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1. Introduction

Electrophysiological activity of neurons in the cerebral cortex 
generates weak but detectable magnetic fields outside the 
scalp, and direct non-invasive measurements of these neuronal 
activities can be achieved with magnetoencephalography 
(MEG) [1–3]. Modern MEG systems, combining large-scale 

sensor arrays with advanced signal processing algorithms, are 
now capable of imaging dynamic brain activities with the tem-
poral resolution on the order of submilli-seconds.

In spite of its success, MEG has the well-recognized 
weakness that it is not generally good at detecting deep 
brain activities, although there have been many attempts on 
recording MEG signals from deep brain regions [4] such as 
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Abstract
Objective. Magnetoencephalography (MEG) has a well-recognized weakness at detecting 
deeper brain activities. This paper proposes a novel algorithm for selective detection of deep 
sources by suppressing interference signals from superficial sources in MEG measurements. 
Approach. The proposed algorithm combines the beamspace preprocessing method with 
the dual signal space projection (DSSP) interference suppression method. A prerequisite 
of the proposed algorithm is prior knowledge of the location of the deep sources. The 
proposed algorithm first derives the basis vectors that span a local region just covering the 
locations of the deep sources. It then estimates the time-domain signal subspace of the 
superficial sources by using the projector composed of these basis vectors. Signals from the 
deep sources are extracted by projecting the row space of the data matrix onto the direction 
orthogonal to the signal subspace of the superficial sources. Main results. Compared with 
the previously proposed beamspace signal space separation (SSS) method, the proposed 
algorithm is capable of suppressing much stronger interference from superficial sources. This 
capability is demonstrated in our computer simulation as well as experiments using phantom 
data. Significance. The proposed bDSSP algorithm can be a powerful tool in studies of 
physiological functions of midbrain and deep brain structures.
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the thalamus [5–9], amygdala [10, 11], and cerebellum [12, 
13]. This is primarily because MEG sensor arrays generally 
have very low sensitivity near deep brain regions, due to the 
physical nature of magnetic signals. That is, since magn-
etic signals attenuate with the inverse-square-distance law, 
MEG signals arising from deep sources become significantly 
weaker than signals from superficial cortical sources. Also, 
it is generally true that when a deeper brain region is active, 
superficial cortical regions are simultaneously active. In such 
cases, the activity at a deep brain region is masked by over-
lapped cortical activities, and only these cortical activities are 
detected by MEG.

To overcome this weakness, Özkurt et al proposed a method 
of decomposing MEG signals into components corresponding 
to deep and superficial sources [14]. Their method is based on 
the signal space separation (SSS) algorithm, which utilizes the 
vector spherical harmonics expansions of the measured magn-
etic field [15, 16]. Their method combines the SSS algorithm 
with so-called beamspace processing [17, 18]. The method 
proposed by Özkurt et al is thus referred to as the beamspace 
SSS method herein.

The beamspace processing was originally developed to 
reduce the data dimensionality. Many popular source locali-
zation methods, such as the MUSIC algorithm [19, 20] and 
adaptive beamforming [21, 22], make use of second-order sta-
tistics of the measured data. To obtain stable data statistics, a 
large number of time samples are generally needed, and the 
number of required time samples linearly increases as the data 
dimension increases. The beamspace processing was devel-
oped to reduce this data-sample requirements by reducing 
the data dimensionality. The data-dimensionality reduction is 
achieved by projecting the data vector onto a low-dimensional 
subspace [22, 23]. In this paper, the beamspace idea is used 
for preprocessing the data by selective interference cancella-
tion. A brief introduction on the beamspace preprocessing is 
presented in section 3.1 of this paper.

Inspired by Özkurt et al, this paper proposes a novel algo-
rithm for selective detection of a deep source by suppressing 
interference signals from superficial sources. The proposed 
method is a combination of the beamspace processing with 
the previously-proposed interference suppression method 
called dual signal space projection (DSSP) [24]. Thus, the 
proposed method is here called beamspace DSSP (bDSSP). 
Compared with the beamspace SSS, the proposed bDSSP 
algorithm is capable of suppressing much stronger interfer-
ence from superficial sources. This capability is demonstrated 
in our computer simulation and experiments using phantom 
data.

This paper is organized as follows: following concise 
explanations of the DSSP algorithm in section  2, the pro-
posed beamspace DSSP algorithm is described in section 3. 
We present computer simulations that test the effectiveness of 
the bDSSP algorithm. In section 5.1, results of experiments 
using an MEG phantom are presented to further demonstrate 
the effectiveness of the proposed method. In sections 6 and 7, 
additional supplementary arguments are presented, including 
a comparison between the beamspace SSS and bDSSP 
methods.

2. Dual signal subspace projection algorithm

2.1. Data model

Biomagnetic measurements are usually conducted using a 
sensor array, which simultaneously measures the biomagn-
etic signal with multiple sensors. Let us define the measure-
ment of the mth sensor at time t as ym(t). The measurement 
from the whole sensor array is expressed as a column 
vector y(t): y(t) = [y1(t), y2(t), . . . , yM(t)]T , which is called 
the data vector. Here, M is the number of sensors, and the 
superscript T indicates the matrix transpose. Throughout 
this paper, plain italics indicate scalars, lower-case boldface 
italics indicate vectors, and upper-case boldface italics indi-
cate matrices.

Let us assume that a unit-magnitude source exists at r 
(r = (x, y, z)). When this unit-magnitude source is directed in 
the x, y, and z directions, the outputs of the m-th sensor are 
respectively denoted as lxm(r), lym(r), and lzm(r). Let us define 
an M × 3 matrix L(r) whose mth row is equal to a 1 × 3 row 
vector [lxm(r), lym(r), lzm(r)]. This matrix L(r), referred to as 
the lead field matrix [1, 25], represents the sensitivity of the 
sensor array at r.

The DSSP algorithm was proposed in order to remove 
interfering magnetic fields overlapped onto signal magnetic 
fields. The algorithm assumes the data model:

y(t) = yS(t) + yI(t) + ε, (1)

where yS(t), (called the signal vector), represents the signal of 
interest, yI(t), (called the interference vector), represents the 
interference magnetic field, and ε, (called the random vector), 
represents additive sensor noise. We denote the time series 
outputs of a sensor array y(t1), . . . , y(tK), where K is the total 
number of measured time points. The measured data matrix B 
is thus defined as:

B = [y(t1), . . . , y(tK)]. (2)

The signal matrix is defined as

BS = [yS(t1), . . . , yS(tK)], (3)

and the interference matrix as

BI = [yI(t1), . . . , yI(tK)]. (4)

Then, the data model in equation (1) is expressed in a matrix 
form as:

B = BS + BI + Bε, (5)

where Bε is the noise matrix whose j-th column is equal to the 
noise vector ε at time tj.

2.2. Pseudo-signal subspace projector

The DSSP algorithm assumes the data model in equation (5) 
with the assumption that the interference sources are located 
outside the source space6. The DSSP algorithm uses the 

6 The source space indicates a region in which signal sources can exist. For 
example, the entire brain (or entire cortex) is considered as the source space 
in most MEG measurements.
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so-called pseudo-signal subspace projector, and to derive it, 
voxels are defined over the source space, in which the voxel 
locations are denoted r1, . . . , rN . The augmented leadfield 
matrix over these voxel locations is defined as

F = [L(r1), . . . , L(rN)], (6)

and the pseudo-signal subspace ĔS is defined such that

ĔS = csp(F), (7)

where the notation csp(X) indicates the column space of a 
matrix X. If the voxel interval is sufficiently small and voxel 
discretization errors are negligible, we have the relation-
ship ĔS ⊃ ES where ES indicates the true signal subspace. 
Therefore, a vector contained in the signal subspace is also 
contained in the pseudo-signal subspace.

Let us derive the orthonormal basis vectors of the pseudo-
signal subspace. To do so, we compute the singular value 
decomposition of F:

F =

M∑
j=1

λjej f T
j . (8)

Note that F is an M × N  matrix, so ej is an M × 1 column 
vector and f j is an N × 1 column vector. In equation  (8), 
we assume the relationship M  <  N, and the singular values 
are numbered in decreasing order. If the singular values 
λ1, . . . ,λτ  are distinctively large and other singular values 
λτ+1, . . . ,λM are nearly equal to zero, the leading τ singular 
vectors e1, . . . , eτ  form orthonormal basis vectors of the 
pseudo-signal subspace ĔS [26]. Thus, the projector onto ĔS 
is obtained using

P̆S = [e1, . . . , eτ ][e1, . . . , eτ ]T . (9)

Note that, since ĔS ⊃ ES, the orthogonal projector (I − P̆S) 
removes the signal vector, i.e. (I − P̆S)yS(t) = (I − P̆S)BS = 0.

2.3. DSSP algorithm

A detailed explanation of the DSSP algorithm in the context 
of the time-domain signal subspace can be found in [27]. The 
DSSP algorithm applies P̆S and I − P̆S to the data matrix B to 
create two kinds of data matrices:

P̆SB = BS + P̆SBI + P̆SBε, (10)

(I − P̆S)B = (I − P̆S)BI + (I − P̆S)Bε. (11)

To derive equations  (10) and (11), we use P̆SBS = BS and 
(I − P̆S)BS = 0. Let us use the notation rsp(X) to indicate the 
row space of a matrix X. Then, according to the arguments in 
[27], the following relationships hold:

rsp(P̆SB) ⊂ rsp(BS) + rsp(P̆SBI) + rsp(P̆SBε), (12)

rsp((I − P̆S)B) ⊂ rsp((I − P̆S)BI) + rsp((I − P̆S)Bε). (13)

Since the relationships, rsp(P̆SBI) = KI and rsp(I − P̆S)BI =  

KI, hold, equations (12) and (13) lead to the relationships:

rsp(P̆SB) ⊂ KS +KI + K̆ε, (14)

rsp((I − P̆S)B) ⊂ KI + K̆′
ε, (15)

where KS and KI respectively indicate the time-domain 
signal and interference subspaces. Here, we use the notations, 
rsp(P̆SBε) = K̆ε and rsp((I − P̆S)Bε) = K̆′

ε.
Using equations  (14) and (15), we can finally derive the 

relationship [27]:

KI ⊃ rsp(P̆SB) ∩ rsp((I − P̆S)B). (16)

The equation  above shows that the intersection between 
rsp(P̆SB) and rsp((I − P̆S)B) forms a subset of the interfer-
ence subspace KI. Once the orthonormal basis vectors of the 
intersection ψ1, . . . ,ψr  are obtained, we can compute the pro-
jector onto the intersection Πisc such that

Πisc = [ψ1, . . . ,ψr][ψ1, . . . ,ψr]
T . (17)

Using this Πisc as the projector onto the interference sub-
space KI, the interference removal is achieved and the signal 
matrix is estimated such that

B̂S = B(I −Πisc) = B(I − [ψ1, . . . ,ψr][ψ1, . . . ,ψr]
T).

 (18)
The method of removing the interference in a manner 
described above is called DSSP [24]. Note that since the basis 
vectors of the intersection, ψ1, . . . ,ψr , span only a subset 
of the interference subspace KI, this method cannot per-
fectly remove interferences. However, when the intersection 
rsp(P̆SB) ∩ rsp((I − P̆S)B) is a reasonable approximation 
of KI, interferences can effectively be removed by the DSSP 
algorithm.

3. Beamspace dual signal subspace projection 
(bDSSP) algorithm

3.1. Beamspace processing

Beamspace processing refers to a signal processing algorithm 
used for data-dimensionality reduction. Such data-dimension-
ality reduction is achieved by projecting the data vector onto 
a low-dimensional subspace. In other words, an M × 1 data 
vector y(t) is represented with known basis vectors u1, . . . , uP, 
where the number of basis vectors P is smaller than the dimen-
sion of the data vector M. That is, if y(t) is expressed using a 
linear combination of a set of known P basis vectors such that

y(t) ≈
P∑

j=1

cj(t)uj, (19)

the sensor measurements y1(t), y2(t), . . . , yM(t) can be rep-
resented by only P coefficients c1(t), . . . , cP(t). Since we 
assume P  <  M, the data dimension is reduced from M to P in 
equation (19).

The problem here is how to find basis vectors u1, . . . , uP 
which satisfy the relationship in equation  (19). A method 
of deriving the basis vectors based on the prior knowledge 
of signal source locations has been proposed in [23]. In this 
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proposed method, the augmented lead field matrix F̄ is defined 
over a local region that just contains the signal sources. The 
voxels are defined over this local region and the voxel loca-
tions are denoted r̄1, . . . , r̄N̄ . The augmented leadfield matrix 
over these voxel locations is expressed as

F̄ = [L(r̄1), . . . , L(r̄N̄)], (20)

and its singular value decomposition is given by

F̄ =
R∑

j=1

λ̄jējf̄
T
j (21)

where R = min{M, N̄}. Let us assume that the leading τ̄  sin-
gular values, λ̄1, . . . , λ̄τ̄  are distinctively large, compared to 
the rest of the singular values λ̄τ̄+1, . . . , λ̄R. Then, the beam-
space basis vectors u1, . . . , uP are obtained as the leading τ̄  
singular vectors ē1, . . . , ēτ̄  where P is equal to τ̄ .

3.2. bDSSP algorithm

Use of the beamspace basis vectors with the DSSP algo-
rithm leads to a novel algorithm that can selectively detect 

signals from a deep source by suppressing interference from 
superficial sources. The algorithm is called bDSSP, which is 
described as follows: The data model for the bDSSP algorithm 
is expressed as

B = Bdeep + Bsup + Bε, (22)

where Bdeep indicates the signal caused from a deep source7, 
and Bsup the signal from superficial sources. A prerequisite of 
this algorithm is that the location of the deep source be known. 
We then compute the beamspace basis vectors u1, . . . , uP by 
setting the local source space as a small region just covering 
the location of the deep source.

The beamspace projector Pdeep is then derived as

Pdeep = [u1, . . . , uP][u1, . . . , uP]
T . (23)

By multiplying Pdeep and I − Pdeep with the data matrix B, we 
obtain:

PdeepB = Bdeep + PdeepBsup + PdeepBε, (24)

(I − Pdeep)B = (I − Pdeep)Bsup + (I − Pdeep)Bε. (25)

Here, we use PdeepBdeep = Bdeep. Then, by using exactly the 
same derivations as in [27], we can derive

rsp(PdeepB) ⊂ Ksup +Kdeep + K̄ε, (26)

rsp((I − Pdeep)B) ⊂ Ksup + K̄′
ε, (27)

where Kdeep and Ksup are the time-domain signal subspaces of 
the deep and superficial sources, respectively. We also use the 
notations: rsp(PdeepBε) = K̄ε and rsp((I − Pdeep)Bε) = K̄′

ε. 
Using equations (26) and (27), We can finally derive,

Figure 1. Locations of sensors and three sources assumed in 
our computer simulations. Filled circles indicate the locations of 
sensors, the blank circle indicates the location of the deep source, 
and the square and triangle indicate the locations of the two 
superficial sources. The cross mark indicates the sphere origin. Top-
left, top-right, and bottom panels, respectively, show the coronal, 
sagittal, and axial projections. The source locations, orientations 
and distances to the sphere origin are shown in table 1 in which 
Source#2 is the deep source, and the other two sources are called 
the superficial sources in our computer simulations.

Table 1. Source properties assumed in computer simulation.

Source 
number Orientation Location (cm)

Distance from the 
sphere origin (cm)

1 (1, −1, 0) (0.4, 0.1, 13.3) 7.0
2 (0, 1, 1) (2.9, −1.4, 9.3) 4.4
3 (1, 0, 1) (2.4, 2.6, 11.3) 6.1

Figure 2. Time courses assigned to the three sources. Time t is 
expressed with the unit of time points. Top panel shows the time 
course assigned to the deep source, and the bottom two panels show 
the time courses assigned to the two superficial sources. Each time 
course is normalized between  −1 and 1.

7 We assume that the target deep source is a single source for simplicity.

J. Neural Eng. 15 (2018) 036026
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Ksup ⊃ rsp(PdeepB) ∩ rsp((I − Pdeep)B). (28)

The equation above indicates that the intersection between the 
row spaces of PdeepB and (I − Pdeep)B forms a subset of Ksup.

The orthonormal basis set of the intersection, 
rsp(PdeepB) ∩ rsp((I − Pdeep)B), can be obtained using the 
procedure presented in [24, 27, 28]. Denoting these ortho-
normal basis vectors by φ1, . . . ,φr, the projector onto the 
intersection is obtained as

Πisc = [φ1, . . . ,φr][φ1, . . . ,φr]
T .

Using this Πisc as the projector onto the signal subspace Ksup, 
the signal from the deep source is estimated by projecting the 
rows of the data matrix onto the direction orthogonal to Ksup, 
such that

B̂deep = B(I −Πisc) = B(I − [φ1, . . . ,φr][φ1, . . . ,φr]
T).

 (29)
Note that since the basis vectors φ1, . . . ,φr span only a part of 
Ksup, the orthogonal projection on the right-hand side of equa-
tion  (29) cannot perfectly remove Bsup. Nonetheless, when 
rsp(PdeepB) ∩ rsp((I − Pdeep)B) ≈ Ksup holds, a significant 
reduction of Bsup can be attained. One such situation is the 
case in which the superficial signal Bsup is dominated in B.

The procedure of the bDSSP algorithm can be summarized 
as follows:

 (1) Set the local source space so that it covers the location 
of the target deep source, and compute the beamspace 
projector Pdeep using equation (23).

 (2) Apply the projector Pdeep to the data matrix B to create 
two data sets PdeepB and (I − Pdeep)B.

 (3) Apply the singular value decomposition to PdeepB to 
derive the orthonormal basis set of rsp(PdeepB); the basis 
set is denoted by {x1, . . . , xµ} where μ is the dimension 
of rsp(PdeepB). Also, apply the singular value decomposi-
tion to (I − Pdeep)B to derive the orthonormal basis set of 
rsp((I − Pdeep)B); the basis set is denoted by {y1, . . . , yν} 
where ν is the dimension of rsp((I − Pdeep)B).

 (4) Define matrices X = [xT
1 , . . . , xT

µ] and Y = [yT
1 , . . . , yT

ν ], 
and compute the singular value decomposition of XTY , 
such that

XTY = Q



γ1 · · · 0
...

. . .
...

0 . . . γν


TT , (30)

  where Q and T  are matrices whose columns consist of the 
singular vectors.

 (5) Observe the relation:

γ1 = γ2 = · · · = γr ≈ 1 > γr+1 � · · · � γν ,

  and determine the dimension of the intersection 
rsp(PdeepB) ∩ rsp((I − Pdeep)B) to be r.

 (6) Obtain the orthonormal basis set of the intersection 
rsp(PdeepB) ∩ rsp((I − Pdeep)B) as the first r columns of 
the matrix XQ, which are denoted φ1, . . . ,φr.

 (7) Estimate the sensor time courses of the deep source by 
applying equation (29).

 (8) Apply any of the source localization methods to obtain 
source images.

4. Computer simulations

A series of computer simulations were carried out to test the 
effectiveness of our proposed algorithm. A sensor alignment 
of the 275-channel whole-head sensor array from the Omega 
(VMS Medtech, Coquitlam, Canada) neuromagnetometer was 
used. The sensor lead field was computed using the Sarvas 
formula [25] with the sphere origin set at (0.1, 0, 6.3). In our 
computer simulation, three sources, (two superficial sources 
and one deep source), were assumed. The locations of the 

Figure 3. (a) Results of experiments when the signal to 
interference ratio (SIR), γ, was set to one. Top panel: simulated 
sensor time courses generated when one deep and two superficial 
sources are active. Middle panel: sensor time courses generated 
when only the deep source is active with the same amount of the 
sensor noise added. Bottom panel: results of applying the bDSSP 
algorithm to the sensor data in the top panel. (b) Results of the 
same experiments except that SIR (γ) was set to 0.05. Top panel: 
simulated sensor time courses. Bottom panel: results of applying 
the bDSSP algorithm to the sensor data in the top panel. Sensor 
time courses in each panel are normalized to each maximum value, 
and the ordinate of the figure indicates the values normalized 
between  −1 and 1.

J. Neural Eng. 15 (2018) 036026
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three sources are shown with sensor locations in figure 1. In 
this figure, the filled circles indicate the locations of the sen-
sors; the location of the deep source is indicated by the blank 
circle; and the locations of the two superficial sources are 
indicated by the square and the triangle. The sphere origin is 
indicated by a cross mark.

The source properties (the locations, orientations, and dis-
tances from the sphere origin) are summarized in table 1. Note 
that, in our computer simulations, Source#2 is considered 
the deep source and the other two sources are considered the 
superficial sources. The distance of Source#2 to the sphere 
origin was set to 4.4 cm, and distances of the other sources 
to the sphere origin were set between 6 and 7 cm. The time 
courses assigned to these three sources are shown in figure 2. 
The time t is expressed with the unit of time points ranging 
from t  =  −1200 to 1200. Sensor time courses were generated 

by projecting the source time courses in figure 2 through the 
sensor lead field.

We first performed simulations with a moderately high 
signal-to-interference ratio. Simulated sensor measurements 
were computed by adding the sensor time courses generated 
from the deep source and those from the superficial source. 
We set the ratio γ = ‖Bdeep‖F/‖Bsup‖F to be one at which 
‖X‖F indicates the Frobenius norm of a matrix X8. This ratio γ 
is called the signal to interference ratio (SIR), because, in our 
experiments, the magnetic field from the superficial sources 
is considered the interference, and that from the deep source 
considered the signal. The simulated sensor measurements 
given by B = Bdeep + Bsup + Bε are shown in the top panel of 
figure 3(a). Here, a moderare amount of white Gaussian noise 
was added to simulate the sensor noise and the SNR defined as 
‖Bdeep‖F/‖Bε‖F was set at 4.5. The middle panel of figure 3(a) 
shows Bdeep + Bε, which are the sensor time courses gener-
ated from only the deep source with the same amount of the 
sensor noise added. These time courses work as the ground 
truth for our experiments described below.

We applied the proposed bDSSP algorithm to the simu-
lated measurements shown in the top panel, and the results 

Figure 4. (a) Source reconstruction results obtained using the 
simulated sensor time courses in the top panel of figure 3(b). The 
cross marks indicate the location of the deep source. (b) Source 
reconstruction results from the bDSSP-processed sensor data in the 
bottom panel of figure 3(b). In these results, the top left, top right 
and bottom panels, respectively, show the axial, coronal and sagittal 
projections of the 3D source reconstruction results.

Figure 5. (a) Results of applying the bDSSP algorithm to 
sensor data with SNR equal to 1.5. (The SNR is defined as 
‖Bdeep‖F/‖Bε‖F) These sensor time courses are normalized 
between  −1 and 1, and the ordinate indicates the normalized 
values. (b) Source reconstruction results obtained from the bDSSP-
processed sensor data in (a). In these results, the top left, top right 
and bottom panels, respectively, show the axial, coronal and sagittal 
projections of the 3D source reconstruction results.

8 As defined in equation (22), Bsup and Bdeep are the signal matrices corre-
sponding to superficial and deep sources.

J. Neural Eng. 15 (2018) 036026
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are shown in the bottom panel of figure 3(a). In the applica-
tion, the local source space was chosen as a 2 cm cubic region 
whose center was equal to the location of the deep source. The 
results show that by using the bDSSP algorithm, time courses 
nearly identical to those of the ground truth (in the middle 
panel) were obtained. These results show that the bDSSP 
algorithm effectively suppresses the interference from the 
superficial source and the signal sensor time courses from the 
deep-source can be retrieved.

In our computer simulations, the correlation between the 
groun truth (the sensor time courses Bdeep + Bε in the middle 
panel of figure  3(a)) and the bDSSP-processed sensor time 
courses B̂deep (in the bottom panel of figure 3(a)) is computed 
such that

Φ =
1
M

M∑
m=1

ρm, (31)

where ρm  is the correlation coefficient between the mth row 
of B̂deep and that of Bdeep + Bε. Here, Φ is computed by aver-
aging ρm  across all sensor channels. This Φ can be a measure 
indicating how well the bDSSP algorithm can retrieve the 
sensor time courses from the target deep source, and is called 
the sensor time-course correlation. The results in the bottom 
of figure 3(a) attain Φ of 0.85. We use this Φ to assess the 
results in our Monte Carlo experiments below.

We next conducted computer simulations for a case of 
significantly low SIR of 0.05. That is, the interference from 
superficial sources was 20 times stronger than the signal from 
the deep source. The generated sensor time courses in this 
case are shown in the top panel of figure 3(b). The results of 
applying the bDSSP algorithm are shown in the bottom panel. 
The results here also attain Φ of 0.85, and this fact indicates 
that the proposed bDSSP algorithm still effectively removed 
the interference from the superficial sources even when SIR 
was so low.

Figure 6. Results of Monte Carlo experiments on the mismatch 
between the position of the local source space and the location of 
the target deep source. Top panel: plots of the sensor-time course 
correlation Φ versus the mismatch distance D. Bottom panel: plots 
of the localization error of the deep source versus D. The position of 
the local source space was set at fifty different locations having the 
same D. A filled dot represents the results of each Monte Carlo trial, 
and blank circles indicate the average of the Monte Carlo results at 
each D.

Figure 7. Results of Monte Carlo experiments on the robustness of 
the bDSSP algorithm to the source configuration. (a) One hundred 
randomly-selected locations of the deep source generated in this 
Monte Carlo study. Each location is shown by a cross mark. Two 
blank circles show the locations of the superficial sources, which 
are the same as those used in the previous experiments. (b) Top 
panel: histogram of the one-hundred trials with respect to the sensor 
time course correlation Φ. Bottom panel: histogram of the one-
hundred trials with respect to the source localization errors. In this 
study, SIR was set at 0.05, and SNR was set at 4.5.
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We performed source reconstruction experiments using 
these simulated sensor data with SIR of 0.05. The adaptive 
beamformer reconstruction algorithm [22] was applied to the 
data in figures 3(b). The results of the reconstruction experi-
ments are shown in figure  4. In these experiments, voxels 
were defined with 0.5 cm interval. The locations of the three 
sources were set at one of voxel locations. In these results 
in figure  4, the sources were reconstructed exactly at their 
assumed locations.

The source image from the simulated sensor measurements 
in the top panel of figure 3(b) is shown in figure 4(a). Here, the 
top left, top right and bottom panels, respectively, show the 
axial, coronal and sagittal projections of the 3D source dis-
tribution. In these results, two superficial sources are recon-
structed, but the deep source was not clearly reconstructed 
because of a large intensity difference between the superficial 
and deep sources. Note that the cross marks in figure 4(a) indi-
cate the location of the deep source. The source reconstruction 
results obtained using the bDSSP-processed sensor data in the 
bottom panel of figure 3(b) are shown in figure 4(b). Here, 
the target deep source is successfully reconstructed, demon-
strating the effectiveness of the proposed algorithm.

We also performed source reconstruction experiments 
using low SIR and low SNR data, in order to see the effect 

of the sensor noise on the algorithm performance. The same 
computer simulation as for the low SIR experiments men-
tioned above was used. However, in this case, the sensor noise 
was added such that the SNR (defined as ‖Bdeep‖F/‖Bε‖F) 
was approximately equal to 1.5. The bDSSP-processed sensor 
time courses are shown in figure  5(a). These results show 
that the sensor time courses of the deep-source still can be 
retrieved. The results of source reconstruction obtained from 
these sensor data are shown in figure 5(b). Again, the deep 
source is clearly reconstructed, although these results have a 
small localization error of 0.7 cm, which was obtained as the 
distance between the assumed and reconstructed locations of 
the deep source9.

In computer simulations so far, the local source space 
was chosen as a 2 cm cubic region whose center was exactly 
equal to the location of the deep source. However, in real-life 
applications, the estimated location of the target deep source 
may have some uncertainty. Therefore, we conducted Monte 
Carlo computer simulation to see the robustness of the bDSSP 
algorithm to the mismatch between the position of the local 
source space and the location of the target deep source. In 
this simulation, the distance between the deep source and the 

Figure 8. Configuration of a dry phantom used in our experiments. (a) The squares show the locations of dipole sources. Dipole pairs 
annotated by ‘dipole pair#1’ and ‘dipole pair#2’ were those used in our experiments. Dipole pair#1 consists of dipole 4-1 and dipole 
4-2, and the orientations of these dipoles are perpendicular to each other. Dipole pair#2 consists of dipole 2-1 and dipole 1-2, and the 
orientations of these dipoles are parallel. The center of the disc matches the sphere origin of the spherical conductor. (b) Isosceles-
triangular-shaped coils that simulate dipole sources in the spherical homogeneous conductor can be seen. (c) Depiction showing how the 
disc-shaped phantom was installed inside the sensor helmet.

9 The reconstructed source location was defined as the location of the peak 
maximum.
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center of the local source space was set at several non-zero 
values, keeping the local source space to be the same 2 cm 
cubic volume. This distance is called the mismatch distance 
and denoted by D. Here, to assess the algorithm performance, 
we used two measures: the sensor time-course correlation Φ 
in equation (31) and the localization error of the deep source.

Results of the experiments are shown in figure 6. Here, the 
top panel shows the plots of the sensor-time course correlation 
Φ versus the mismatch distance D. The bottom panel indicates 
the plots of the localization error of the deep source versus 
D. In these Monte Carlo experiments, at each value of D, the 

position of the local source space was set to fifty random loca-
tions having the same D. In the plots in figure 6, a filled dot 
indicates the results of each Monte Carlo trial, and a blank 
circle indicates the average across the results at each value 
of D. These plots show that when D is less than 1 cm, there is 
nearly no influence and even when D  =  1.5 cm, the influence 
is still very small, demonstrating the algorithm’s robustness 
to the mismatch between the local source space and the target 
source location.

Finally, we conducted Monte Carlo simulation to see the 
robustness of the bDSSP algorithm to the source configuration. 

Figure 9. (a) Sensor time courses measured when only the superficial dipole (marked ‘4-1’ in figure 8(a)) was active. The superficial  
dipole was driven by an 11 Hz sinusoid. (b) Sensor time courses measured when only the deep dipole (marked ‘4-2’ in figure 8(a)) was 
active. The deep dipole was driven with an amplitude-modulated sinusoid whose carrier frequency was 15 Hz and modulation frequency 
was 1 Hz. These sensor time courses in (a) and (b) are normalized to each maximum field intensity. The abscissa of these figures indicates 
time in ms. (c) Source reconstruction results of the superficial dipole. (d) Source reconstruction results of the deep dipole. In each figure, 
the left, middle, and right panels, respectively, show the axial, coronal and sagittal projections of the 3D source reconstruction results.
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In this simulation, one hundred Monte Carlo trials were gen-
erated, and in each trial, the location and orientation of the 
deep source were randomly chosen. One hundred locations 
of the deep source generated in this Monte Carlo study are 
shown by cross marks in figure 7(a). In this study, a random 
value between 0 and 1 cm was assigned to the mismatch dis-
tance D. The results of these one hundred Monte Carlo trials 
were assessed by using the sensor time course correlation Φ 
and the source localization error.

In figure 7(b), the histogram of Φ is shown at the top panel, 
and the histogram of source localization errors is shown at 
the bottom panel. Here, SNR was set equal to 4.5 and SIR (γ) 

equal to 0.05. In these results, the 96% of the Monte Carlo 
trials attain the values of Φ between 0.8 and 0.9. Also, 97% of 
the Monte Carlo results attain the localization errors less than 
0.8 cm. Note that, in this Monte Carlo study, since the deep 
source location was randomly chosen, the source was not nec-
essarily located at one of voxel locations, and the localization 
error also contains contributions from the voxel discretization, 
which is 0.25 cm in average for this study that uses the voxel 
interval of 0.5 cm. The results of these Monte Carlo experi-
ments demonstrate that the performance of the bDSSP algo-
rithm is not much affected by the configuration of the deep 
source with respect to superficial sources.

Figure 10. (a) The sensor time courses measured when the superficial and deep dipoles were simultaneously active. The magnetic 
field from the superficial dipole was sixteen times stronger than the magnetic field from the deep dipole. (b) The sensor time courses 
of the bDSSP results. These sensor time courses in (a) and (b) are normalized to each maximum field intensity. The abscissa of these 
figures indicates time in ms. (c) Source reconstruction results from the sensor data in (a). (d) Source reconstruction results from the bDSSP-
processed sensor data in (b). The left, middle, and right panels, respectively, show the axial, coronal and sagittal projections of the 3D 
source reconstruction results.
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5. Experiments

5.1. Experiments using phantom data

5.1.1. Phantom data measurements. Experiments using data 
from an MEG phantom were performed to test the usefulness 
of the proposed algorithm. The phantom used in our experi-
ments is shown in figure 8. In this phantom, dipole sources 
consist of isosceles-triangular-shaped coils; these triangular 
coils generate magnetic fields expressed by the Sarvas formula 
[25]. Thus, the coils behave like dipole sources in the spheri-
cal homogeneous conductor [29]. A phantom using such tri-
angular coils is called a dry phantom [30]. The triangular coils 
installed on the surface of a disc-shaped phantom can be seen 
in figures 8(a) and (b), in which the squares with a pale color 
show the locations of the coils. The center of the disc matches 
the sphere origin of the spherical conductor.

A whole-head MEG system with a 160-channel sensor 
array [31], installed at Applied Electronics Laboratory, 
Kanazawa Institute of Technology, Amaike, Kanazawa, 
Japan, was used to measure the phantom data. Figure  8(c) 
shows how the phantom was installed within the bore of the 
MEG sensor helmet. The phantom is equipped with marker 
coils, which were used to match between the phantom and 
sensor coordinates.

5.1.2. Experiments using dipole pair#1. We performed two 
cases of experiments using different dipole pairs. The first 
case used a pair of dipole sources shown with the annotation 
‘Dipole pair#1’ in figure  8(a). These dipoles are perpend-
icular to each other and 2 cm apart. The pair was placed near 
the parietal-lobe region. The superficial dipole, which is anno-
tated as ‘4-1’, was driven by an 11 Hz sinusoid with a current 

strength of 1.42 mA. The deep dipole, annotated as ‘4-2’, 
was driven by an amplitude-modulated sinusoid in which the 
carrier frequency was 15 Hz and the modulation frequency 
was 1 Hz. The current strength to drive the deep dipole was 
0.225 mA. The current values of the two dipoles were cho-
sen in order for the magnetic field of the superficial dipole to 
have a 16-times stronger intensity than that of the deep dipole. 
Namely, the signal-to-interference ratio (SIR), γ, was set to 
1/16 in the first experiments. The data were acquired for 2 s 
using a sampling frequency of 1 kHz.

The 160-sensor time courses measured when only the 
superficial dipole was active are shown in figure  9(a), and 
the time courses measured when only the deep dipole was 
active are shown in figure 9(b). Adaptive beamformer source 
reconstruction was applied to these data sets. The image of the 
superficial dipole is shown in figure 9(c), and the image of the 
deep dipole is shown in figure 9(d). The sensor time courses 
and the dipole location of the deep source in figures 9(b) and 
(d) work as the ground truth in the following experiments.

The 160-sensor time courses measured when the superfi-
cial and deep dipoles were simultaneously active are shown 
in figure 10(a). In these sensor data, since the signal from the 
superficial dipole was sixteen times stronger than the signal 
from the deep dipole, the sensor time courses were dominated 
by the signal from the superficial source. Source reconstruc-
tion results from these sensor data are shown in figure 10(c). 
Although the sensor data only show the dominated superficial 
dipole activity, the reconstruction results show both the super-
ficial and deep dipoles.

We then applied the bDSSP algorithm to detect the signal 
from the deep source. We set the local source space at a  
1 cm-cubic region whose center was equal to the location of the 
deep dipole. The bDSSP algorithm was applied to the sensor 

Figure 11. Results of experiments using a pair of dipoles denoted ‘Dipole pair#2’; the deep dipole is denoted ‘2-1’, and the superficial 
dipole ‘1-2’. (a) The reconstruction results of the superficial dipole. (b) The reconstruction results of the deep dipole. The left, middle, and 
right panels, respectively, show the axial, coronal and sagittal projections of the 3D source reconstruction results.
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data in figure 10(a) to extract the signal from the deep source. 
The resultant sensor time courses are shown in figure 10(b), 
and source reconstruction results are shown in figure 10(d). 
Comparisons between these results and those in figures 9(b) 
and (d) demonstrate that the proposed bDSSP algorithm can 
successfully extract the activity of the deep dipole from the 
sensor data dominated by a large interference from the super-
ficial source. Note that the difference between the source loca-
tions in figures 9(d) and 10(d) is 0.5 cm.

5.1.3. Experiments using dipole pair#2. We conducted the 
same experiments using a pair of dipole sources shown with 
the annotation ‘Dipole pair#2’ in figure 8(a). These dipoles are 

parallel to each other and 4 cm apart, and they were placed near 
the temporal-lobe region. The superficial dipole, which is anno-
tated as ‘2-1’, was driven by an 11 Hz sinusoid with a current 
strength of 0.71 mA. The deep dipole, annotated as ‘1-2’, was 
driven with the same amplitude-modulated sinusoid as in the 
previous experiments with a current strength of 0.5 mA. These 
current values were chosen in order for the intensity of the magn-
etic field from the superficial dipole to be eight times stronger 
than that from the deep dipole. The reconstruction results of the 
superficial dipole are shown in figure 11(a). The reconstruction 
results of the deep dipole are shown in figure 11(b).

The sensor time courses obtained when the superficial 
and deep dipoles were simultaneously active are shown in 

Figure 12. Results of experiments using a pair of dipoles denoted ‘Dipole pair#2’; the deep dipole is denoted ‘2-1’, and the superficial 
dipole ‘1-2’. (a) The sensor time courses measured when the superficial and deep dipoles were simultaneously active. (b) The bDSSP-
processed sensor time courses. These sensor time courses in (a) and (b) are normalized to each maximum field intensity. The abscissa of 
these figures indicates time in ms. (a) Source image reconstructed using the sensor data in (a). (b) Source image reconstructed using the 
bDSSP-processed sensor data in (b). The left, middle, and right panels, respectively, show the axial, coronal and sagittal projections of the 
3D source reconstruction results.
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figure  12(a). Again, the sensor data were dominated by the 
signal from the superficial dipole. Results of source recon-
struction applied to these sensor data are shown in figure 12(c). 
In these results, since the superficial source is dominated, the 
deep dipole can hardly be seen. We applied the bDSSP algo-
rithm for the removal of the interference from the superficial 
source activity. The resultant sensor time courses are shown 
in figure 12(b). These results show that the interference signal 
from the superficial dipole was successfully removed. The 
source reconstruction results obtained using these bDSSP-
processed sensor data are shown in figure  12(d). Although 
considerable blur was introduced and the difference between 
the source locations in figures 11(b) and 12(d) is 2.5 cm in this 
case, the deep dipole can still be detected in figure 12(d).

In figure 12(d), the resultant source image contains a large 
blur and a fairly large localization error was caused. This is 
due to the high spatial correlation between the lead fields of the 
two sources [22]. (Since the two sources are parallel dipoles, 
the similarity of their lead fields are considerably high, even 
though they are 4 cm apart.) By making use of the blur in the 
bDSSP results, we can make a rough estimate on how much 
signal from the superficial source remains in the bDSSP-pro-
cessed results. Let us denote the sensor data measured when 

only the superficial dipole (dipole‘2-1’) was active by ysup(t), 
and the data measured when only the deep dipole (dipole‘1-2’)  
was active by ydeep(t). Then, the synthetic sensor data ysy(t) 
is computed such that ysy(t) = ydeep(t) + αysup(t) where the 
positive value α controlled the mixture ratio. The source 
reconstruction results using ysy(t) with α = 0.04, α = 0.02, 
and α = 0.01 are shown in figures 13(a)–(c), respectively.

Let us compare these reconstruction results with the 
bDSSP interference removal results in figure 12(d), and we 
can see that the results in figure 13(b) are closest to those in 
figure  12(d), This observation leads to the estimation that 
the value of α could be around 0.02 in the bDSSP results in 
figure 12(d). Since the value of α was equal to 8 in the orig-
inal sensor data shown in figure 12(a), the attenuation of the 
interference signal from the superficial dipole is estimated as 
0.02/8  =  1/400. That is, we can estimate that the bDSSP algo-
rithm has reduced the intensity of the superficial interference 
by a factor of 400 in this experiment.

5.2. Experiments using real MEG data

The bDSSP algorithm was also applied to somatosensory 
MEG data to further demonstrate its usefulness. The data set 

Figure 13. Source reconstruction results obtained from synthetic sensor data ysy(t) obtained such that ysy(t) = ydeep(t) + αysup(t). Here, 
ydeep(t) is the sensor data measured when only the deep dipole (dipole‘1-2’) was active, and ysup(t) is the sensor data measured when only 
the superficial dipole (dipole‘2-1’) was active. (a) Source reconstruction results when α = 0.04. (b) Source reconstruction results when 
α = 0.02. (c) Source reconstruction results when α = 0.01.
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was collected from a healthy subject using the 275-channel 
CTF MEG scanner. Vibrotactile stimuli were applied to a sub-
ject’s right index finger for a total of 240 trials, and sensor 
time courses were averaged across these trials time-aligned 
to the onset of the tactile stimulus. The averaged sensor time 
courses are shown in the upper panel in figure 14(a) in which 
a peak due to the activity from the hand area in the primary 
somatosensory cortex (S1) can be seen 50–60 ms after stimu-
lation. The results of source reconstruction from these sensor 
data are shown in the upper panel of figure 14(b). Here, we 
used the sparse Bayesian (Champagne) source reconstruction 
algorithm developed by our group [32, 33]. In these results, 
a clear and focussed activity (labelled as (A)) arising from 
the primary somatosensory cortex can be observed. However, 
no other somatosensory activities that are weaker than the 
activity in the primary somatosensory cortex were detected.

We applied the bDSSP algorithm in order to detect weaker 
somatosensory cortical activity by suppressing the strong S1 
activity. A local source space was set so that it covers more 
ventral regions of the somatosensory cortex, as indicated by 
the rectangles in figure 14(b). The sensor time courses of the 
bDSSP results are shown in the bottom panel of figure 14(a). 
Here, it can be seen that the large peak near 50 ms is removed. 
The results of source reconstruction obtained from these time 
courses are shown in the bottom panel of figure 14(b). Here, 
three sources, not observed in the original reconstruction 

image (in the upper panel of figure 14(b)), can be observed. 
(They are labelled as (B)–(D).)

The reconstructed source time courses are shown in 
figure 14(c). These time courses indicate that the three sources 
observed in the results in the bottom panel of figure  14(b) 
were stimulus elicited. The results in the bottom panel of 
figure 14(b) show that the two sources labeled as (B) and (D) 
are located on the posterior bank of the central sulcus and con-
sidered as somatosensory activities. The third source, labeled 
as (C), is located near the supplementary motor area (SMA) 
and can also be considered as a somatosensory-related activity. 
These results demonstrate the usefulness of the bDSSP algo-
rithm for investigating weak brain activities usually hidden by 
simultaneously-existing, much stronger activities.

6. Complementary bDSSP algorithm

There can be a complementary way to implement the bDSSP 
algorithm. In the complementary version, the prerequisite of 
the algorithm is the information on the location of the super-
ficial (interference) sources. The local source space is set at 
a region including the superficial sources, and beamspace 
basis vectors are computed by following exactly the same 
procedure described in section 3. Denoting the basis vectors 
as ũ1, . . . , ũP, we can compute the beamspace projector Psup: 

Figure 14. (a) Top panel: somatosensory MEG data averaged across 240 trials collected using the 275-channel CTF MEG scanner. Bottom 
panel: the sensor time courses of the bDSSP results. (b) Top panel: results of source reconstruction obtained from the sensor data in the top 
panel of (a). The blank squares show the boundary of the local source space used when applying the bDSSP algorithm. A single source, 
labelled by (A), was detected at the primary somatosensory area. Bottom panel: results of source reconstruction obtained from the bDSSP-
processed sensor data shown in the bottom panel of (a). Three sourses, labelled as (B)–(D), are detected. The cross sectional MR images 
were chosen as those at the voxel having the maximum intensity. (c) Reconstructed source time courses. The top, second top, third top, and 
bottom panels respectively show the time courses of voxels indicated by (A)–(D). The all four time courses are normalized to a common 
value equal to the maximum value of the time course in the top panel.
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Psup = [ũ1, . . . , ũP][ũ1, . . . , ũP]
T . Note that Psup is a projector 

onto the pseudo-signal subspace of the superficial source. (In 
the original bDSSP algorithm, the beamspace projector is 
denoted Pdeep because it is a projector onto the pseudo signal 
subspace of the deep source.)

By multiplying Psup and I − Psup with the data matrix B, 
we obtain

PsupB = Bsup + PsupBdeep + PsupBε, (32)

(I − Psup)B = (I − Psup)Bdeep + (I − Psup)Bε, (33)

where we use

(I − Psup)Bsup = 0. (34)

Therefore, we can finally derive [27],

Kdeep ⊃ rsp(PsupB) ∩ rsp((I − Psup)B). (35)

The equation  above indicates that the intersection, 
rsp(PsupB) ∩ rsp((I − Psup)B), forms a subset of Kdeep, and 
the projector onto the intersection, Πisc, can be used as the 
projector onto Kdeep. Thus, the signal from the deep source is 
extracted by using B̂deep = BΠisc. The algorithm is called the 
‘complementary bDSSP’, (cbDSSP) algorithm.

We applied the cbDSSP algorithm to the computer-gener-
ated data in the top panel of figure 3(a), and the results are 
shown in figure 15(a). The algorithm effectively removed the 
interference in this computer simulation. We then applied 
the cbDSSP algorithm to the phantom data in figure  10(a) 
obtained using dipole pair#1, and the results are shown in 
figure 15(b). Here, the algorithm fails to remove the interfer-
ence from the superficial dipole.

Figure 15(c) shows PsupB and (I − Psup)B in these phantom 
experiments. The data set PsupB is shown in the upper panel 
and (I − Psup)B, in the lower panel. Here, the two data sets 
are normalized by the same value, (the maximum value of 
PsupB). It can be seen in figure 15(c) that although most of Bsup 
comp onents were removed in (I − Psup)B, a small amount of  
11 Hz sinusoid, the component from the superficial source, 
still remains. This is probably because Bsup is much stronger 
than Bdeep in the phantom data in figure 10(a)10.

The failure of the cbDSSP algorithm in the phantom exper-
iments indicates one of its limitations. While the bDSSP algo-
rithm uses the projector Pdeep to suppress the signal from the 
deep source, the cbDSSP algorithm uses Psup to suppress the 
signal from the superficial source. Since it is generally true 
that the signal from the superficial source is much stronger 
than the signal from the deep source, the cbDSSP algorithm 

Figure 15. (a) Results of applying the cbDSSP algorithm to 
the computer generated data in the top panel of figure 3(a). (b) 
Results of applying the cbDSSP algorithm to the phantom data 
in figure 10(a) obtained using dipole pair#1. The sensor time 
courses in (a) and (b) are normalized to each maximum value, and 
the ordinate of these figures indicates the normalized values of the 
magnetic field intensity. (c) Two data sets, PsupB and (I − Psup)B, 
from the phantom data, obtained using dipole pair#1. The data 
set PsupB is shown in the upper panel and the data set (I − Psup)B 
is in the lower panel. These data sets are normalized to the same 
maximum value of PsupB.

10 As mentioned, Bsup is sixteen times stronger than Bdeep in these phantom 
data.

Figure 16. (a) Results of applying the beamspace SSS method to 
simulated sensor measurements in the top panel of figure 3(a). (a) 
Results obtained with LT set at 1. (b) Results obtained with LT set at 
2. (c) Results obtained with LT set at 3. These sensor time courses in 
(a)–(c) are normalized to each maximum field intensity.
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must be less robust to various types of errors. This is because 
such errors may force (I − Psup)Bsup to have non-zero values, 
while (I − Pdeep)Bdeep approximates zero.

7. Discussion and summary

The beamspace SSS method [14] has been proposed to attain 
the selective detection of components from deep sources by 
suppressing components from superficial sources. In the orig-
inal SSS method, signal components of the data vector yS are 
estimated using the expansion:

ŷS(t) =
∞∑
�=1

�∑
m=−�

α�,mc�,m , (36)

where c�,m are the SSS basis vectors for the internal part and 
α�,m, are called the multipole components, and represent the 
coefficients of the expansion [15, 16]. Here, the time nota-
tion is omitted from α�,m for simplicity. The beamspace SSS 
method utilizes the fact that components from superficial 
sources are represented more by larger � terms, and comp-
onents from deep sources are represented more by smaller � 
terms. Thus, estimating the data vector using only lower-order 
SSS basis vectors provides an estimated data vector con-
taining more deep-source components and less superficial-
source components. This can be achieved in simplest form by 
truncating the basis vector expansion, as suggested in [14]. 
That is, to estimate the deep source activity, the beamspace 
SSS algorithm uses

ŷdeep(t) =
LT∑
�=1

�∑
m=−�

α�,mc�,m , (37)

where ŷdeep(t) is the estimated deep source activity. In the 
equation  above, the summation with respect to the index � 
is truncated at LT. We applied the beamspace SSS algorithm 
to the simulated sensor data in the top panel of figure 3(a). 
The results obtained by truncating � to 1, 2, and 3 are shown 
in figure  16. The results show that the beamspace SSS can 
enhance the signal from the deep source. However, consider-
able amount of signal from the superficial source still remains 
even when � is set at 1, the minimum value of �. These results 
suggest that the beamspace SSS method has only a limited 
capability of suppressing superficial interference.

In our computer simulation and our experiments using 
phantom data, the spherical homogeneous conductor model 
was used. One limitation with this conductor model is that 
the discrepancy between the actual and computed lead fields 
becomes large for midbrain and deep brain regions. This 
may affect the performance of the beamspace projector Pdeep 
defined in equation (23). That is, one key factor for the success 
of the algorithm is that the relationship (I − Pdeep)Bdeep ≈ 0 
holds. However, due to the inaccuracy of the conductor model, 
(I − Pdeep)Bdeep could have non-zero components, which 
may cause removal of the signal magnetic field from a deep 
source, as well as removal of the interference from superficial 
sources. Therefore, to avoid such signal cancellation, a better 
conductor model, such as the realistic head model, may have 

to be used with the bDSSP algorithm. We will investigate on 
this point, and publish the results in a future occasion.

This paper proposes a novel algorithm for selective detec-
tion of a deep source by suppressing interference signals from 
superficial sources in MEG measurements. The proposed algo-
rithm combines the beamspace preprocessing method with the 
dual signal space projection (DSSP) interference suppression 
algorithm. A prerequisite of the proposed algorithm is prior 
knowledge on the location of the deep source. After presenting 
a concise review on the DSSP interference removal algorithm, 
this paper introduces a method we call the beamspace DSSP 
algorithm. Compared with the previously proposed beamspace 
signal space separation (SSS) method, the proposed algorithm is 
capable of suppressing much stronger interference from super-
ficial sources. This capability is demonstrated in our comp uter 
simulations as well as experiments using phantom data.

The proposed bDSSP algorithm can be a powerful tool in 
neuroscience studies of physiological functions of midbrain 
structures such as the thalamus, amygdala, hippocampus and 
the basal ganglia, and of the cerebellum, because there are 
many studies that require accurate localization of physiolog-
ical and pathophysiological activities in deep brain regions. 
One example is non-invasive imaging studies of neural oscil-
lations that examine the computational role of these brain 
regions. Other examples include studies on pathophysiolog-
ical activities from deep brain structures. Such pathologic 
activities are implicated in a variety of conditions such as 
epilepsy and dementias (hippocampus and medial temporal 
lobe), movement disorders (basal ganglia, cerebellum), and 
neurodevelopmental disorders (thalamus etc). Accurate 
reconstruction of such activities in deep brain regions can lead 
to better understanding of these pathological conditions and 
potentially contributes to improved clinical managements and 
treatment strategies.
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