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This paper discusses the location bias and the spatial resolution in the

reconstruction of a single dipole source by various spatial filtering

techniques used for neuromagnetic imaging. We first analyze the

location bias for several representative adaptive and non-adaptive

spatial filters using their resolution kernels. This analysis theoretically

validates previously reported empirical findings that standardized low-

resolution electromagnetic tomography (sLORETA) has no location

bias. We also find that the minimum-variance spatial filter does exhibit

bias in the reconstructed location of a single source, but that this bias is

eliminated by using the normalized lead field. We then focus on the

comparison of sLORETA and the lead-field normalized minimum-

variance spatial filter, and analyze the effect of noise on source location

bias. We find that the signal-to-noise ratio (SNR) in the measurements

determines whether the sLORETA reconstruction has source location

bias, while the lead-field normalized minimum-variance spatial filter

has no location bias even in the presence of noise. Finally, we compare

the spatial resolution for sLORETA and the minimum-variance filter,

and show that the minimum-variance filter attains much higher

resolution than sLORETA does. The results of these analyses are

validated by numerical experiments as well as by reconstructions based

on two sets of evoked magnetic responses.

D 2004 Elsevier Inc. All rights reserved.
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Introduction

Among the various technologies for noninvasive neural

measurement, the major advantage of magnetoencephalography

(MEG) is its ability to provide fine temporal resolution, in the order

of milliseconds (Hämäläinen et al., 1993). In neuromagnetic
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imaging, the signals recorded by MEG sensors are resolved into

functional maps of dynamic brain activity, while retaining this high

temporal precision. Many studies have addressed the question of

how this reconstruction can be done efficiently (Baillet et al.,

2001).

One prominent class of techniques, known as adaptive spatial

filtering, was originally developed in the field of array signal

processing (van Veen and Buckley, 1988). A well-known example

of this class, the minimum-variance spatial filter, has been

successfully applied to MEG/EEG source reconstruction problems

(Robinson and Vrba, 1999; Sekihara and Scholz, 1996; Sekihara et

al., 2001, 2002a; van Veen et al., 1997). Another popular class of

source reconstruction methods is that of minimum-norm-based

tomographic reconstruction. This class includes the original

minimum-norm method (Hämäläinen and Ilmoniemi, 1984), the

weight-normalized minimum-norm method (Dale et al., 2000), and

a recently proposed method called standardized low-resolution

electromagnetic tomography (sLORETA) (Pascual-Marqui, 2002).

This paper formulates these minimum-norm-based methods as

non-adaptive spatial filters, and compares them with the adaptive

minimum-variance spatial filter on a unified basis.

We first compare several representative (either adaptive or non-

adaptive) spatial filters with respect to the bias they introduce in the

reconstructed location of a single source in the absence of noise. It

is shown that under these conditions sLORETA has no location

bias. This fact has been found previously in computer simulations

(Pascual-Marqui, 2002), and our analysis validates these empirical

findings. We also show that the minimum-variance spatial filter

does lead to biased source reconstructions, but that this bias can be

eliminated by using the normalized lead field. We then focus on the

bias-free two methods, sLORETA and the lead-field normalized

minimum-variance filter, and analyze how they perform with noisy

measurements. We find that, depending on the signal-to-noise ratio

(SNR), the sLORETA reconstruction may have some source-

location bias. The lead-field normalized minimum-variance filter,

however, has no location bias even in the presence of noise.

Finally, we compare the spatial resolution of the two methods and
YNIMG-02926; No. of pages: 12; 4C: 7, 9
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show that the minimum-variance filter generally attains much

higher spatial resolution than sLORETA does.

Following a brief introduction of several representative non-

adaptive and adaptive spatial filter formulations, we analyze their

source-location biases in Bias for the estimated source location and

Effects of noise on the location bias. Spatial resolution presents the

spatial resolution comparison for sLORETA and the minimum-

variance filter. Numerical experiments presents a series of

numerical experiments that validate the arguments in Theory. In

Comparison using evoked MEG data, we compare sLORETA and

the minimum-variance filter by applying them to somatosensory-

and auditory-evoked MEG data.
Theory

Spatial filter formulation

Definitions

We define the magnetic field measured by the mth detector

coil at time t as bm (t), and a column vector b(t) = [b1 (t), b2
(t),. . ., bM (t)]T as a set of measured data where M is the total

number of sensor coils and superscript T indicates the matrix

transpose. The covariance matrix of the measurement is denoted

Rb, that is, Rb = hb(t)bT(t)i where hdi indicates the ensemble

average. (This matrix is actually equal to the second-order

moment matrix but is customarily called the covariance matrix.)

The spatial location is represented by a three-dimensional vector

r:r = (x, y, z). The source moment magnitude at r and time t is

denoted as s(r, t). The orientation of a source at r is defined as a

three-dimensional vector h(r) = [gx (r), gy (r), gz (r)]T whose f
component (where f equals x, y, or z) is equal to the cosine of the

angle between the direction of the source moment and the f
direction.

We define lm
f (r) as the output of the mth sensor; the output is

induced by the unit-magnitude source located at r and directed in

the f direction. The column vector lf (r) is defined as lf (r) = [l1
f

(r),l2
f(r),. . ., lM

f(r)]T. The lead field matrix, which represents the

sensitivity of the whole sensor array at r, is defined as L(r) = [lx(r),

ly(r),lz(r)]. The lead-field vector in the source-moment direction is

defined as l(r) where l(r) = L(r) h(r). Using the superposition law,

the relationship between b(t) and s(r, t) is expressed as

b tð Þ ¼
Z

L rð Þh rð Þs r; tð Þdr þ n tð Þ ¼
Z

l rð Þs r; tð Þdr þ n tð Þ: ð1Þ

Here, n (t) is the additive noise. The spatial filter uses a simple

linear operation for estimating the magnitude of source activities,

such that

ŝs r; tð Þ ¼ wT rð Þb tð Þ; ð2Þ

where ŝ(r, t) is the estimate of the source magnitude, and a column

vector w (r) is a set of the spatial-filter weights, which character-

izes each spatial filter.

Adaptive and non-adaptive spatial filters

There are two types of spatial filters. One is a non-adaptive

spatial filter in which the filter weights are independent from the

measurements. The L2-norm based tomographic reconstruction

methods can in principle be interpreted as non-adaptive spatial

filters. The most basic and well-known non-adaptive spatial filter is
the minimum-norm spatial filter (Hämäläinen and Ilmoniemi,

1984). Its weight vector is given by

w rð Þ ¼ G�1l rð Þ: ð3Þ

The matrix G, often referred to as the gram matrix, is defined such

that

G ¼
Z

L rð ÞLT rð Þ
� �

dr: ð4Þ

One variant of the minimum-norm filter is the weight-

normalized minimum-norm filter (Dale et al., 2000) whose weights

are given by

w rð Þ ¼ G�1l rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lT rð ÞG�2l rð Þ

q : ð5Þ

Another variant of the minimum-norm filter, called sLORETA, has

been recently proposed (Pascual-Marqui, 2002). The weight vector

for sLORETA is

w rð Þ ¼ G�1l rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lT rð ÞG�1l rð Þ

q : ð6Þ

The derivations of the above-mentioned filter weights are

presented in Appendix B. It should be pointed out that because

the gram matrix G is close to a singular matrix for a typical

neuromagnetic measurement geometry, the regularization may be

applied when calculating G�1. That is, (G + cI)�1 is calculated

instead of calculating G�1. The choice of regularization parameter

c has been the subject of many investigations (Hansen, 1998). The

value of the regularization parameter is typically set to the average

variance of the sensor noise.

An adaptive spatial filter uses weights that depend on the

measurements. The best-known adaptive spatial filter is the

minimum-variance spatial filter (Robinson and Vrba, 1999; van

Veen et al., 1997); its weight vector is expressed as

wðrÞ ¼ R�1
b l rð Þ

lT rð ÞR�1
b l rð Þ

� � : ð7Þ

In Eqs. (3)–(7), the lead field vector l(r), which is the lead field in

the source-moment direction h(r), is used for deriving the filter

weights. Here, since h(r) is generally unknown, the optimum

direction hopt(r), which gives the maximum filter output, can be

used instead of the unknown h(r). That is, l(r) can be obtained

using l(r) = L(r)hopt(r) (Sekihara and Scholz, 1996).

Resolution kernel

To compare various spatial filter formulations, we need a tool to

characterize how appropriately the weights have been chosen. The

resolution kernel (Backus and Gilbert, 1968; de Peralta Menendez

et al., 1997) can play this role. We introduce the resolution kernel,

derived by combining Eqs. (1) and (2),

ŝs rð Þ ¼
Z

wT rð Þl r Vð Þs r Vð Þdr V¼
Z

R r; r Vð Þs r Vð Þdr V; ð8Þ

where

R r; r Vð Þ ¼ wT rð Þl r Vð Þ: ð9Þ
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Here, the explicit notation of time t is omitted. This R r; r Vð Þ is

called the resolution kernel. It expresses the relationship between

the original and reconstructed source distributions. When a single

source with a unit magnitude exists at r1, we can substitute s(r) =

d (r � r1) into Eq. (8), and write the reconstructed results as

ŝs rð Þ ¼ R r; r1ð Þ. Thus, the resolution kernel directly gives the

spatial reconstruction that results from a single point source in the

absence of noise.

Defining f as f = l(r1), and substituting Eq. (3) into Eq. (9), the

resolution kernel for the minimum-norm spatial filter is given by

R r; r1ð Þ ¼ l TG�1f ; ð10Þ

where the explicit notation of r is omitted from l(r). Using Eq. (5),

the resolution kernel of the weight-normalized minimum-norm

spatial filter is

R r; r1ð Þ ¼ l TG�1fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l TG�2l

p : ð11Þ

The resolution kernel for sLORETA is given by

R r; r1ð Þ ¼ l TG�1fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l TG�1l

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f TG�1f

q
cos l; f jG�1
� �

; ð12Þ

where the generalized cosine is defined according to Eq. (41).

Using Eq. (7), the resolution kernel for minimum-variance filter is

expressed as

R r; r1ð Þ ¼ l TR�1
b f

l TR�1
b l

: ð13Þ

An important property for the resolution kernel is to have its

maximum at the source location. If this is not the case, the

reconstructed source distribution will contain systematic biases and

may thus be totally different from the true source distribution. In

the following subsection, we check the resolution kernels for each

of the spatial filters described in Spatial filter formulation, to see

whether the corresponding filter avoids spatial bias.

Bias for the estimated source location

The bias for the estimated source location is evaluated by

checking whether the resolution kernel has its maximum at the

source location r1, that is, whether the condition below holds for

any r (r p r1) in the reconstruction region

R r1; r1ð Þ NR r; r1ð Þ: ð14Þ

For the minimum-norm filter, this condition is expressed as

f TG�1f N l TG�1f : ð15Þ

Because the norm of l becomes very large in a region close to the

sensors, the above inequality obviously does not hold. Actually, it

is well known that in the minimum-norm filter, the source

reconstruction is severely biased toward the sensor array (Jeffs et

al., 1987). Because of this fact, when applying the minimum-norm

filter, the normalized lead field vector l̃ = l /tlt is often used. The

condition for no location bias in this case is

f̃f T G̃G�1f N l̃lT G̃G�1f or f̃f � l̃l
� 	T

G̃G�1f N 0 ð16Þ
where f̃ = f /t f t and G̃ is the gram matrix obtained using G̃ =R
[L (r) LT (r)] / t L (r)t2 dr. There is no guarantee that the left-

hand side of the second equation in Eq. (16) always has a positive

value, because the signs may be different between a component of

a vector f̃ � l̃ and the corresponding component of f. Therefore, it

is clear that the minimum-norm method generally has a localization

bias even with the normalized lead field—although it has no bias in

some locations where Eq. (16) is coincidentally satisfied.

For the weight-normalized minimum-norm filter, the condition

in Eq. (14) is expressed as

f TG�1fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f TG�2f

p N
l TG�1fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l TG�2l

p : ð17Þ

It is not straightforward to see whether this inequality holds

for any pair of l and f. However, we can numerically show

that it does not generally hold, and we give, in Numerical

experiments, a typical numerical example of biased source-

reconstruction results obtained from this weight-normalized mini-

mum-norm filter. For sLORETA, using Eq. (12), the condition in

Eq. (14) is expressed as

cos l; f jG�1
� 	

b 1: ð18Þ

Since G�1 is a positive definite matrix, this condition holds for any

f and l ( f p l), as mentioned in Appendix A. It is empirically

known that sLORETA has no location bias for a single source

(Pascual-Marqui, 2002), and the analysis presented here validates

this empirical observation.

For the minimum-variance spatial filter, the condition for

having no location bias is

l TR�1
b f

l TR�1
b l

b 1: ð19Þ

Using Eqs. (39) and (40) in Appendix A, the above condition can

be rewritten as

l TR�1
b f

l TR�1
b l

¼ t ft
tlt

cos l; fð Þ
1þ a 1� cos2 l; fð Þ½ � b 1: ð20Þ

In the above equation, a = (r1
2 / r0

2)t f t2, where r1
2 and r0

2 are the

power of source activity and noise power, as defined in Appendix

A. This a is often referred to as the input power SNR. It can be

seen that the inequality in Eq. (20) may not hold when tlt is

small. This can happen in a region near the center of the sphere

when the spherical homogeneous conductor model (Sarvas, 1987)

is used to derive the lead field. As a result, severe artifacts appear

near the center of the sphere. However, the use of the normalized

lead field vector l̃ can avoid these artifacts, and the condition for no

location bias in this case is expressed as

R r; r1ð Þ ¼ l̃lTR�1
b f

l̃lTR�1
b l̃l

¼ t ft
cos l̃l ; f
� 	

1þ a 1� cos2 l̃l ; f
� 	� �

bR r1; r1ð Þ ¼ t ft: ð21Þ

Since a has a positive value, it is clear that this inequality is always

fulfilled for any f and l, and we can conclude that the minimum-

variance spatial filter with the normalized lead field has no location

bias.



Fig. 1. The coordinate system used in the numerical experiments. The

coordinate origin was set at the center of the sensor coil located at the center

of the array. The plane at x = 0 cm is shown. The circle indicates the

boundary of the sphere used for the forward calculations. The center of the

sphere was set to (0, 0, �12).

K. Sekihara et al. / NeuroImage 25 (2005) 1056–1067 1059
Effects of noise on the location bias

In the preceding section, the location bias in the source

reconstruction has been analyzed using the resolution kernel and
Fig. 2. The plot of the square of the resolution kernelR r; r1ð Þ2 on the plane x = 0. T

hand side from top to bottom, respectively, show the results of the minimum-no

normalized minimum-norm filter. The plots in the right-hand side from the top

variance filter, and the lead-field normalized minimum-variance filter. The cross m

maximum value and contains the same number of contour lines.
such analysis should be valid when the SNR is high. However,

when the SNR is low, the noise may cause bias in the estimated

source location even though the resolution kernel has its maximum

at the true source location. The output signal power at a location r is

equal to r2
1R r; r1ð Þ2, and the output noise power is equal to r0

2tw
(r)t2. Therefore, the condition for no location bias is

r2
1R r1; r1ð Þ2 þ r2

0tw r1ð Þt2 N r2
1R r; r1ð Þ2 þ r2

0tw rð Þt2: ð22Þ

This condition can be written as

R r; r1ð Þ2

R r1; r1ð Þ2
1þ X rð Þ=a½ �
1þ X r1ð Þ=a½ � b 1; ð23Þ

where a is the input SNR and X(r) is given by

X rð Þ ¼ tft2tw rð Þt2

R r; r1ð Þ2
: ð24Þ

For sLORETA, using Eqs. (6), (12), and (24), Eq. (23) is

rewritten as

1þ X rð Þ=a
1þ X r1ð Þ=a cos2 l; f jG�1

� 	
b 1: ð25Þ

It can be seen in Eq. (25) that when a is very large, this condition

becomes identical to Eq. (18). However, in general, the value of a
determines whether the condition in Eq. (25) is satisfied for any l
he point source is located at (0, �1.5, �6) cm. The contour plots in the left-

rm filter, the lead-field normalized minimum-norm filter, and the weight-

to the bottom, respectively, show the results of sLORETA, the minimum-

ark � indicates the source location. Each contour map is normalized by its



Fig. 3. The results of the experiments regarding the effects of noise on location bias. (a) Results of point-source reconstruction from sLORETA and (b) those

from the lead-field normalized minimum-variance filter. The point source is located at (0, �1.5, �6) cm. The contour plots from top to bottom, respectively,

show the results for the input SNR a equal to 8M, 4M, and M. The cross mark � indicates the source location. Each contour map is normalized by its

maximum value and contains the same number of contour lines.

1 Note that since the field power average across sensor channels is

equal to r1
2|| f ||2/M, a source whose average field power is equal to the

average noise power has a equal to M.
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and f. In our numerical experiments, we present examples of cases

in which this condition is either fulfilled or not fulfilled.

For the lead-field normalized minimum-variance spatial filter,

using the weight in Eq. (7) and the resolution kernel in Eq. (21), the

condition for no location bias is

1þ X rð Þ=a½ �
1þ X r1ð Þ=a½ �

cos2 l̃l ; f
� 	

1þ a 1� cos2 l̃l ; f
� 	� �� �2 b 1; ð26Þ

where X(r) in this case is given by

X rð Þ ¼
tft2 l̃lTR�2

b l̃l
� �

l̃lTR�1
b f

� �2 : ð27Þ

Using Eqs. (37) and (38), the condition in Eq. (26) can be

simplified to

1

1þ a 1� cos2 l̃l ; f
� 	� � b 1; ð28Þ

This relationship holds for any l̃ and f because a has a positive

value, and this fact indicates that the lead-field normalized

minimum-variance spatial filter has no location bias even when

the SNR is low.

Spatial resolution

When the resolution kernel has its maximum at the source

location, the reconstructed source distribution can be interpreted as
the smoothed version of the true source distribution, and the main-

lobe width of the resolution kernel can be a measure of the spatial

resolution. To compare the main-lobe width of the kernel, the

point-spread function, f(r), is defined as the resolution kernel

normalized by its peak value: f rð Þ ¼ R r; r1ð Þ=R r1; r1ð Þ. For

sLORETA, f(r) is expressed as

f rð Þ ¼ cos l; f j G�1
� 	

: ð29Þ

For the lead-field normalized minimum-variance spatial filter, it

is expressed as

f rð Þ ¼
cos l̃l ; f
� 	

1þ a 1� cos2 l̃l ; f
� 	� � ¼ cos l; fð Þ

1þ a 1� cos2 l; fð Þ½ � : ð30Þ

The above equation shows that the spread function strongly

depends on the input SNR a. This dependency has been reported

previously (Cox, 1973; Gross et al., 2003). The major difference

between the sLORETA point-spread function and that of the

minimum-variance filter is the denominator in Eq. (30). Because a

usually has a value greater than the number of sensors1 M, the

denominator causes a rapid decay of the point spread function.

Consequently, the spatial resolution of the minimum-variance filter



Fig. 4. The plot of the point-spread function (the normalized resolution

kernel) in the horizontal ( y) direction. The three solid lines indicate the

spread-function of the minimum-variance filter for the cases of a = 8M,

a = 4M, and a = M. The broken line indicates the point-spread function

of sLORETA. The point source was assumed to exist at (0, 0, �6), and

the abscissa expresses the distance from the source location in the y

direction.

K. Sekihara et al. / NeuroImage 25 (2005) 1056–1067 1061
is usually much higher than that of sLORETA. In Numerical

experiments, numerical examples of the point-spread functions are

presented to demonstrate the high spatial resolution of the

minimum-variance filter.
Numerical experiments

We used the coil configuration of the Magnes 2500k neuro-

magnetometer (4D Neuroimaging, San Diego) where 148 sensors

are arranged on a helmet-shaped surface. As shown in Fig. 1, the

coordinate origin was chosen as the center of the sensor array. The

z direction is defined as the direction perpendicular to the plane of

the coil located at this center. The x direction is defined as that

from the posterior to the anterior, and the y direction is defined as

that from the left to the right hemisphere. The values of (x, y, z) are

expressed in centimeters.

We first compare the location biases for the spatial filters

described in Spatial filter formulation. To plot the resolution

kernel, we assume that a point source exists at r1 = (0, �1.5, �6).

The power of the resolution kernel R2 r; r1ð Þ was plotted on the
Fig. 5. The averaged somatosensory response obtained using a 160-channel whole

with an electric stimulus. The stimulus was delivered to the right median nerve

digitized at 10 kHz sampling frequency and a total of 10,000 epochs were averag

bandwidth.
plane, x = 0. The results are shown in Fig. 2. Here, the contour

plots on the left show, from top to bottom, respectively, the results

of the minimum-norm filter, the minimum-norm filter with the

normalized lead field, and the weight-normalized minimum-norm

filter. The plots on the right show, from top to bottom, respectively,

sLORETA, the minimum-variance filter, and the lead-field

normalized minimum-variance filter. When deriving the weight

vectors for these non-adaptive spatial filters, the gram matrix G

was obtained by numerically integrating Eq. (4) over the volume

defined as �5 V x V 5, �5 V y V 5, and �3 V z V 11, and the

Tikhonov regularization was used for inverting G with the

regularization constant set to 10�6 kmax, where kmax is the

maximum eigenvalue of G. When deriving the minimum-variance

results, the covariance matrix Rb was obtained using Eq. (36) with

a = M where M is the total number of sensors and is equal to 148

in this computer simulation. Throughout these numerical experi-

ments, the noise is assumed to be white Gaussian, and uncorrelated

between sensor channels.

The resolution kernel for the minimum-norm filter, either with

or without the lead-field normalization, shows a severe location

bias toward the sensors, as mentioned in Bias for the estimated

source location. The resolution kernel for the weight-normalized

minimum-norm spatial filter has its maximum at a wrong location

although the bias is not as large as that of the original minimum-

norm method. The results clearly indicate that the relationship in

Eq. (17) does not generally hold. The resolution kernel of

sLORETA has its maximum at the source location. The resolution

kernel for the minimum-variance spatial filter without the lead field

normalization has two peaks: one at the source location and the

other at the sphere origin, which is located at (0, 0, �12). The peak

intensity at the sphere origin is much higher than that at the source

location. The resolution kernel for the minimum-variance filter

with the lead field normalization has its maximum at the source

location. These results validate the arguments in Bias for the

estimated source location.

We next tested the validity of the arguments regarding the effects

of noise on the location bias. Assuming that a point source exists at

(0,�1.5, �6), the power output hŝ(r)2i is calculated using hŝ(r)2i =
wT (r)Rbw (r). Here, the three input SNRs were tested: a = 8M, a =

4M, and a =M whereM = 148. (As mentioned in Spatial resolution,

the definition of a is given by a = (r1
2 / r0

2)t f t2. We may use a

different definition of the input SNR f that is closer to the

definition conventionally used in MEG measurements, such that

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
1t ft2=M

� 	
=r2

0

q
. Namely, in this definition, f is equal to

the square root of the field power average across sensor channels
head sensor array (MEGVISION, Yokogawa Electric Corp, Tokyo, Japan)

at the subject’s wrist with a 250-ms interstimulus interval. An epoch was

ed. The recorded epochs were filtered with a bandpass filter of 3–300 Hz
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divided by the average noise power. Then, f is equal to 1, 2, and

2
ffiffiffi
2

p
when a = M, a = 4M, and a = 8M, respectively).

The reconstructed results of this point source obtained from

sLORETA are shown in Fig. 3a. The results from the lead-field

normalized minimum-variance filter are shown in Fig. 3b. In Fig.

3, the contour maps from top to bottom, respectively, show the

results for a = 8M, a = 4M, and a = M. These results show that

sLORETA can detect the source at the correct location for the two

cases of higher SNRs. It, however, cannot detect the source when

a = M, that is, when the input SNR is the lowest among the three

cases. The results here validate the conclusion that the SNR
Fig. 6. (a) The reconstructed source-magnitude map at latencies of 15.5, 16.5, and

map obtained using the lead-field normalized minimum-variance filter at the sam

dimensional current density onto the axial, coronal, and sagittal planes are shown

the left and right hemisphere, respectively. The circles depicting a human head in

contour map is normalized by its maximum value, and contains the same number

indicated by the color bar.
determines whether sLORETA reconstruction has the bias for the

estimated source location. The results of the minimum-variance

spatial filter show that, for all three SNR cases, it can detect the

source at the correct location.

The spatial resolution is next compared between sLORETA and

the minimum-variance spatial filter. The point-spread functionsf(r)

are plotted with respect to |r1 � r| where r1 = (0, 0, �6). The plot

of the point-spread function with respect to the y (horizontal)

direction is shown in Fig. 4. In this figure, the three solid lines

indicate the spread-function of the minimum-variance filter for

the cases of a = 8M, a = 4M, and a = M. The broken line
18.5 ms obtained using sLORETA. (b) The reconstructed source-magnitude

e latencies. The maximum intensity projections of the reconstructed three-

in the right, middle and left panels, respectively. The letters L and R show

dicate the projections of the sphere used in the forward calculations. Each

of contour lines. The color of the contour lines shows the relative intensity



Fig. 7. The average evoked magnetic responses recorded with simultaneously applied auditory and somatosensory stimuli using the 37-channel Magnesk
magnetometer. The auditory stimulus was a 1000 Hz pure tone with a 200-ms duration; it was applied to the subject’s right ear. The somatosensory

stimulus was a 30-ms duration tactile pulse (17 psi) delivered to the distal segment of the right index finger. The data was acquired at a sampling frequency

of 1 kHz and averaged for 256 epochs. An on-line bandpass filter with a bandwidth from 1 to 400 Hz was used and no post-processing digital filter was

applied.
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indicates the kernel shape of sLORETA. These plots indicate that

the spatial resolution of the minimum-variance filter is much

higher than that of sLORETA. In the next section, sLORETA and

the minimum-variance spatial filter are applied to two sets of

evoked recordings to further demonstrate the difference in the

spatial resolution between these two kinds of spatial filters.
2 The physiological interpretation for such behavior of the two sources

in the primary somatosensory cortex has been reported in (Hashimoto et al.

2001a,b).
Comparison using evoked MEG data

The somatosensory response was recorded using a 160-channel

whole head sensor array (MEGVISION, Yokogawa Electric Corp,

Tokyo, Japan) with an electric stimulus delivered to the right median

nerve at the subject’s wrist with a 250-ms interstimulus interval. An

epoch of 150ms duration (50ms pre- and 150ms post-stimulus) was

digitized at 10 kHz sampling frequency and a total of 10,000 epochs

were averaged. The averaged somatosensory response is shown in

Fig. 5 where the primary N20m peak is clearly identified.

We first applied sLORETA to this somatosensory response.

When calculating the filter weight in Eq. (6), the gram matrix was

calculated by averaging L(r) LT (r) over the whole brain region.

We selected three time points, 15.5, 16.5, and 18.5 ms, near the

vertex of the N20m peak. The reconstructed source-magnitude map

at these time points obtained from sLORETA is shown in Fig. 6a.

In this figure, the maximum intensity projection of the three-

dimensional current density reconstruction ŝ (r, t)2 onto the axial,

coronal, and sagittal planes are shown in the right, middle, and left

panels, respectively. Also, in this figure, the results in the upper,

middle, and bottom rows, correspond respectively to the recon-

struction at the latencies of 15, 16.5, and 18.5 ms. These results

clearly indicate the activation of the left parietal region, probably

near the primary somatosensory (SI) area. In these reconstruction

results, however, there are no significant differences among the

results at these three latencies.

We next applied the minimum-variance spatial filter to this

somatosensory response. In these experiments, the weight vector

of the lead-field normalized minimum-variance filter is obtained

and then the weight vector is projected onto the signal subspace

of the measurement covariance matrix Rb. The resultant projected

weight is used for the spatial filtering. This projection can avoid

the SNR degradation caused by errors in the forward modeling or

in estimating Rb from data samples (Sekihara et al., 2002). The
sample covariance matrix was calculated using a time window

between 12 and 96 ms. The reconstructed results at the same three

latencies are shown in Fig. 6b. Compared to the results in Fig. 6a,

the results in Fig. 6b exhibit much higher spatial resolution.

Indeed, in Fig. 6b, two sources in the SI area can be resolved, and

we can observe the lateral one becoming stronger while the

medial source becomes weaker during the period between 15.5

and 18.5 ms2. The comparison between Figs. 6(a) and (b) clearly

demonstrates the high spatial resolution of the minimum-variance

spatial filter.

The second data set consists of evoked magnetic responses

recorded with simultaneously applied auditory and somatosensory

stimuli using the 37-channel Magnesk magnetometer (4D

Neuroimaging, San Diego). In these measurements, we applied

auditory and somatosensory stimuli with simultaneous onsets. The

auditory stimulus was a 1000-Hz pure tone with a 200-ms

duration; it was applied to the subject’s right ear. The somato-

sensory stimulus was a 30 ms-duration tactile pulse (17 psi)

delivered to the distal segment of the right index finger. The data

were acquired at a sampling frequency of 1 kHz for the

prestimulus interval of 300 ms and the poststimulus interval of

800 ms and averaged for 256 epochs. The sensor array was placed

on the left hemisphere and positioned to best record the M100

auditory response. The mean interstimulus interval was 2 s,

randomly varied between 1.75 and 2.25 s. The measured magnetic

responses are shown in Fig. 7.

The results of the source reconstruction from sLORETA and the

minimum-variance spatial filter are, respectively, shown in Figs. 8a

and b for the selected three time points of 60 ms, 120 ms, and 180

ms. In the minimum-variance filter reconstruction, the covariance

matrix of the measurements, Rb, was calculated from the time

window between 0 and 300 ms. The results for sLORETA in Fig.

8a cannot resolve the two sources in the primary somatosensory

and the primary auditory cortices. However, the results from the

lead-field normalized minimum-variance filter in Fig. 8b resolve

these two sources. These results again demonstrate that the spatial
,



Fig. 8. (a) The reconstructed source-magnitude map at latencies of 60, 120, and 180 ms obtained using sLORETA. (b) The reconstructed source-magnitude map

obtained using the lead-field normalized minimum-variance filter at the same latencies. The maximum intensity projections of the three-dimensional current

density reconstruction onto the axial, coronal, and sagittal planes are shown in the right, middle and left panels, respectively. The letters L and R show the left

and right hemisphere, respectively. The circles depicting a human head indicate the projections of the sphere used in the forward calculations. Each contour

map is normalized by its maximum value, and contains the same number of contour lines. The color of the contour lines shows the relative intensity indicated

by the color bar.
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resolution of the minimum-variance filter is much higher than that

of sLORETA.

Discussion and conclusion

The weight-normalized version of the minimum-variance filter

has been used for MEG source reconstruction (Sekihara et al.,

2001). The weight vector for this type of filter is given by

w rð Þ ¼ wMV rð Þ
twMV rð Þt ¼ R�1

b l rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l T rð ÞR�2

b l rð Þ
q ; ð31Þ
where wMV (r) indicates the weight obtained from Eq. (7). The

resolution kernel is then expressed as

R r; r1ð Þ ¼ l TR�1
b fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l TR�2
b l

q : ð32Þ

Using Eqs. (37) and (38), the condition for the resolution kernel

having maximum at the source location is given by

cos l; fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a a þ 2ð Þ 1� cos2 l; fð Þð Þ

p b 1: ð33Þ
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Because a is positive, the above condition obviously holds for any

l and f. The condition for no location bias when noise exists is

expressed as

1þ a 1� cos2 l; fð Þð Þ
1þ a 1� cos2 l; fð Þð Þ þ a a þ 1ð Þ 1� cos2 l; fð Þð Þ½ � b 1: ð34Þ

It is again clear that this condition holds for any l and f, and thus

the weight-normalized minimum-variance filter does not have a

location bias even when noise exists.

The comparison between Eqs. (5) and (31) shows the similarity

between the weight-normalized minimum-norm and minimum-

variance spatial filters. Actually, Eq. (5) is exactly the same as Eq.

(31) if G is replaced with Rb. Assuming that the sensor noise is the

spatially-uncorrelated Gaussian noise with the variance of r0
2, we

have the relationship

Rb ¼
Z Z

L rð ÞLT r Vð Þ
� �

hs r; tð Þs r V; tð Þidrdr Vþ r2
0I: ð35Þ

Therefore, if hs(r, t) s(r V, t)i = r2d (r � r V), namely if the sources

are the uniformly distributed incoherent sources, the above

relationship reduces to Rb = G + r0
2 I, and the weight-normalized

minimum-norm and minimum-variance filters are equal (Mosher et

al., 2003). However, in general, these two spatial filters are very

different and the weight-normalized minimum-variance filter can

obtain unbiased estimates of the source locations, while the weight-

normalized minimum-norm filter cannot, as we have shown here.

In summary, we have discussed the source location bias in the

single-source reconstruction for several representative spatial filters

and found that sLORETA and the lead-field normalized minimum-

variance spatial filter do not have a source location bias. When

measurement noise is taken into account, the SNR determines

whether the results of the sLORETA reconstruction contains a bias

in estimated source location. On the other hand, the lead-field

normalized minimum-variance filter has no location bias even

when noise exists. We compare the spatial resolution for sLORETA

and the minimum-variance filter, and show that the minimum-

variance filter provide much higher spatial resolution than

sLORETA. The results of these arguments are validated by our

numerical experiments as well as the experiments using evoked

responses.

This paper compares adaptive and non-adaptive spatial filters

with respect to source location bias and spatial resolution. As far as

these performance measures are concerned, the results in this paper

support the superiority of the adaptive filters over the non-adaptive

filters. It should be mentioned that, however, to really determine

the superiority of one over the other, a thorough investigation

would be required, not only of these performance measures but

also of other performance measures including robustness to various

causes of error such as the existence of correlated sources, the

effects of sample covariance, and the violation of the low-rank

signal assumption. It should be noted that the results of our

analysis in this paper regarding the performance of the adaptive

filters indicate their asymptotic performance, which is obtained

when the ideal covariance is used. The lead-field normalized

minimum-variance filter may show some amount of the source bias

when a sample covariance matrix is obtained from a limited

number of time points. Also, it is well known that the

reconstruction results from adaptive filters can be degraded when

highly-correlated sources exist (Sekihara et al., 2002b), while non-
adaptive filters are not influenced by source correlation. Therefore,

investigations clarifying the complementarity of both types of

spatial filters are needed, and such investigations are currently

underway, with results to be published in the near future.
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Appendix A. Mathematical preliminaries

This appendix provides mathematical preliminaries that help

readers follow the discussion in Theory. Let us assume that a

single source exists at r1. Its moment magnitude is denoted s1 (t)

and its power is denoted r1
2; r1

2 = hs1(t)2i. The lead field vector at

r1 in the source direction is denoted f, namely, f = l(r1). Then, the

measured data b(t) is expressed as b(t) = s1 (t) f + n(t) where n(t)

is the additive noise. The noise is assumed to be white Gaussian

noise uncorrelated among sensor channels. Thus, r0
2 I =hn (t) nT

(t)i, where r0
2 is the power of the noise. The measurement

covariance matrix Rb is given by

Rb ¼ r2
0Iþ r2

1 f f
T : ð36Þ

Its inverse is expressed as

R�1
b ¼ 1

r2
0

I� a
1þ a

f f T

tft2

� 

; ð37Þ

where a = (r1
2 / r0

2)t f t2. For the dicussion in effects of noise on

the location bias, the square inverse is derived as

R�2
b ¼ 1

r4
0

I� 2þ að Þa
1þ að Þ2

f f T

t ft2

 !
: ð38Þ

Making use of the formula in Eq. (37), we have

l TR�1
b l ¼ 1

r2
0

tlt 2 � a
1þ a

l T f
� 	2
t ft2

 !

¼ tlt 2

r2
0

1� a
1þ a

cos2 l; fð Þ
� 


; ð39Þ

and

l TR�1
b f ¼ 1

r2
0

 
l T f � a

1þ a

l T f
� 	

f T f
� 	

t ft 2

!
¼ l T f

r2
0 1þ að Þ : ð40Þ

Therefore, we can derive Eq. (20).

The definition of the generalized cosine between the two

column vectors a1 and a2 with the metric C, where C is a positive

definite matrix is

cos2 a1; a2 jCð Þ ¼
aT1Ca2
� 	2

aT1Ca1
� 	

aT2Ca2
� 	 ; ð41Þ



3 The original form is expressed as Eq. (7) in this literature. When the

noise covariance matrix is set to the identity matrix in this equation, it is

equal to Eq. (51).
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or

cos a1; a2 jCð Þ ¼ jaT1Ca2 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT1Ca1
� 	

aT2Ca2
� 	q : ð42Þ

Here, the inequalities cos2(a1, a2|C) V 1 and cos(a1, a2|C) V 1

hold, because the Swartz inequality holds for any positive definite

matrix C, that is,

aT1Ca1
� 	�

aT2Ca2
	
z aT1Ca2
� 	2

: ð43Þ

When C is equal to the identity matrix I, the generalized cosine is

simply written as cos2(a1, a2), which is equal to

cos2 a1; a2ð Þ ¼
aT1 a2
� 	2

aT1 a1
� 	

aT2 a2
� 	 : ð44Þ

Appendix B. Non-adaptive spatial filter formulations

This appendix shows how the non-adaptive spatial filter

formulations described in Adaptive and non-adaptive spatial filters

can be obtained from their well-known tomographic-reconstruction

formulations. The tomographic-reconstruction formulations

assume pixels, of which locations are denoted r1, r2,. . ., rN where

N is the total number of pixels. The composite lead field for all

pixel locations are, then, defined as

LN ¼ L r1ð Þ;L r2ð Þ; N ;L rNð Þ½ �: ð45Þ
Using LN, the minimum-norm reconstruction method is expressed

as

ŝs r1; tð Þ
ŝs r2; tð Þ

v
ŝs rN ; tð Þ

3
775 ¼ LT

N LNL
T
N

� 	�1
b tð Þ ¼

LT r1ð Þ
LT r2ð Þ

v
LT rNð Þ

3
775 LNL

T
N

� 	�1
b tð Þ;

2
664

2
664

ð46Þ

where the vector ŝ(rj, t) is the estimated three-dimensional source

vector defined as

ŝs rj; t
� 	

¼ ŝsx rj; t
� 	

; ŝsy rj; t
� 	

; ŝsz rj; t
� 	� �T

:

Therefore, from Eq. (46), we obtain

ŝs rj; t
� 	

¼ LT rj
� 	

LNL
T
N

� 	�1
b tð Þ: ð47Þ

In Eq. (47), the product LNLN
T is equal to the gram matrix G,

which is defined in Eq. (4), that is,

LNL
T
N ¼

XN
j ¼ 1

L rj
� 	

LT rj
� 	

¼ G; ð48Þ

where errors caused due to the pixel discretization are neglected.

Therefore, the three-dimensional current vector at rj is obtained as

ŝs rj; t
� 	

¼ LT rj
� 	

G�1b tð Þ ¼ WT rj
� 	

b tð Þ; ð49Þ

where the weight matrix W (rj) is defined as W (rj) = G�1 L (rj).

The above equation is the vector spatial-filter formulation of the

minimum-norm reconstruction method. To derive the scalar

formulation, we assume that the orientation of each voxel is

known and define the lead field in that voxel orientation as l (rj).
Then, the scalar spatial-filter formulation can also be derived as

ŝs rj; t
� 	

¼ l T rj
� 	

G�1b tð Þ ¼ wT rj
� 	

b tð Þ; ð50Þ

where w(rj) = G�1 l (rj) and the scalar ŝ (rj, t) is the (signed)

source magnitude. This weight vector is identical to that in Eq. (3).

Using the weight matrix for the minimum-norm filter W(rj)

defined above, the original form of the weight-normalized

minimum-norm method proposed by Dale et al. (2000)3 is equal to

ŝs rj; t
� 	

¼
WT rj
� 	

b tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr WT rj

� 	
W rj
� 	� �q ¼

LT rj
� 	

G�1b tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr LT rj

� 	
G�2L rj

� 	� �q : ð51Þ

Introducing the lead field in the voxel orientation l(rj), the scalar

formulation is derived as

ŝs rj; t
� 	

¼
l T rj
� 	

G�1b tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l T rj
� 	

G�2l rj
� 	q ¼ wT rj

� 	
b tð Þ; ð52Þ

where w rj
� 	

¼ G�1l rj
� 	� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l T rj
� 	

G�2l rj
� 	q

. This weight vector is

identical to that in Eq. (5).

Finally, we derive the spatial-filter form of sLORETA. In this

method, the minimum-norm reconstruction results are normalized

by the square root of the resolution kernel. The resolution kernel of

the vector minimum-norm filter in Eq. (49) is obtained as a 3 � 3

matrix WT (rj) L (rj) = LT (rj) G
�1 L (rj). Thus, the formulation

equivalent to Eq. (20) in Pascual-Marqui (2002) is

ŝs rj; t
� 	

¼ LT rj
� 	

G�1L rj
� 	� ��1=2

LT rj
� 	

G�1b tð Þ: ð53Þ

Substituting the lead field matrix LT (rj) with the lead field vector

in the voxel orientation, l (rj), in the above equation, the scalar

version of sLORETA spatial filter is obtained as

ŝs rj; t
� 	

¼
l T rj
� 	

G�1b tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l T rj
� 	

G�1l rj
� 	q ¼ wT rj

� 	
b tð Þ; ð54Þ

where w rj
� 	

¼ G�1l rj
� 	� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l T rj
� 	

G�1l rj
� 	q

. This weight vector is

identical to that in Eq. (6).
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