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In this paper, we present a novel approach to imaging sparse and focal
neural current sources from MEG (magnetoencephalography) data.
Using the framework of Tikhonov regularization theory, we introduce
a new stabilizer that uses the concept of controlled support to
incorporate a priori assumptions about the area occupied by focal
sources. The paper discusses the underlying Tikhonov theory and its
relationship to a Bayesian formulation which in turn allows us to
interpret and better understand other related algorithms.
© 2006 Elsevier Inc. All rights reserved.

Introduction

The brainTs neuronal activity generates weak magnetic fields
(10 fT-pT). Magnetoencephalography (MEG) is an non-invasive
technique for characterizing these magnetic fields using an array of
superconducting quantum interference devices (SQUIDs). SQUID
magnetometers can measure the changes in the brainTs magnetic
field on a millisecond timescale, thus, providing unique insights
into the dynamic aspects of the brainTs activity. The goal of
biomagnetic imaging is to use MEG data to characterize macro-
scopic dynamic neural information by solving an electromagnetic
source localization problem.

In the past decade, the development of source localization
algorithms has significantly progressed (Baillet et al., 2001).
Currently, there are two general approaches to estimating MEG
sources: parametric methods and tomographic imaging methods
(Hamalainen et al., 1993). With parametric methods, a few current
dipoles of unknown location and moment represent the sources. In
this case, the inverse problem is a non-linear optimization in which
one estimates the position and magnitude of the dipoles.

In this paper, we use the tomographic imaging method, where a
grid of small voxels represents entire brain volume. The inverse
problem then seeks to recover a whole brain activation image,
represented by the moments and magnitudes of elementary dipolar
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sources located at each voxel. The advantage of such a formulation
is that the forward problem becomes linear. However, the ill-posed
nature of the imaging problem constitutes considerable difficulty,
most notably due to the non-uniqueness of the solution.

A common way to constrain the non-uniqueness is to use the
weighted minimum normmethods. Suchmethods find solutions that
match the data while minimizing a weighted l2 norm of the solution
(Hamalainen et al., 1993; Sarvas, 1987; Wang et al., 1992; Pascual-
Marqui and Biscay-Lirio, 1993). Unfortunately, these techniques
tend to “smear” focal sources over the entire reconstruction region.

There are three basic approaches for creating less smeared
solutions to the MEG focal imaging problem: (1) use of lp norms,
(2) Bayesian estimation procedures with sparse priors, and (3)
iterative reweighting methods. The first approach that produces
sparse solutions uses an l1, or an lp norm. Although, the l1 norm
solution can be formulated as a linear programming problem
which converges to the global solution, other lp norm methods
are calculated using multidimensional iterative methods which
often do not converge to the correct solution. Furthermore, all lp
methods are sensitive to noise (Matsuura and Okabe, 1995;
Uutela et al., 1999). The second approach is a Bayesian
framework with sparse priors derived from Gibbs distributions
(Schmidt et al., 1999). However, these methods are very
computationally intensive since full a posteriori estimation is
solved using the Markov-chain Monte-Carlo or mean-field
approximation methods (Bertrand et al., 2001a,b; Phillips et al.,
1997). The third approach is iterative reweighted minimum norm
method. The method uses a weighting matrix which, as the
iterations proceed, reinforces strong sources and reduces weak
ones (Gorodnitsky and Rao, 1997; Gorodnitsky and George,
1995). The problems associated with this method are sensitivity
to noise, high dependency on the initial estimate and tendency to
accentuate the peaks of the previous iteration. In addition, the
method often produces an image of a focal source as a scattered
cloud of multiple sources that exist near each other.

In this paper, we combine features of all three approaches
outlined above and derive a novel Controlled Support MEG
imaging algorithm, using Tikhonov regularization theory. The
advantages of our algorithm are the quality of focal source images
G imaging, NeuroImage (2006), doi:10.1016/j.neuroimage.2006.07.023.
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as well as robustness and speed. We first formulate the MEG
inverse problem under the framework of Tikhonov regularization
theory, and introduce a way to constrain the problem using
specially selected stabilizing functionals. We then describe the
relationship of this formulation to the minimum norm methods and
Bayesian methods. Subsequently, we revisit minimum support
stabilizing functional which obtains the sparsest possible solutions,
but may produce an image of a focal source as a cloud of points. To
remedy this problem, we derive a new controlled support
functional, by adding an extra constraining term to the minimum
support and then explain details of computationally efficient
method of reweighted optimization. The minimization algorithm
section explains how the numerical minimization is carried out. In
Results and discussion section, we demonstrate performance of the
algorithm using results from Monte-Carlo simulation studies with
realistic sensor geometries and variety of noise levels.

Formulation of the MEG inverse problem using Tikhonov
regularization

Let the three Cartesian coordinates of the current dipole
strength for each one of the Ns/3 voxels be denoted by the length
Ns vector s. The data consist of a vector b that contains magnetic
field measurements at all receivers. The length of the b is
determined by the number of sensor sites, as denoted by Nb. The
forward modeling operator L connects the model to the data:

Ls ¼ b; ð1Þ

where L is also known as the “lead field.” The lead field is a
matrix of size Nb×Ns that connects the spatial distribution of the
dipoles s to measurements at the sensors b. According to
Hadamard (1902), the three difficulties in an inverse problem
are: (1) the solution of the inverse problem may not exist, (2) the
solution may be non-unique, (3) the solution may be unstable. The
Tikhonov regularization theory resolves these difficulties using the
notions of misfit, the stabilizer and the Tikhonov parametric
functional.

The notion of misfit minimization resolves the first difficulty,
the non-existence of the solution. In the event that an exact solution
does not exist, we search for the solution that fits the data
approximately, using the misfit functional as a goodness-of-fit
measure. Following tradition (Eckhart, 1980), we use a quadratic
form of the misfit functional, denoted as ϕ:

/ðsÞ ¼ tLs� bt2
=tbt2

: ð2Þ
When the model produces a misfit that is smaller than the noise

level (Tikhonov discrepancy principle), this model could be a
solution of the problem.

The second difficulty, the non-uniqueness, is a situation where
many different models have misfits smaller than the noise level.
All of these models could be solutions of the problem. In practice,
we need only one solution that is good. The stabilizing functional,
denoted S(s), measures goodness of the solution. Designing the
stabilizer S is a difficult task which we will discuss in detail in the
next two sections. In simplest terms, S is small for “good” models
and large for “bad” models. Therefore, the weighted sum of misfit
and stabilizer (denoted as P) measures both the goodness of data fit
and goodness of the model:

PðsÞ ¼ /ðsÞ þ kSðsÞ; ð3Þ
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where λ is regularization parameter and P is Tikhonov parametric
functional. Both difficulties considered so far (non-uniqueness and
non-existence) are resolved by posing the minimization of
parametric functional:

s ¼ argminsPðsÞ ð4Þ
The third difficulty, the ill conditioning, is a situation where small

variation in the data results in large variation in the solution. Careful
choice of regularization parameter λ resolves this difficulty. In short,
the Tikhonov discrepancy principle defines the choice of λ, which is
discussed in The minimum support stabilizer section.

In summary, the formulation of MEG inverse problem using
Tikhonov regularization reduces to minimization of the Tikhonov
parametric functional to (4).

Finally, we note that a probabilistic framework provides a similar
view on the inverse problem (Baillet and Garnero, 1997). A
Bayesian approach poses themaximum a posteriori (MAP) problem:

s ¼ argmaxsðexpð�ðLs� bÞT ðLs� bÞÞd expð�kSðsÞÞÞ: ð5Þ
Note that the logarithm of (5) is (4).While using different underlying
axioms, the Tikhonov problem results in a formulation similar to the
Bayesian approach. In the Bayesian framework, the functional exp
(−λS(s)) incorporates prior assumptions on distribution of s. A
stabilizer function in the Tikhonov framework can be viewed as the
log of the prior probability drawn from an exponential distributions
on the sources, without the normalization terms for probability
distributions. For example, a quadratic functional would correspond
to a Gaussian prior, a linear functional corresponds to a Laplacian
prior and a P-norm functional would correspond to a sparse
distribution drawn from the exponential family.

The minimum support stabilizer

As discussed in the previous section, the role of a stabilizer is
especially important for a situation in which many different models
produce similar data. Clearly, the misfit functional alone cannot
discriminate between thesemodels. Therefore, this situation requires
using additional discriminatory measure, such as the stabilizing
functional.

The choice of the stabilizing functional S is difficult. S should
be small for good models and large for bad models, so that the
minimum of S determines the solution. Unfortunately, the
definition of a good model relies upon empirical knowledge and
depends upon each particular problem.

The good model for MEG inverse problem should adequately
represent focal current sources, i.e., sources that occupy a small
volume (or, sources with small support). Therefore, the minimum
support functional (Last and Kubik, 1983) (Portniaguine and
Zhdanov, 1999) (denoted as Smin) is one possible choice for the
stabilizer:

Smin sð Þ ¼ 1
Ns

XNs

1

s2k
s2k þ b2

ð6Þ

where sk is a component of vector s.
To better understand physical meaning of the minimum support

stabilizer consider the following form of Smin:

Smin sð Þ ¼ 1
Ns

tSign sð Þt; ð7Þ
G imaging, NeuroImage (2006), doi:10.1016/j.neuroimage.2006.07.023.
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Fig. 2. Functionals Smin and Sreg are invariant to image level and
discretization. For illustration, consider a 2D model depicted in this figure.
Model has a non-zero domain in the middle. Left panel, shows case with 100
pixels and 4 non-zeros. Functional values for this model are Smin=0.04 and
Sreg=1. Right panel, same case with finer discretization, 400 pixels and 16
non-zero values.
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where sign denotes signature function

sign ðxÞ ¼
1: if x > 0
0; if x ¼ 0

�1; if x < 0

2
4

3
5 ð8Þ

Continuous approximation of the sign2 function is better for
numerical implementation:

signðskÞ2 ¼ s2k
s2k þ b2

d b2 ¼ 10�16d maxðsÞ2; ð9Þ

where constant 10−16 is machine precision. Note that, substituting
(9) into (7) leads to (6). The form (7) is convenient to understand
the physical meaning of Smin. Functional Smin measures a fraction
of non-zero parameters. In other words, Smin measures support. If
we use Smin as a stabilizer, we define the good model as one with
the small support.

However, not all images with small support are suitable for
imaging of focal MEG sources. As indicated in Fig. 1, sometimes
the minimum support method represents a single focal source as a
cloud of scattered points which can be misinterpreted as multiple
local sources located near each other (panel a). What we ideally
want in this situation is an image of a single patch, as depicted in
panel (b) of Fig. 1. We note that this problem has also been
reported by the researchers working with other types of sparse
priors (Phillips et al., 1997). In the next section, we deal with this
problem by introducing additional restrictive term to the minimum
support stabilizer.
Controlled support stabilizer

The controlled support stabilizer (denoted as Scon) is a functional
that reaches its minimum for images with a predetermined support
value α. That value should be small, but not so small that it creates
the undesirable of producing scattered sources. In other words, the
image in Fig. 1 case b, which we consider to be good, produces a
minimum of the stabilizer Scon. The undesirable (scattered) image
(case a in the same figure) corresponds to a larger value of stabilizer
Scon. This discriminative effect of Scon happens because Scon is a
weighted sum of the previously introduced minimum support
Fig. 1. This Figure illustrates outcomes of two attempts to image a single
focal source with two different stabilizers. (a) Image obtained with minimum
support stabilizer is a cloud of disconnected multiple focal sources located
near each other. (b) Image obtained with controlled support stabilizer is a
single patch.

Please cite this article as: Srikantan S. Nagarajan et al., Controlled Support ME
stabilizer Smin and an additional restricting term Sreg:

SconðsÞ ¼ ð1� aÞd SminðsÞ þ ad SregðsÞ; ð10Þ

where the restricting term Sreg is:

Sreg sð Þ ¼ 1

maxjsj
XNs

k¼1

jsk j

XNs

k¼1

s2k ¼
tst2

l2

tstlltstl1

: ð11Þ

Upon examining expression (11) we notice that the functional
Sreg has opposing properties to Smin, Sreg has a maximum where
Smin has a minimum. Obviously, the choice of the weighting factor
α determines the balance between terms (1−α)Smin and αSreg. In
summary, Smin favors minimum support solutions, Sreg favors
solutions with large support, and Scon favors solutions with support
controlled by the value of α.

The remainder of this section addresses two important details.
First, we must explain why the effect of Sreg is opposite to that of
Smin. Second, we will discuss the normalizations of Smin and Sreg,
which leads to their invariance to discretization. We must note that
Sreg is the square of the l2 norm weighted by the product of ll and l1
norms (11). We think of Sreg as a normalized l2 norm. Therefore, the
minimum of Sreg is reached at the minimum l2 norm solution (a
solution with large support where Smin has maximum). The
maximum of Smin is 1, which happens for a case with one non-
zero parameter, where Scon is at its minimum. Strictly speaking, the
maximum of Sreg is also possible for other cases. However, opposing
properties of the minimums are more important for our purposes.

Now, we consider the normalizations of Smin and Sreg. Factor 1/
Ns normalizes Smin (6), while divisions by l1 and l∞ norms
normalize stabilizer Sreg (11). Normalizations are important for the
meaningful summation of Smin and Sreg in expression (10), because
they make the terms bounded:

0 V Smin V 1 0 V Sreg V 1: ð12Þ

In addition, normalizations make functionals Smin and Sreg
invariant to discretization and grayscale of the image. To illustrate
this property, consider an example 2D image with a total of 100
pixels, where 96 pixels are zero, and a compact domain in the
middle contains 4 pixels all with the value of a. The left panel in
Fig. 2 illustrates this case. The following calculations find values
G imaging, NeuroImage (2006), doi:10.1016/j.neuroimage.2006.07.023.
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of Smin and Sreg for this case:

Ns ¼ 100;
XNs

k¼1

abs skð Þ ¼ 4a; max sð Þ ¼ a;

XNs

k¼1

signðskÞ2¼ 4;

XNs

k¼1

s2k ¼ 4a2; Smin ¼
XNs

k¼1

signðskÞ2=100 ¼ 0:04

Sreg ¼
XNs

k¼1

ðskÞ2=
XNs

k¼1

abs skð Þd max sð Þ
 !

¼ 4a2

4ad a
¼ 1 ð13Þ

According to (13), Smin=0.04 (which is a fraction of the non-
zero pixels in the image from Fig. 2) and Sreg=1. Now, we refine
the discretization twice. The resulting image has total of 400 pixels
with 16 pixels containing the value of a, as shown in the right
panel of Fig. 2. Calculations similar to (13) show that Smin and Sreg
did not change (Smin=0.04 and Sreg=1). This example also shows
that functional values are invariant to a (image level, or grayscale).
Note that the same properties hold true for 3D grids and volume
models that we consider in this paper.

The method of reweighted optimization

In this section, we discuss how to solve minimization problem
using the method of reweighted optimization. To obtain the final
form of the objective functional (denoted as Pcon), we substitute
definitions (2), (6), (10), (11) into (3):

Pcon ¼ tLs� bt2

tbt2 þ k
1� a
Ns

XNs

k¼1

s2k
s2k þ b2

 

þ a
tstll dtstl1

XNs

k¼1

s2k

!
: ð14Þ

In this section, we discuss the idea of how to solve the mini-
mization problem:

s ¼ argminsPconðsÞ: ð15Þ
Arguably, the minimization of Pcon is difficult, because it is a

non-linear (non-quadratic) functional of s. We have two feasible
options for the numerical solution of our non-quadratic problem.
The first uses gradient-type inversion methods, and the second uses
the method of reweighted optimization. While the gradient-type
minimization method is well known (Fletcher, 1981), this method
requires computing the gradient of a functional (14). Computing
such a gradient is problematic since we previously used sign while
constructing Pcon (see formulas (8) and (9)).

In this paper, we use the method of reweighted optimization, a
historical choice for related minimum support problem (Last and
Kubik, 1983; Portniaguine and Zhdanov, 1999; Portniaguine, 1999).
In addition, a number of researchers have found the reweighted
optimization convenient (Wolke and Schwetlick, 1988; O’Leary,
1990; Farquharson and Oldenburg, 1998), especially for cases
where non-linearity is represented by weights to the quadratic term.
This is exactly our case. Notice that the term sk

2 in (14) can be taken
out of the brackets

Pcon ¼ tLs� bt2

tbt2 þ k
XNs

k¼1

1� a
Ns

1

s2k þ b2
þ a
tstll d tstl1

 !
s2k :

ð16Þ

ð
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Thus, model-dependent weighting of the quadratic functional
represents the non-linearity in (14):

Pcon ¼ tLs� bt2

tbt
þ k

XNs

k¼1

w�2
k d s2k ; ð17Þ

where wk is model-dependent weight

w�2
k ¼ 1� a

Ns

1

s2k þ b2
þ a
tstll d tstl1

: ð18Þ

It is convenient to assemble weights into a sparse diagonal
matrix W(s) with terms wk in the main diagonal, and write (17) in
matrix notations:

Pcon ¼ tLs� bt2

tbt2 þ ktW ðsÞ�1st2 ð19Þ

To understand our optimization algorithm in detail, it is
necessary to convert the parametric functional to a purely quadratic
form, which has a known analytic solution. This form is obtained
by transforming the problem into a space of weighted model
parameters. To do that, we insert W(s)W(s)−1 term into (19):

Pcon ¼ tLW ðsÞW ðsÞ�1s� bt2

tbt2 þ ktW ðsÞ�1st2
: ð20Þ

Then, we transform (20) by replacing the variables:

s ¼ W ðsÞsw; Lw ¼ LW ðsÞ: ð21Þ
After substituting (21), expression (20) results in a purely

quadratic form of the functional with respect to sw:

P swð Þ ¼ tLwsw � bt2

tbt2 þ ktswt
2
: ð22Þ

Since Pcon (sw) is purely quadratic with respect to sw, the
minimization problem for Pcon (sw) has an analytical solution,
known as the Riesz representation theorem (Aliprantis and
Burkinshaw, 1978):

sw ¼ LTwðLwLTw þ ktbt2IbÞ�1b; ð23Þ

where Ib is unit matrix in the space of data (of size Nb×Nb).
Thus, the idea of reweighted optimization is to solve (15)

iteratively, assuming the weights are constant on each iteration.
Starting from the initial guess for the weights, we can use the Riesz
representation theorem to find weighted solution. We can then
convert back to original space, update the weights depending on
the solution, and repeat the iterative process. The next section
discusses the details of this process. The above equation is identical
to the MAP estimator with Gaussian priors for the sources and the
noise, where the source variance is assumed to be an unknown
diagonal matrix and the noise variance is known and parameterized
by λ.

The minimization algorithm

The algorithm for minimizing a parametric functional is itera-
tive. On each iteration (enumerated with index n), we compute the
updates of: the weights Wn, the weighted lead fields Lwn

, the
G imaging, NeuroImage (2006), doi:10.1016/j.neuroimage.2006.07.023.
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weighted model swn
, and the update of the model sn. These

quantities depend upon values from previous iteration (denoted
with index n−1). Inputs to the algorithm include the data b, noise
level estimate ϕ0, as well as the support parameter α. Before the
first iteration, we precompute the lead fields L, set weights to one
W0= Is, and set the current model update to zero s0=0. The
important additional step are incorporated in the final algorithm.
The first is the choice of regularization parameter, the second is the
line search correction, and the third is termination criterion.

According to Tikhonov condition, the choice of the regulariza-
tion parameter λ should be such that the misfit (2) at the solution
equals an a priori known noise level ϕ0 (Tikhonov and Arsenin,
1977):

tLwsw � bt2

tbt2 ¼ /0: ð24Þ

Substituting (23) into (24) yields the equation

tLwnL
T
wn
ðLwnL

T
wn

þ ktbtIbÞ�1b� bt2 ¼ /0tbt
2 ð25Þ

which we solve with a fixed point iteration method. In Eq. (25) the
only unknown variable is the scalar parameter λ. Since the Gramm
matrix Lwn

Lwn

T is small (Nb×Nb, where Nb is small), the fixed point
iteration method easily solves Eq. (25) for λ. For the cases where
the data dimension Nb is large, which makes the direct inversion of
a Gramm matrix impractical, solving Eq. (22) using the Riesz
theorem (23) can be substituted by solving (22) via a conjugate
gradient method (Portniaguine, 1999). In this paper, we consider
processing of MEG data from an array of 102 sensors, so the
dimension of data is small Nb=102 and therefore the Gramm
matrix is easily invertible with direct methods. Such a choice of the
regularization term is analogous to setting the noise variance in the
Bayesian MAP estimation procedure.

Second, to ensure convergence of the algorithm, we incorporate a
line search procedure. Convergence of the reweighted optimization
depends upon how accurately the Eq. (22) approximates the original
non-quadratic Eq. (19). That, in turn, depends on assumption of
constant weights, which, in our case, are dependent on s. The usual
assumption for any iterative method is that the changes in a model
are small from one iteration sn−1 to the next sn. That assumption may
not always hold, and therefore, steps which converge on Eq. (22)
may be divergent on the original Eq. (16) due to significant changes
in W(s). The well-known method of line search (Fletcher, 1981)
serves to correct this problem. Once the next approximate update Sn′
is found from the previous update sn−1 using the approximate
formula (22), we check the value of original non-linear objective
functional Pcon (sn′). If the objective functional decreases, the line
search is not deployed. If the objective functional increases (which
signifies the divergent step), we perform a line search.

If Pcon (sn−1)<Pcon (sn), we perform a line search, by searching
for the minimum of Pcon with respect to the scalar variable t (the
step length):

t ¼ argmintPconðsn�1 þ tðsnV� sn� 1ÞÞ

If Pcon (sn−1)<Pcon (sn), then we set t=1 and do not perform the
line search. Note that the smaller step size t is, the closer the
corrected update sn is to the previous update sn−1 from which the
weights Wn were derived. Thus, the smaller t has the less weights
change from n−1 iteration to n, and therefore, our quadratic
approximation becomes more accurate. With small enough t, a
Please cite this article as: Srikantan S. Nagarajan et al., Controlled Support ME
smaller value of Pcon will always be found somewhere between sn−1
and s′. Minimization of the scalar functional Pcon with respect to
scalar argument t is a simple 1D problem. That problem is solved by
sampling the function at a few points (usually three or four), fitting
the parabola into it, and finding the argument of a minimum. Such
sampling is fast, for one estimate of the functional we only need to
solve one forward problem. In many previously conducted studies
with minimum support functional Smin, the reweighted optimization
has never diverged (Last and Kubik, 1983; Portniaguine and
Zhdanov, 1999). Our new controlled support functional, Scon, is
dominated by term Smin. Therefore, we expected the same good
convergence for S as was reported for Smin. However, in the Monte-
Carlo simulations carried out in this paper and with some limited
datasets, the algorithm has never called the line search routine
because the divergence was never detected.

Third, the termination criterion was formulated based on the
following two observations.

First, we must observe that all updates sn produce the same misfit
ϕ0 (due to enforcement of the Tikhonov condition). Therefore, only
the second term Scon determines the minimum of Pcon (sn) on a given
set of arguments sn. This second term consists of two parts: (1−α)
Smin (sn), and αSreg (sn). The second observation is that the Smin (sn)
term decreases with n, and the Sreg (sn) term increases with n. This
happens because on the first iteration n=1 we produce the minimum
norm solution, and then progress towards more focused solutions
(see discussion about opposing properties of Smin and Sreg in The
minimum support stabilizer section). So, the dominance of αSreg
term over (1−α)Smin term signifies close proximity to the minimum
of Pcon. We summarize the complete algorithm as follows:

1. Compute Lwn using (21)

Lwn ¼ LWn�1:

2. Determine regularization parameter by fixed point iteration of
Eq. (25).

3. Find the weighted model swn
using (23):

swn ¼ LTwn
ðLwnL

T
wn

þ ktbtIbÞ�1b:

4. Find preliminary update of the model sn using (21),

snV¼ Wn�1swn :

5. Check for divergence and incorporate line search.
6. Corrected update sn is found from the previous update sn−1 using

step length t:

sn ¼ sn�1 þ lðsnV� sn�1Þ:

7. Check for termination criterion. We stop iterations if

ð1� aÞSminðsnÞ < aSregðsnÞ:

8. Find the updated weight Wn using (18) and go to Step 1,
repeating all steps in the loop.

Results and discussion

In simulations we demonstrate the algorithm performance,
estimate localization accuracy and speed of the method. The
geometry for all simulations was from an MR (magnetic
G imaging, NeuroImage (2006), doi:10.1016/j.neuroimage.2006.07.023.
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Fig. 3. Geometry that was used in the model study. An outer head surface
was extracted from the subject's MRI. MEG sensor array (a “hat” consisting
of square receiver “plates”, as shown here) was positioned in MRI
coordinates by matching the reference points to the head surface. Each
“plate” measures normal component of a magnetic field.

Fig. 5. Magnetic field data for two-dipole model (the model from Fig. 4).
Data are shown by color map superimposed on flat projection of measuring
array (the helmet from Fig. 3). Dots show the locations of the sensors, each
sensor corresponds to one plate in Fig. 3. Data contain Gaussian random
noise such that the SNR=400.
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resonance) image of a subject. Fig. 3 shows a head surface
extracted from the MR volume image. We transformed the MEG
sensor array to MRI coordinates by matching the reference points
(measured on the subjectTs head) and the extracted head surface
(Kozinska et al., 2001). Fig. 3 shows the MEG array as a “helmet”
consisting of 102 square sensor “plates.” Each plate has magnetic
coils that measure the normal (to the plate) component of the
magnetic field. The middle of the plate serves as a reference point.
In order to parameterize the inverse problem, we divided the
volume of the brain into 30,000 cubic voxels of size 4×4×4 mm.
Vector s consists of strengths of three components of current
dipoles within each voxel. This produces Ns=90,000 free inversion
parameters (unknowns). This parameterization takes into account
both gray matter and white brain matter. We did not use the
alternative parameterization with the cortical surface constraint
because the final reconstruction result would strongly depend on
the accuracy of the cortical surface extraction procedure. The
controlled support algorithm is the point of our investigation. So,
we did not use cortical surface extraction since it may mask the
evaluation of the algorithmTs performance.

We built the underlying forward model (lead field operator)
using the formula for a dipole in a homogeneous sphere (Sarvas,
1987). We computed the sensitivity kernel for each sensor (a row
of matrix L), using an individual sphere locally fit to the surface of
the head near that particular sensor site (Huang et al., 1999).

As a first numerical experiment, we placed two dipoles within
the brain, approximately at the level of the primary auditory cortex.
Fig. 4. Location of two test dipoles (stars) within the head.
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Fig. 4 shows the location of dipoles within the brain. That setup
defines the vector s as zeros everywhere except the specified dipole
locations. We generate the data b using the forward Eq. (1), adding
Gaussian random noise such that the SNR is 400. The level of
noise is set relative to the data and measured in the same units as a
normalized misfit, as defined by the formula

bnoise ¼ bþ n
tbt

tntd SNR
ð26Þ

where SNR is the signal-to-noise ratio defined by the ratio of the
average signal power across channels divided by the average noise
power, and n is the noise vector. Fig. 5 shows the resulting data as a
flat projection.

To illustrate convergence, Fig. 6 shows the evolution of
stabilizers during iterations, and Fig. 7 shows the evolution of the
solution. The isolines in Fig. 7 display the magnitudes of the
dipoles in the solutions, superimposed on a corresponding MRI
slice.

Fig. 7 displays six solutions produced on each iteration. The
first solution (panel 1) is a minimum norm solution that is smooth,
Fig. 6. Evolution of stabilizers during reweighted iterations. Solid line shows
evolution of S, dashes show evolution of αSreg and dots show the evolution
of (1−α)Smin. Stars show the stopping point, where term (1−α)Smin

becomes less than term αSreg. After that point term αSreg (dashes) dominates,
and Scon (solid line) flattens, as illustrated by this figure.
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Fig. 7. Evolution of solution during reweighted iterations. The case
corresponds to example discussed in Fig. 6. Stars show “true” location of
dipoles (location of dipoles within the head is shown in Fig. 4). Solution is
superimposed on corresponding MRI slice as isolines. Panels numbered 1, 2,
3, 4, 7, 13 show the solutions at the corresponding iteration.

Table 1
Results from Monte-Carlo simulation study

Error/Noise 400 100 67 33 16 8 4

Location [mm] 2.55 2.76 3.80 4.36 6.43 8.58 10.90
Orientation [degree] 1.35 1.50 1.94 2.62 4.13 4.78 6.18
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and maximums are far away from the true dipole locations. In
contrast to a common misconception about reweighted optimiza-
tion methods, observe how the location of maximum activation
Fig. 8. Histogram of localization errors for 100 experiments with a randomly
located dipole. Average error is 2.1 mm, seven errors are above 4 mm.
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shifts during reweighted iterations (panels 1–6 in Fig. 7). Note that
the method discussed here does not simply accentuate the peaks of
the previous iteration. The size and shape of the estimated source
area are mainly due to the model and the noise level and do not
directly relate to the size and shape of the original source.

Each of these solutions describe the data equally well, but they
do not describe the prior expectations that the activity is focused.
The solutions are indistinguishable in terms of the data fit,
however, they have different values of the stabilizer. Fig. 6 shows
evolutions of a stabilizer S (solid line) and its individual
components (α−1)Smin (dots) and αSreg (dashes). We see that the
first solution has a large value of a stabilizer, and on the next
iterations, the stabilizer decreases to a minimum.

We have empirically determined, from our Monte-Carlo
experiments, that the best estimate of the dipole location is not
the maximum of the image, but rather the location of the
maximum of a local weighted average of the image around its
maximum solution. Such a technique is better since it provides
estimates located away from the grid nodes, and is, therefore, less
sensitive to a given inversion grid. We estimate the dipole
locations by thresholding the whole image at 10% to the
maximum, separating the individual maximums by clustering,
and determining the center of each cluster as the average of a
position of cluster points with weights corresponding to the
intensity of the image. This procedure is very fast for our compact
images (fractions of a second) and does not increase the overall
computation time.

Second, we estimate the localization accuracy and speed of our
algorithm using the Monte-Carlo study with 100 simulations. Each
experiment is a separate round of inversion run on a data generated
by a dipole with a random orientation and a random location within
the brain. Fig. 8 shows a histogram of the root–mean–square
localization error. The mean error was 2.1 mm, the three largest
errors were 8,10 and 12 mm, all for dipoles located very deep
within the brain or at the corners of the mesh. Four errors were
below 8 mm, and the rest of 93 errors were below 4 mm. These
results are consistent with performance reported in the literature for
single-dipole parametric inversion (Leahy et al., 1998). With the
geometrical setup described above, and using a 700 MHz PC, the
localization runs for 30 s.

Third, we run the source localization with different levels of
noise, ranging from small (SNR=400) to high (=4). Table 1
summarizes the results. Each column in the table is averaged from
100 Monte-Carlo trials. Expectedly, under high levels of noise
localization accuracy as well as errors in orientation deteriorates.
However, the method performed robustly and converged well
even under 25% of noise and even in this case exhibited
localization accuracy of 10 mm.
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