 −66.2, −24.5, 22.5 2.8

ECoG electrode locations with activity in the beta and high gamma bands are
listed along with the nearest peaks found from the MEG time-frequency
beamformer reconstruction. Note that coordinates given are in each patient's
native MRI space (rather than MNI coordinates) in order to accurately
characterize Euclidean distances between ECoG and MEG peaks, given in
the last column.
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Other ECoG studies also show motor ERS in bands greater than
60 Hz (Ohara et al., 2000; Pfurtscheller et al., 2003) and even up to
200 Hz (Leuthardt et al., 2004; Brovelli et al., 2005; Crone et al.,
2006) in the same region we observed with our MEG technique.
Additionally, the postmovement beta rebound has been observed in
both ECoG (Pfurtscheller et al., 1996; Sochůrková et al., 2006) and
MEG (Jurkiewicz et al., 2006).

Our method suggested activations in the cerebellum for most of
the healthy subjects and both epilepsy patients, though it did not
reach statistical significance across subjects, likely due to individual
variability in precise location, latency, and frequency. We speculate
that both the sensor configuration and existing head models are not
optimized for accuracy in the cerebellar region. Currently available
MEG sensor arrays may not provide adequate coverage that far
down the head with normal subject positioning. Furthermore,
evidence from fMRI studies (Grodd et al., 2001; Hülsmann et al.,
2003; Thickbroom et al., 2003; Dhamala et al., 2003; Dimitrova
et al., 2006) suggests that the anterior cerebellum may be the most
active, placing the neural generators fairly distant from the sensors
and significantly lowering the SNR of the signals. Additionally, the
strategy employed by individual subjects in pacing their finger
movements may have introduced variability in the quality and extent
of activation due to the cerebellum's role in timing and rhythm (Ivry
and Keele, 1989; Dhamala et al., 2003; Lotze et al., 2003). Finally,
existing MEG/EEG head models focus on cerebral hemispheres and
do not explicitly account for the structure of the cerebellum or its role
in generating signals. As such, they may introduce large lead field
inaccuracies in the region of the cerebellum, severely degrading the
performance of spatial filtering techniques. Perhaps more sophisti-
cated models based on boundary element modeling (BEM) or finite
element modeling (FEM) are needed to improve fidelity in the
cerebellum and other deep brain structures.

Previous MEG/EEG studies have suggested coherence between
the cerebellum and cerebral cortex in the alpha and beta bands (Gross
et al., 2002; Pollok et al., 2005). However, the activations found in
this study suggest that the cerebellummay exhibit oscillatory activity
at much higher frequencies that are not necessarily coherent with
other locations, in accordance with speculation by Niedermeyer
(2004) and the classic experiments of Adrian (1935), Dow (1938),
Ten Cate and Wiggers (1942), and Pellet (1967). The use of space–
time–frequency methods for analyzing MEG/EEG data may finally
allow the cerebellum's electrical activity to be independently studied
noninvasively.

In addition to the hand motor data presented in this paper, other
MEG studies by our group show that our method can reveal more
complex cognitive processes related to learning, decision-making,
and memory (Dalal et al., 2005; van Wassenhove and Nagarajan,
2006, 2007; Hinkley, 2007; Guggisberg et al., 2008).

The technique we propose can be customized according to the
preferences of the experimenter. For example, the frequency bands
and time windows can be adjusted depending on the expected SNR
and trial-to-trial variability of the experiment. Any typical filter
type can be used to construct the filter banks; an experimenter may
prefer to substitute filters with different properties than we have
chosen or even wavelet-based filters. Finally, since the power of
the active windows, control window, and noise are preserved in the
final results, the contrast type may be selected by the end user.
Rather than an F-ratio contrast, a t-test (difference) or the
uncontrasted power time course may be selected instead.

This type of analysis does yield a large amount of information—a
time–frequency spectrogram for every spatial location implies five
dimensions of output data! Therefore, we have implemented an
interactive time–frequency viewer into our software package
NUTMEG to help make navigation of the results more intuitive.
Future directions may include developing factor analysis techniques
to help mine the rich output afforded by five-dimensional space–
time–frequency analyses.
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