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Asymptotic SNR of Scalar and Vector
Minimum-Variance Beamformers for
Neuromagnetic Source Reconstruction
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Abstract—To reconstruct neuromagnetic sources, the min-
imum-variance beamformer has been extended to incorporate the
three-dimensional vector nature of the sources, and two types of
extensions—the scalar- and vector-type extensions—have been
proposed. This paper discusses the asymptotic signal-to-noise
ratio (SNR) of the outputs of these two types of beamformers. We
first show that these two types of beamformers give exactly the
same output power and output SNR if the beamformer pointing
direction is optimized. We then compare the output SNR of the
beamformer with optimum direction to that of the conventional
vector beamformer formulation where the beamformer pointing
direction is not optimized. The comparison shows that the beam-
former with optimum direction gives an output SNR superior to
that of the conventional vector beamformer. Numerical examples
validating the results of the analysis are presented.

Index Terms—Biomagnetism, inverse problems, magnetoen-
cephalography, minimum-variance beamformer, neural signal
processing.

I. INTRODUCTION

THE SEARCH FOR efficient algorithms for reconstructing
spatio-temporal brain activities from neuromagnetic mea-

surements has attracted great interest [1]. One promising algo-
rithm is the minimum-variance beamformer, which was orig-
inally developed in the field of array signal processing such
as in radar, sonar, and seismic exploration, and has been suc-
cessfully applied to neuromagnetic source reconstruction prob-
lems [2]–[4]. However, the minimum-variance beamformer in
its original form [5] cannot be directly applied to neuromagnetic
source reconstruction. This is because the neural source distri-
bution is an electrophysiological current distribution, which is a
three-dimensional (3-D) vector quantity, so the method should
be extended to incorporate the 3-D vector nature of the sources.
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So far, two types of extensions of the minimum variance
beamformer that incorporate source orientation have been
proposed in the literature. One extension, called the scalar-type
beamformer, uses a beamformer weight that depends not only
on the location but also on the direction of a source [6]. The
other type of extension, called the vector-type beamformer,
uses a set of three weights where each weight detects one com-
ponent in the three orthogonal directions [7], [8]. A previous
study [9] showed that the scalar-type beamformer can attain
twofold better output SNR compared to the vector formulation.

In this paper, we show that the scalar and the vector for-
mulations give exactly the same asymptotic output SNR if the
beamformer pointing direction is chosen to maximize the beam-
former outputs. We then analyze the performance of this beam-
former with optimum pointing direction, and compare its perfor-
mance to that of the conventional vector beamformer formula-
tion where the beamformer pointing direction is not optimized.
A theoretical analysis is given for an isolated source and for
two closely located sources. The results of the analysis show
that significant SNR degradation can arise in the conventional
formulation, and numerical experiments validate these results.

Following a brief review on the two types of extensions
in Section II, this paper presents our theoretical analysis in
Sections III–V. Section VI presents numerical examples that
illustrate the results of our analysis. Throughout this paper,
plain italics indicate scalars, lower-case boldface italics indicate
vectors, and upper-case boldface italics indicate matrices. The
eigenvalues are numbered in decreasing order.

II. SCALAR AND VECTOR MINIMUM-VARIANCE

BEAMFORMER FORMULATIONS

A. Definitions

We define the magnetic field measured by the th
detector coil at time as , and a column vector

as a set of measured
data where is the total number of sensor coils and su-
perscript indicates the matrix transpose. The spatial lo-
cation is represented by a 3-D vector : . The
second-order moment matrix of the measurement is denoted

, i.e., , where indicates the ensemble
average, which is replaced with the time average over a cer-
tain time window in practice. When holds, is
also equal to the covariance matrix of the measurement. The
source magnitude is denoted . The source orientation is
defined as a 3-D column vector
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whose component (where equals , , or ) is equal to
the cosine of the angle between the direction of the source
and the direction. The 3-D source vector is expressed as

.
We define as the output of the th sensor. The output

is induced by the unit-magnitude source located at and
pointing in the direction. The column vector is defined
as . The array response
matrix, which represents the sensitivity of the whole sensor
array at , is defined as . The array
response vector in the direction is defined as , where

. The array response matrix and the
array response vector are often, respectively, called the
lead field matrix and the lead field vector in the field of the
biomagnetic imaging.

B. Scalar-Type Minimum-Variance Beamformer

We focus on the technique referred to as the minimum-vari-
ance beamformer [5] for reconstructing neuromagnetic sources.
Since the neuromagnetic source is a 3-D vector quantity, the
original minimum-variance beamformer formulation should be
extended to incorporate the 3-D vector nature of sources. Two
types of extensions have been proposed. The scalar extension
derives the weight by minimizing under the
constraint of . The explicit form of the weight
is expressed as

(1)

Note that the weight in (1) depends not only on the spatial loca-
tion but also on the direction , and therefore the information
regarding the source orientation is needed to calculate .

Using the weight in (1), the output source power (the power
of the reconstructed source) is obtained from

(2)

We also define the value such that

(3)

where is the variance of the input noise. Because the square
of the weight norm is the white noise power gain, as is
shown in Appendix I, is equal to the reconstructed source
power divided by the reconstructed noise power, and this value
is customarily called the output SNR1. It should be noted that the
expression similar to (3) has been reported in the fields of power
spectrum estimation [10] and of antenna-array processing [11].

C. Vector-Type Minimum-Variance Beamformer

The other type of extension, called the vector-type beam-
former, allows simultaneous estimation of the source orientation
as well as the source magnitude. It uses a set of three weight vec-
tors, , , and , which estimate the , , and

1This value is in fact equal to the output SNR plus 1 because it is the output
signal power plus output noise power divided by the output noise power.

components of a source current vector. (Note that any of three
orthogonal directions can be used, instead of the , , and di-
rections.) A set of weights for a vector-extended minimum-vari-
ance beamformer is derived using the optimization [7], [8]

(4)

where is a weight matrix defined as
; is the identity matrix; and

indicates the trace operation. The resultant weight matrix is
given by [8]

(5)

Using this weight matrix, the , , and components of the
source current vector are estimated from

(6)

where is the component ( , or ) of the esti-
mated source vector. The output source power is conventionally
given by [8]

(7)

When using the above equation, the white-noise power gain is
given by , as is shown in Appendix I. Thus,
the output SNR corresponding to the output power in (7), ,
is expressed in [9]

(8)

III. EQUIVALENCE OF THE TWO TYPES OF BEAMFORMERS

UNDER THE OPTIMUM POINTING ORIENTATION

This section shows that the scalar-type beamformer in (1) and
the vector-type beamformer in (5) give exactly the same outputs
if the beamformer orientation is optimized. As mentioned pre-
viously, the scalar-type beamformer requires the determination
of the source orientation at each spatial location . One way
to determine the optimum orientation at each is to choose the
orientation that gives the maximum power output, i.e., is de-
termined by using

(9)
We define the eigenvalues and eigenvectors of the 3 3 matrix

as and , where , 2, and 3. We as-
sume that the eigenvalues are numbered in decreasing order. It
is well known, based on the Rayleigh-Ritz formula, that giving
the minimum of is equal to , which is
the eigenvector corresponding to the minimum eigenvalue of



1728 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, NO 10, VOL. 51, OCTOBER 2004

[12], [13]. The maximum output source power
is then expressed as

(10)

We define this value of the output power as opt, namely,

opt .
We next show that the vector beamformer also attains opt by

maximizing the beamformer output. For the vector-type beam-
former, the output source power in the direction is expressed
as . Using (5), the maximiza-
tion of the output power leads to

(11)

Because the relationship

holds, the optimum obtained in maximizing the right-hand
side of (11) is equal to the eigenvector corresponding to the
maximum eigenvalue of the matrix , which
is equal to . Accordingly, we obtain the optimum direction
as the eigenvector corresponding to , i.e., . Thus,
the output power is expressed as

opt (12)

This equation indicates that either type of beamformer formula-
tion attains opt when the beamformer pointing direction is set
to the direction that gives the maximum output.

We then show that the scalar and vector beamformer formu-
lations also give exactly the same output SNRs (the values)
when the beamformer pointing direction is optimized. In the
scalar beamformer formulation, the output SNR maximized
with respect to is defined as

opt
, which is obtained by

opt

(13)

We define the generalized eigenvalues and eigenvectors of
in the metric as and ,

i.e., and satisfy

(14)

where , 2, and 3. Then, it is shown in Appendix II (and
in [14]) that the optimum in (13) is given as , which is the

eigenvector corresponding to the minimum eigenvalue of (14),
and thus

opt
is expressed as

opt
(15)

Because the matrix is invertible, the general-
ized eigenproblem in (14) can be changed to the following con-
ventional eigenproblem:

(16)

and can also be obtained as the minimum eigenvalue of (16).
In the vector beamformer formulation, the output SNR maxi-

mized with respect to is defined as
opt

, which is obtained
by using

opt

(17)

where

We define the generalized eigenvalues and eigenvectors of
in the metric as and , i.e., and
satisfy

(18)

The optimum in (17) is equal to , and
opt

is expressed

as
opt

. It is easy to see that the generalized
eigenproblem in (18) can be changed to the conventional eigen-
problem

(19)

and is obtained as the minimum eigenvalue in (19).
Comparing the matrix in (19) with that in (16), one can see

that both of these matrices consist of the product of the same two
matrices, and , and only
the order of multiplication differs. Therefore, the eigenvalue

in (19) is equal to in (16) [12], and
opt

is rewritten as

opt
(20)

Because
opt

is exactly the same as
opt

, it can be con-
cluded that the scalar and the vector formulations can attain
the same output SNR when the direction that gives the max-
imum SNR is chosen. We denote this output SNR obtained with
the optimum beamformer direction as opt, namely, opt

.
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IV. ASYMPTOTIC OUTPUT SNR OF BEAMFORMERS WITH

OPTIMUM ORIENTATION

In Section III, we show that when the beamformer pointing
direction is optimized, both the vector and the scalar beam-
former formulations attain the output SNR opt. In this
section, we derive the explicit form of opt. Here, we omit
the notations of and for simplicity unless any confu-
sion arises. We define for later use the generalized cosine
between two column vectors and in the metric as

. When
is equal to the identity matrix, this cosine is simply denoted

.
We first assume the simplest case where a single source whose

orientation is equal to exists at , and define the lead field
vector for this single source as , such that . The
power of the source is defined as . The power of the input
noise is again denoted . The covariance matrix and its inverse
are then expressed as

(21)

(where is again the power of the input noise) and

(22)

where and . This is some-
times referred to as the input power SNR [15]. This is usually
much greater than 1 for large sensor arrays such as those used
in recent neuromagnetic measurements, and is approximately
equal to 1. (Numerical examples of these values are given in
Section VI.)

In the scalar beamformer formulation, when the beamformer
pointing direction is set to , the output SNR is expressed,
using (3), as

(23)

It can be seen that reaches its maximum when .
Setting equal to in (23), opt is expressed as

opt (24)

Thus, the input SNR and the output SNR are equal and there is
no SNR degradation in the beamformer reconstruction.

We next analyze a case where two sources exist. The locations
of the sources are denoted and , and their orientations are
denoted and . We define the lead field vectors for the two
sources as and , such that and .
Here, we define the spatial correlation [16] between the two
sources as , which is nearly equal to 1 when the two

sources create similar lead field vectors, but is nearly equal to
zero when their lead field vectors are very different. We define
the power of the first source as , and that of the second source
as . The covariance matrix is then expressed as

(25)

We define as and as . Gen-
erally, the relationship holds for a large sensor array and
the value of is very close to 1. (Numerical examples of these
values are presented in Section VI.) As shown in Appendix III,
it is straightforward to derive opt , as follows:

opt (26)

Equation (26) shows that the output SNR is directly affected
by the spatial correlation, and only when the relationship

holds, the input SNR is preserved in the beam-
former reconstruction process.

V. ASYMPTOTIC OUTPUT SNR OF VECTOR BEAMFORMER

WITHOUT ORIENTATION OPTIMIZATION

In Section IV, we derived the explicit form of opt, which is
the output SNR attained either by the scalar or the vector beam-
former formulations when the beamformer pointing direction is
optimized. On the other hand, as mentioned in Section II-C, the
vector beamformer conventionally does not optimize the beam-
former pointing direction, and (8) is used for calculating the
output SNR. In this section, we derive the explicit form of the
output SNR when (8) is used.

We first assume a case where a single source exists, and use
the expression in (22) for the inverse of the covariance matrix.
We use the three orthogonal directions , , and (where

( , 2, 3) is the three eigenvectors of ) to
calculate the weight matrix , and define such that
( , 2, 3). Then, the output power obtained using (7) is
denoted conv , which can be expressed as

conv

(27)

Let us define the output SNR obtained using (8) as conv .
The denominator in (8) can be expressed as

(28)
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where we use the relationship

(29)

Assuming where , 2, and sub-
stituting (27) and (28) into (8), we finally obtain

conv

(30)
Assuming that , and using the relation-
ship , conv is finally expressed as

conv

(31)

This equation indicates that conv is one third of the input
SNR. This is in contrast to opt , where the input SNR is
preserved.

When the spherically symmetric homogeneous conductor
model [17] is used for the forward calculation, the source
current vector is expressed in the two tangential components.
As a result, the lead field matrix is an matrix, and

is a 2 2 matrix. In such cases, it is easy to
show that (31) changes to

conv (32)

The above equation indicates that conv is half of the input
SNR. This result is in accordance with that obtained by Vrba and
Robinson [9], who assumed a special source-sensor configura-
tion where a single source exists directly below the center of a
rotationally-symmetric sensor array.

By further assuming the use of the spherically symmetric ho-
mogeneous conductor model, we can next derive an expression
for conv when two sources exist. We use the same nota-
tions defined in Section IV. After some lengthy calculations, (a
part of which is shown in Appendix III), we finally obtain

conv (33)

where

(34)

and where we have (35), as shown at the bottom of the page. The
definition of is given in (47). In deriving (33)–(35),
we use several appropriate approximations such as or

. However, it is not straightforward to evaluate
and using (34) and (35). In Section VI, we numerically deter-
mine these values and show that is much smaller than 1 but

is considerably larger than 1 in typical neuromagnetic mea-
surement conditions.

VI. NUMERICAL EXAMPLES

Numerical examples are presented here to illustrate several
results of the analysis in Sections II–V. A sensor alignment of
the 148-sensor array from Magnes 2500™ (4D Neuroimaging
Inc., San Diego) whole-head neuromagnetometer was used. The
coordinate origin was set at the center of the sensor coil located
at the center of the coil array. The direction was defined as that
from the posterior to the anterior; the direction was defined as
that from the right to the left hemispheres; and direction was
defined as that perpendicular to the surface of the coil at the
origin.

Two point sources were assumed to exist at
and , i.e., they were 1.6 cm apart and located
6 cm below the center of the sensor array on the plane .
The source-sensor configuration and the coordinate system are
illustrated in Fig. 1. The simulated time courses assigned to the
first and the second sources, and , are also shown in
Fig. 1. The cross correlation coefficient between these two time
courses is approximately equal to 0.086, and they are nearly
orthogonal to each other. The amplitudes of and are
adjusted to have the relationship , i.e., the two sources
have equal powers.

The lead field vectors of the sensor array for these sources,
and , were calculated by using the spherically homo-

geneous conductor model with its center set at .
The simulated magnetic recording is calculated using

. Simulated sensor noise uncorrelated
among sensor channels was added so that the ratio between the
average power of the signal magnetic field to the

(35)
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Fig. 1. Coordinate system and source-sensor configuration used in the
numerical experiments. The coordinate origin was set at the center of the sensor
coil located at the center of the array. The plane at x = 0 cm is shown. The
two point sources, shown by the small filled circles, were located on the line
(x = 0; z = �6) cm. The time courses assigned to the two sources are shown
in the two upper panels.

noise power is equal to 1. Here, is the total number of
sensors and it is equal to 148 in our numerical experiments.
Typical simulated recording with this SNR is shown in the
lower panel in Fig. 1.

First, we simulated a case where a single source exists. We
assigned the time course to the first source, but we set the
second-source time course to zero, i.e., . In this case,
the input SNR for the first source, , is equal to (148) and

results in 0.998. The cross sections of the reconstructed first
source along the line are shown in Fig. 2.
Here, the reconstruction with opt is shown by the solid line,
and that with conv is shown by the broken line. The peak value
of opt is equal to 147.5, and that of conv is equal to 70.5.
These results show that the peak from opt is nearly twice as
high as the peak from conv, and this is in accordance with the
results in Section V.

We then simulated a case where the two sources are both ac-
tive by assigning the time courses and , shown in
Fig. 1, to the first and the second sources. The orientation of the
two sources were set equal to and .
The spatial correlation represented by is nearly equal
to zero in this case . Simulated sensor noise
was added so that the ratio is equal to one. The
input SNRs for the first and second sources, and , are both
equal to 131, and the values of and are both equal to 0.992.
The cross sections of the reconstructed results along the line

are shown in Fig. 3. The reconstruction

Fig. 2. Cross-sectional view of the reconstructed first source along the line
(x = 0; z = �6) cm for the single-source experiments. The solid line
shows Zopt and the broken line shows Zconv. The SNR of the simulated data
hkbbbk i=(M� ) was set to 1, resulting in � equal to 148.

with opt is shown by the solid line, and that with conv is
shown by the broken line.

The peak intensities of opt were found to be 131 for the
first and the second sources, and those of conv were found
to be 19. Thus, the peak-intensity ratio of conv to opt is
calculated to be conv opt . On the other
hand, since the values of and in this case are 0.047 and
6.04, respectively, the SNR reduction factor
in (33) is approximately equal to . Therefore, the
intensity reduction of conv can be well explained by the factor

, and these results clearly validate (33).

VII. CONCLUSION

In conclusion, this paper proves that the scalar and vector
minimum-variance beamformer formulations give exactly the
same output power and output SNR, if the beamformer pointing
direction is optimized. We then compare the theoretical output
SNR of a beamformer with optimum pointing direction to the
output from the conventional vector beamformer formulation
without an optimized pointing direction. The comparison shows
significant SNR degradation with the conventional vector beam-
former formulation.

The primary purpose of this paper was to show that both
the scalar and vector types of beamformers potentially attain
the same SNR performances, although the conventional way of
formulating the vector beamformer can cause significant SNR
degradation. However, it is not within the scope of this paper
to discuss the superiority of one of the two formulations over
the other. This is because the quality of the source reconstruc-
tion results are determined not only by the asymptotic SNR but
also by various factors such as spatial resolution, source cor-
relation or the influence from background physiological noise.
Therefore, To determine the superiority, a thorough investiga-
tion would be required, not only of the theoretical SNR but also
of other performance measures including the spatial resolution
and the robustness to various causes of errors such as mentioned
above. Such investigations are currently being conducted with
results to be published in the near future.
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Fig. 3. Cross-sectional view of the reconstruction results along the line (x = 0; z = �6) cm for the experiments where the two sources are both active. The
solid line shows Zopt and the broken line shows Zconv. The SNR of the simulated data hkbbbk i=(M� ) was set to 1, and this results in both � and � equal to
131. The source orientations of the two sources were set to (0:91; 0:42) and (0:91;�0:42), resulting in cos (fff; ggg) � 0.

APPENDIX I

This Appendix shows that the white-noise power gain is
equal to for the scalar beamformer and it is equal
to for the conventional vector beamformer.
We assume that the additive noise is contained in the
measurement, i.e., the measurement is expressed as

, where is the number
of sources. We assume that is the white Gaussian noise
uncorrelated among sensor channels. The variance of the noise
is denoted . Then, the output noise for the scalar beamformer
is expressed as . The variance of the output noise is,
thus, equal to

(36)
For the vector beamformer, using (6), the output noise is ex-
pressed as . Therefore, the variance of the output
noise is expressed as

(37)

where indicates the trace operation.

APPENDIX II

We define and as positive definite matrices, and
as an column vector. This Appendix shows that

(38)

where and are the minimum eigenvalue and its
corresponding eigenvector of the following generalized eigen
problem:

(39)

Since the value of the ratio is not affected
by the norm of , we set the norm of so as to satisfy the
relationship . Then, the minimization problem in
(38) is rewritten as

(40)

We change this constrained minimization problem to an un-
constrained minimization problem by introducing the Lagrange
multiplier , i.e., we define the function such that

(41)

The minimization in (40) is equivalent to minimizing .
To obtain the minimum of , we calculate the derivatives

(42)

By setting these derivatives to zero, we can derive the relation-
ships, and . Therefore, the minimum
value of is equal to , which is the minimum eigen-
value of , and that attains this minimum value is
equal to the eigenvector .

APPENDIX III

This Appendix provides several supplementary formulae that
are the basis of the analysis for the two-source case in Sec-
tions IV and V. We define the lead field vector for the first source
as and its power as . The lead field vector for the second
source is defined as and its power as . The power of the
input noise is denoted . When two sources exist, the covari-
ance matrix is expressed as (25). Its inverse is expressed as

(43)
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(50)

where ; ;
; ; and . Using

(43), we can obtain the following equations:

(44)

and

(45)

where

(46)

and

(47)

Note that is an arbitrary lead field vector, and
when .

Using (44) and (45), the output SNR for the scalar beam-
former is expressed as

(48)

The optimum output SNR is obtained using this equation by set-
ting equal to , and it results in (26). To derive (33), we choose
the two orthogonal directions as the directions , and , which
are the eigenvectors of when the spherical ho-
mogeneous conductor is used. We then calculate the numerator
and the denominator of (8). The numerator can be expressed as

(49)

and the denominator can be expressed as in (50), shown at the
top of the page. Weassume that thebeamformercancorrectlyde-
tect the source orientation at and thus is equal to . We also
assume that the norm of the lead field vector is similar between
the two tangential directions, i.e., . Using these ap-
propriate approximations, we can derive (33) from (49) and (50).
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