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A B S T R A C T

Magnetoencephalography (MEG) data is subject to many sources of environmental noise, and interference
rejection is a necessary step in the processing of MEG data. Large amplitude interference caused by sources near
the brain have been common in clinical settings and are difficult to reject. Artifact from vagal nerve stimulators
(VNS) is a prototypical example. In this study, we describe a novel MEG interference rejection algorithm called
dual signal subspace projection (DSSP), and evaluate its performance in clinical MEG data from people with
epilepsy and implanted VNS. The performance of DSSP was evaluated in a retrospective cohort study of patients
with epilepsy and VNS who had MEG scans for source localization of interictal epileptiform discharges. DSSP was
applied to the MEG data and compared with benchmark for performance. We evaluated the clinical impact of
interference rejection based on human expert detection and estimation of the location and time-course of
interictal spikes, using an empirical Bayesian source reconstruction algorithm (Champagne). Clinical recordings,
after DSSP processing, became more readable and a greater number of interictal epileptic spikes could be clearly
identified. Source localization results of interictal spikes also significantly improved from those achieved before
DSSP processing, including meaningful estimates of activity time courses. Therefore, DSSP is a valuable novel
interference rejection algorithm that can be successfully deployed for the removal of strong artifacts and in-
terferences in MEG.
1. Introduction

From the time of its first introduction, magnetoencephalography
(MEG) has been used to map functional brain activity noninvasively with
good spatial and excellent temporal resolution, and thus to offer valuable
information for use in clinical neurology and basic neuroscience. How-
ever, MEG has suffered from an important shortcoming: it is prone to
contamination from signals other than the signals of interest - including
inevitable non-biological sources like power lines and trains, and bio-
logical sources outside of the brain like the heart. Though most of this
interference is of similar magnitude to brain activity, some of it is high
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amplitude and needs special attention - including artifact from dental
work, and especially interference from vagal nerve stimulators (VNS),
relatively common in people with intractable epilepsy, that makes it very
difficult for us to see and then to model activity of interest (Nagarajan
et al., 2006a; Taulu and Simola, 2006; Sekihara et al., 2016).

A variety of methods have been used to minimize artifact in magne-
toencephalographic recordings with varying degrees of success. Aver-
aging responses over trials is one method commonly used; this takes
advantage of the idea that interference in different trials is statistically
independent, whereas evoked signals are not. However, this method
requires a large number of trials, and evoked signals must be relatively
).
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Fig. 1. Schematic showing the processing steps of DSSP.
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similar and robust (Nagarajan et al., 2007a). Filtering is another widely
applied method, but requires prior knowledge about the interference.
Recently, data-driven approaches such as principal component analysis
(PCA), independent component analysis (ICA) have been popular.
However, these methods ask users to make subjective choices during
application (e.g. choice of threshold in PCA and of interference compo-
nent in ICA), and the methods cannot exploit pre-/poststimulus parti-
tioning of the data (Ossadtchi et al., 2004; Nagarajan et al., 2006b). Joint
decorrelation is another method commonly supposed to be robust to
many types of interference problems, but its use requires the design of
different bias filters for different interference types, and thus to some
extent requires prior knowledge of the interference (de Cheveign�e and
Parra, 2014). Algorithms based on statistical properties of the interfer-
ence are a class of automated interference algorithm method hailed as
both reliable and robust. The partitioned factor analysis (PFA) algorithm
(Nagarajan et al., 2006a, 2007b; Zumer et al., 2008) is implemented by
obtaining a probabilistic model from the data distributions in the
pre-stimulus period (when the interference exists) and the post-stimulus
period (when both interference and true signal exist), and then inferring
model parameters from these distributions. This method handles most
types of interference well, but since it relies on the availability of separate
measurements that capture the statistical properties of the interference,
its use is limited to situations where such separate measurements are
appropriate, and it is not effective for removing overlapped interference
(Nagarajan et al., 2007a). Also, these algorithms may not be effective for
interference of extremely large magnitude relative to the signals being
estimated, which is often seen in MEG data in patients with VNS
implants.

Artifacts of significant magnitude are not rare in MEG recordings, and
resolving MEG data from distorted recordings is often of great clinical
significance. Particularly in the case of people with intractable epilepsy
who have received VNS implants and have continued refractory focal
onset seizures, MEG studies are an important part of the evaluation for
and the planning of resective surgery. Without interference rejection,
MEG data in many people with VNS implants will be completely distorted
by significant artifact from the stimulator and the lead-wires, making it
extremely difficult to see interictal epileptiform activity or stimulus
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evoked responses from primary sensory cortices, thus diminishing the
usefulness of MEG for these patients and, thereby, their hope for recovery
(Sekihara et al., 2016). Therefore, developing and testing algorithms for
interference rejection in MEG data is important, especially new algo-
rithms that specifically address the kind of interference that is not well
handled by currently available options but that is clinically important
(e.g. VNS implant interference). Ideally such an algorithm would be
robust and broadly capable of rejection of as many types of interference
as possible. Given that many source localization platforms include lead
fields, it would be ideal to offer a tool that is also based on lead fields.
Right now options are restricted to specific hardware platforms. For
example, the temporally extended signal space separation method (tSSS)
developed by one MEG manufacturer offers a potential solution (Taulu
and Hari, 2009) but this tool has only been demonstrated for the Elekta
platform and has not been shown for other platforms. In contrast, here we
show a MEG hardware platform independent algorithm for large inter-
ference rejection.

Dual signal subspace projection (DSSP) is a newly proposed algorithm
for removal of large interference in biomagnetic measurements, and has
the potential to handle many different kinds of interference (Sekihara
et al., 2016). DSSP is based on the fact that MEG signal has both spatial
and temporal properties. This allows us to define a signal subspace in the
space domain, and another signal subspace in the time domain. We as-
sume that the interference signal is present all the time across the whole
signal subspace, either inside or outside the spatial-domain signal sub-
space, or both. In contrast, activity from the brain is presumed to exist
only inside the spatial domain signal subspace. The DSSP algorithm first
projects the columns of the measured data matrix onto the inside and
outside of the spatial-domain signal subspace, creating two ‘projected’
data matrices. The intersection of the row spans of these two ‘projected’
matrices is then taken to be an estimate of the time-domain interference
subspace, and artifact removal is carried out on the basis of this estimated
interference subspace. Details of the DSSP algorithm have been published
recently, but the performance of DSSP in assisting the identification and
localization of epileptiform discharges has not been determined. In this
paper we evaluate its ability in these arenas, using subject specific lead
fields and selecting parameters, exploring its capability to handle various



Table 1
Clinical characteristics of ten subjects. Note that some patients were referred from outside institutions and thus their information was limited to that available at the time of the MEG scan.

ID Age Duration
of
Epilepsy

MR abnormality Ictal EEG Interictal EEG PET CT Presumed EZ Interictal MEG
spikes

Num of
spikes
before
DSSP

Num of
spikes
after
DSSP

Max field
strength
Before
DSSP (pT)

Max field
strength
after DSSP
(pT)

Notes

1 22 18 Left lateral frontal lobe
cortical dysplasia

Poorly localized;
left frontocentral
region

Left frontocentral
spikes or polyspikes

Normal but PET
fusion with MRI
corresponding
hypometabolism

Left frontal
onset

Left frontotemporal 0 39 70.2 2.3

2 25 20 Primary read as
normal, secondary
read as bilateral
posterior pachygyria

Seizures arising
independently
from each
hemisphere; poorly
localized

Independent
bitemporal spikes;
generalized
paroxysmal fast
actvity

Negative Unknown to
date

Bilateral slow waves
model bilaterally in
the suprasylvian
frontal and infra-
sylvian temporal
lobes

44 33 5.3 2.8

3 44 32 Unremarkable Not available Right temporal sharp
waves, generalized
spike and polyspike
discharges

N/A Unknown to
date

Right temporal,
right frontal

107 168 148.3 4.8

4 22 20 Encephalomalacia of
the left temporal lobe,
volume loss of left
hippocampus

Left parietal region Left TIRDA, frequent
broad spikes over left
temporo-parietal
region, occasional left
anterior temporal
predominance

N/A Left temporo-
parietal-
occipital

Posterior medial left
temporal lobe

3 100 48.3 2.5 Prior
posterior
temporal
resection

5 17 Not
available

Left hipopcampal
atrophy, left
hemispheric cortical
dysplasia

Left hemisphere
onset

Intermittent left
frontotemporal
discharges

Hypometabolism of
left temporal lobe, left
parietal lobe, left
posterior occiptal
lobe

Left
hemisphere,
probable left
temporal lobe

Left temporal region 47 143 60.5 2.1

6 38 17 Left parietal, left
temporal

Independent
bilateral
frontotemporal

Independent right and
left temporal
discharges

Bilateral temporal
hypometabolism

Frontal or
temporal;
laterality
unknown

None 5 14 21.1 2.0

7 31 25 Unremarkable Vertex spike
followed by diffuse
fast activity

Bilateral central/
paracentral regions

N/A Unknown to
date

Right cingulate
gyrus; L> R
perirolandic regions

35 54 61.9 1.6

8 37 19 T2/FLAIR
hyperintensity and
atrophy of bilateral
temporal lobes, L > R

Left frontotemporal Left anterior
temporal; also rare
right temporal spikes

Bilateral temporal
hypometabolism

Left mesial
temporal

Right temporal
spikes, rare left
temporal spikes

24 32 32.0 1.8

9 26 Since
young

Expected changes from
medial left frontal lobe
corticectomy;
otherwise
unremarkable

Poorly localized
and lateralized;
some with
preceding left
parasagittal sharp
waves

No interictal N/A Frontal;
lateralization
unclear but
more likely left

None 43 72 56.6 1.1

10 28 27 Left parietal cavernous
malformation

Suggestive of
frontal onset but
poorly lateralized

Bifrontal sharp waves,
left frontal spikes

Increased metabolic
activity in high left
posterior pariental
sulcus

Unknown to
date

Right suprasylvian
frontal lobe

3 53 116.7 2.6
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Fig. 2. Each panel shows the power spectral density (PSD) for each channel before and after either DSSP (red dots) or ANC (blue dots), for each of the ten subjects in
this study. Points along the diagonal line in each panel indicates lack of interference rejection.
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artifacts as part of processing of clinical datasets. In particular, we will
evaluate whether it will be helpful to solve the problem of spike detection
in patients with VNS implants. We will also test its ability to improve
source localization of spikes using Champagne, an empirical Bayesian
source reconstruction algorithm described previously (Julia P Owen
et al., 2012).

2. Method

2.1. The DSSP algorithm

This section introduces the DSSP algorithm briefly; Fig. 1 shows the
steps of the DSSP algorithm and details of the derivation can be found in
Appendix A. In brief, the DSSP algorithm relies on two subspace defini-
tions. The first definition is based on spatial considerations. Sources of
164
interest are assumed to spatially arise from within the brain. This spatial
subspace is therefore defined by the lead-field matrix describing the
magnetic field distributions arising from activity from all sources within
the brain. The lead-field matrix is taken to construct a projector which
allows to split the measured data into two components Bin fields given by
PSB which stem from brain sources, and Bout fields given by ðI � PSÞB
which are orthogonal and do not arise from brain sources. The second
definition is based on temporal considerations. The temporal represen-
tations of Bin and Bout may not be orthogonal to each other and it is likely
that strong interference components that are present in both spatial
components Bin and Bout . These interference components can be identi-
fied by constructing a temporal subspace projector which is orthogonal to
the intersection of the temporal subspaces of Bin and Bout . The final
cleaned DSSP data is obtained by projecting the original signal through
this temporal subspace operator. The difference between the DSSP and



Fig. 3. Averaged power spectral density (PSD) across all channels and subjects,
before and after DSSP and ANC.

Fig. 4. Maximum absolute value of the magnetic fields across channels and time
before and after DSSP for all ten subjects. Note that the y-axis is plotted in log
units showing one order of magnitude reduction by DSSP.
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the tSSS algorithm is the way of splitting the data into spatial components
of Bin and Bout . DSSP uses the lead-field to perform this whereas the tSSS
uses spherical harmonic expansions of the magnetic field data.

2.2. Subjects

We selected 10 epilepsy patients with VNS who underwent a clinical
MEG study as part of epilepsy surgery evaluation at the University of
California, San Francisco (UCSF) Biomagnetic Imaging Laboratory (BIL)
between November 24th, 2004 and May 6th, 2016. Prior to MEG, all
patients had high-resolution epilepsy protocol 3T T1-MRI scans for cor-
egistration of localized spikes. Table 1 summarizes clinical characteristics
of these subjects.

2.3. MEG recordings

Simultaneous EEG and MEG recordings were performed inside a
magnetically shielded room with a 275 channel whole-head axial
gradiometer system (VSM MedTech, Port Coquitlam, British Columbia).
MEG data were recorded from each patient in a passband of 0–75 Hz
using a CTF 275 channel whole cortex MEG helmet while simultaneous
twenty-one channel scalp EEG data were recorded using a modified
165
international 10–20 system that includes subtemporal electrodes. Thirty
to forty minutes of spontaneous data were obtained in intervals of
10–15min with the patient asleep and awake. The position of the pa-
tient's head in the dewar relative to the MEG sensors was determined
using indicator coils before and after each recording interval to verify
adequate sampling of the entire field. The data were then bandpass
filtered offline, initially at 1–70Hz. More details of the recording
methods have been previously described (Nagarajan et al., 2007a). As
artifact commonly distorted MEG recordings from the patients with VNS
implants, in order to enable for visual analysis and dipole fitting of raw
data, additional bandpass filters (typically 10–70 Hz or 20–70 Hz) were
applied as needed during analysis of MEG data. After the application of
DSSP for artifact removal, all data were bandpass filtered at 1–70 Hz.

2.4. Epileptic spike analysis

Spikes were visually identified by experts - a certified EEG technol-
ogist (MM) and a clinical neurophysiologist (JV) - and their results were
confirmed by a board-certified clinical neurophysiologist and epileptol-
ogist (HEK). To ensure bias-free analysis of data, all reviewers were
blinded to the identity of the subject and their clinical data during spike
identification and localization procedures. EEG spikes were identified
based on the criteria defined by the International Federation of Clinical
Neurophysiology (IFCN) (Deuschl Eisenet al., 1999) and the ACMEGS (I
Bagic et al., 2011) for EEG epileptiform discharges. MEG spikes were
chosen for analysis based on duration (< 80ms), morphology, field map,
and lack of associated artifact. The onset of each spike was marked as the
rising deflection of the first sharp negativity from the baseline and
equivalent current dipoles were fit using commercial software provided
by CTF Systems (VSMMedTech, Port Coquitlam, British Columbia). Only
localized spikes with a goodness of fit higher than 90% were accepted.
Co-registration of dipoles to MRI scans was performed using fiducials
(nasion and preauricular points) to produce magnetic source images
(MSI) of dipoles superimposed on anatomic images. The fitted spike di-
poles were then inspected and validated according to their location.
Simultaneous EEG during MEG was used to define and confirm spikes on
MEG, ascertaining that a signal was not an artifact or another physiologic
feature, and also to identify spikes when MEG recordings were heavily
contaminated by VNS artifact (ie when MEG data were significantly
distorted, spike identification relied heavily on EEG).

2.5. DSSP performance evaluation

In the absence of ground truth data, it is somewhat difficult to eval-
uate performance in absolute terms. We first examine the average power
spectrum of the sensor data before and after DSSP processing. To get a
sense of DSSP algorithm performance we compare power spectram ob-
tained following DSSP with those obtained following another interfer-
ence removal method (Adaptive Noise Canceling, or ANC). Traditionally,
ANC makes use of data from reference sensors that collect data con-
taining only the interference but not the signal of interest (Widrow et al.,
1975; Adachi et al., 2001). However, in the case of data with VNS
implant artifacts reference sensor data is not available. Therefore, as an
approximation, for this study we define the reference sensor as the MEG
channel with the highest power where artifact dominates, and can be
deemed to be an “interference only” reference channel. ANC also uses the
idea of subspace projection, where the reference sensor is used to create
the temporal span of interference, then data from each sensor is then
projected onto the subspace orthogonal to the span of interference. This
subspace projection ensures that the contributions from interference to
each sensor is eliminated, leaving intact sources of interest. We also
compare the interference rejection performance of DSSP and of ANC, by
comparing the input and output signal power in each sensor of the array.

After DSSP implementation, cleaned MEG recordings were analyzed
as described above (without additional band pass filtering) by three in-
dividuals with expertise in interictal spike detection (MM, JV, HEK) who



Fig. 5. A representative case showing the effect of the application of DSSP (Subject 5 from Table 1). (a) EEG epoch corresponding to MEG epoch (selected channels)
(b) Raw MEG recordings (selected channels) (c) DSSP-processed MEG data. The red line marks a spike not identified in the raw data but seen in the DSSP-processed
data, the green line in (a) and (c) mark a different spike. (d) Sensors topographical maps for EEG and MEG at the red line time-point corresponding to the spike (before
and after DSSP). (e) Spike localization using Champagne on DSSP-processed data. (f) Normalized intensity for the spike of interest reconstructed through Champagne.

Fig. 6. Another representative case (Subject 4 from Table 1). Legends are identical to the previous figure.
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were blinded to the results of the initial (pre-DSSP) analysis. The results
were then compared with the original analysis and included quantifica-
tion of the number of spikes identified and localized, and concordance
with other clinical information (EEG, semiology, MRI lesion if present).
We also use t-tests to evaluate whether the number of spikes identified
and localized were different before and after DSSP.

Finally, DSSP was integrated into a newer source localization pipe-
line: a united Bayesian framework for MEG/EEG source imaging that
includes Variational Bayes Factor Analysis (VBFA) for noise approxima-
tion and a Sparse Bayesian Algorithm (Champagne) for source localiza-
tion (Wipf and Nagarajan, 2009; Wipf et al., 2010), to see whether
localization improved upon the incorporation of DSSP algorithm. For
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each case studied, ten representative spikes seen well on EEG but poorly
on MEG in the unprocessed recordings were selected for analysis. For
each of the spike selections, Champagne was run for 300ms (i.e. using
180 data points) on truncated MEG epochs each centered on the selected
spike; the required noise estimate input for Champagne was obtained by
running VBFA on the 1s of MEG preceding the truncated epoch. The spike
source reconstruction map obtained after implementing Champagne was
used to judge the performance of DSSP: we observed the activation value
of the localized spike activity and the recovered activity time-series, and
compared these with standard clinical spike mapping as described above,
as well as with correlative clinical data. Across all subjects, we evaluate
the consistency of spike localization results with Champagne following



Fig. 7. The averaged number of spikes that could be identified by visual in-
spection and localized by topographical inspection before and after the appli-
cation of DSSP for ten subjects with standard error bars.
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DSSP processing of data with the presumed epileptogenic zone (based on
lesion, ictal EEG, semiology and other clinical data) using a chi-square
test.

3. Results

3.1. DSSP vs ANC

We compare the power spectral densities (PSD) before and after
artifact rejection with DSSP and ANC algorithms. Fig. 2 shows the PSD for
all channels for all ten subjects included in this study. A diagonal line in
each panel indicates lack of interference rejection. Although both algo-
rithms show reductions in PSD after processing, in all subjects DSSP
shows greater reduction in all channels regardless of the power level in
each channel (most red dots are consistently below the diagonal). In
contrast, the performance of the ANC algorithm is neither consistent
across subjects nor across channels, some channels show negligible
Fig. 8. Source localization results for all ten
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reduction in PSD after ANC processing. Upon examination of the PSD as a
function of frequency, it is found that the PSD decreases after DSSP and
ANC, occur mainly in the low frequency bands from 0 to 30 Hz, with
negligible reductions above 30 Hz. However, the reductions in low fre-
quencies are much greater for DSSP when compared to ANC (Fig. 3).

Fig. 4 shows maximum absolute value of the magnetic field strength
across channels and time before and after DSSP for each of the ten sub-
jects. Artifact levels were consistently reduced by an order of magnitude,
before DSSP the artifact levels were 62.1 pT (62.1� 13.55) and were
reduced to 2.4 pT (2.4� 0.32) after DSSP processing (Fig. 4). This
reduction of 96.13% was highly statistically significant (two-tailed
paired t-test, t-value¼ 4.40777, p-value¼ .00034).
3.2. Expert detection and localization of interictal spikes

After the application of the DSSP algorithm to MEG data from people
with intractable epilepsy and VNS, both spikes that were well seen on
EEG, and those seen primarily on MEG could be visually identified by
experts from MEG background at a high rate. Fig. 5 shows EEG data (a)
and MEG data (b) from a patient with intractable epilepsy and a VNS
implant. It features VNS artifact with partial periodicity, low frequency
and high amplitude. After DSSP is applied, as shown in (c), this periodic
feature is greatly diminished and the background looks similar to that of
most people with epilepsy who do not have VNS. Fig. 5(d) shows sensors
topographical maps for MEG after DSSP and EEG maps. Fig. 6 shows
similar data for another patient. Fig. 7 shows the average number of
spikes that could be identified by visual inspection of the MEG and the
average number of spikes that could be localized by topographical in-
spection before and after DSSP. Over twice as many spikes could be
identified after DSSP when compared to before DSSP (p ¼ 0:037), and
over four times as many spikes could be localized after DSSP when
compared to before DSSP (p ¼ 0:007).

Source localization of identified interictal spikes in MEG data before
DSSP with the Champagne algorithm resulted in localization failure in
nine out of the ten cases; in all these cases either no strong activation
could be found, or the activity was localized to unusual positions (e.g.
near or outside of the skull), and the activity time-series recovered did
not resemble that of a spike. However, localization results with Cham-
subjects using Champagne after DSSP.
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pagne on MEG data after DSSP resulted in marked improvement.
Figs. 5(e) and 6(e) show source localization, and Figs. 5(f) and 6(f) show
respective Champagne time series for the spike of interest in the two
cases previously discussed. In Fig. 8, all cases could be localized correctly
after running DSSP. A Chi-Square test comparing the number of locali-
zations before and after DSSP that are consistent or inconsistent with the
presumed epileptogenic zone demonstrates that Champagne localiza-
tions were clearer and more consistent after DSSP (χ2 ¼ 16:364 and p ¼
0:0001).

In order to quantify the accuracy of spatial localization of spikes with
the Champagne algorithm after DSSP, we evaluated the cluster radius for
ten representative spikes from each subject (to prevent biases for subjects
with a greater number of spikes). The averaged radius of the spatial
clusters of interictal spikes after DSSP is 13.3mm (SEM¼ 1.3) (note that
the resolution of the forward model is 8 mm), thus indicating the high
accuracy and precision of spike localization with Champagne after DSSP.

4. Discussion

In this study, DSSP was evaluated using typical clinical data from
people with epilepsy and VNS, showing its potential to diminish the in-
fluence of interference. DSSP processing of MEG data enabled better vi-
sual identification of spikes, making meaningful the MEG recordings that
were contaminated and previously of limited value. Finally, when inte-
grated with the Champagne source reconstruction algorithm, DSSP did
help to achieve more reasonable spike localizations and meaningful
recovered spike activity time series. The successful rejection of VNS
artifact using DSSP should therefore improve treatment (including sur-
gical planning for resection or other localized therapies) of people with
intractable epilepsy and VNS. Given these results, as we gain further
experience with DSSP, its potential use in the setting of other interference
types can also be explored.

Analysis of the power spectrum of sensor data revealed that DSSP
resulted in greater reductions in lower frequency bands when compared
to an adaptive noise cancelation benchmark. However, in future a more
detailed comparison of performance with other benchmark algorithms
including the tSSS algorithm is warranted (Taulu and Hari, 2009).

There are several limitations to this study. First, small sample size
could potentially limit the generalizability of our results. However, we
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included all patients who had VNS implants in our study. Second, this is a
retrospective and non-randomized study. Currently, for new cases with
VNS artifact, we are undertaking a prospective study applying DSSP prior
to initial analysis, and results of this prospective study will be published
in the future. Finally, although better localization was achieved with the
addition of DSSP to Champagne, whether this truly improved outcomes
as a results of epileptogenic zone mapping is unknown. Additional in-
formation about the true epileptogenic zone (e.g. from follow-up after
resective surgery) will be needed to make such judgments. Therefore, we
can only conclude that DSSP helps achieve spike mapping, but cannot
evaluate the impact of localization accuracy on outcome. We are col-
lecting follow-up information from patients who went through surgery
after MEG recording, and in future this information could be used as a
gold standard to judge the performance of DSSP.

Indeed, DSSP will not perform good artifact rejection if the sources
are located close to the brain and if the artifacts are correlated with brain
activity. The DSSP algorithm is suited to remove interferences from
sources located fairly close to the boundary of the source space. The eye-
blink and cardiac artifacts encountered in MEG measurements are also
such interferences.

5. Conclusion

In short, DSSP is a novel interference rejection algorithm worth
exploration. The retrospective clinical study has shown its potential to
deal with high amplitude, periodic interference currently not handled
well by other algorithms. DSSP helped to recover distorted MEG re-
cordings from people with intractable epilepsy and VNS implants, mak-
ing epileptic spike identification easier and spike mapping better. The
specificity of this improved spike mapping is still unknown.
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Appendix A. Derivation of DSSP

Appendix A.1. Data model

This section briefly describes the DSSP algorithm. A full explanation of the algorithm is available in (Sekihara et al., 2016). Also, a detailed
explanation of the DSSP algorithm in the context of the time-domain signal subspace can be found in (Sekihara and Nagarajan, 2017). Let us define the
measurement of the m-th sensor at time t as ymðtÞ. The measurement from the whole sensor array is expressed as a column vector yðtÞ:
yðtÞ ¼ ½y1ðtÞ; y2ðtÞ;…; yMðtÞ�T , which is called the data vector. Here,M is the number of sensors, and the superscript T indicates the matrix transpose. Let
us assume that a unit-magnitude source exists at r (r ¼ ðx;y;zÞ). When this unit-magnitude source is directed in the x, y, and z directions, the outputs of
them-th sensor are respectively denoted as lxmðrÞ, lymðrÞ, and lzmðrÞ. Let us define anM � 3matrix LðrÞwhosem-th row is equal to a 1� 3 row vector ½lxmðrÞ;
lymðrÞ; lzmðrÞ�. This matrix LðrÞ, referred to as the lead field matrix, represents the sensitivity of the sensor array at r.

The DSSP algorithm was proposed in order to remove interfering magnetic fields overlapped onto signal magnetic fields. The algorithm assumes the
data model:

yðtÞ ¼ ySðtÞ þ yIðtÞ þ ε; (A.1)

where ySðtÞ, (called the signal vector), represents the signal of interest, yIðtÞ, (called the interference vector), represents the interference magnetic field,
and ε, (called the random vector), represents additive sensor noise. We denote the time series outputs of a sensor array yðt1Þ;…;yðtKÞ, where K is the total
number of measured time points. The measured data matrix B is thus defined as: B ¼ ½yðt1Þ;…; yðtKÞ� The signal matrix is defined as BS ¼ ½ySðt1Þ;…;

ySðtKÞ�; and the interference matrix as BI ¼ ½yIðt1Þ;…; yIðtKÞ� Then, the data model in Eq. (A.1) is expressed in a matrix form as:

B ¼ BS þ BI þ Bε; (A.2)
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where Bε is the noise matrix whose j-th column is equal to the noise vector ε at time tj.
Appendix A.2. Pseudo-signal subspace projector

The dual signal space projection (DSSP) algorithm assumes that the interference sources are located outside the source space which indicates a
region in which signal sources can exist. The DSSP algorithm uses the so-called pseudo-signal subspace projector, and to derive it, voxels are defined
over the source space, in which the voxel locations are denoted r1;…; rN . The augmented leadfield matrix over these voxel locations is defined as

F ¼ ½Lðr1Þ;…; LðrNÞ�; (A.3)

and the pseudo-signal subspace �E S is defined such that

�E S ¼ cspðFÞ; (A.4)

where the notation cspðXÞ indicates the column space of a matrix X. If the voxel interval is sufficiently small and voxel discretization errors are

negligible, we have the relationship �E S⊃E S where E S indicates the true signal subspace. Therefore, a vector contained in the signal subspace is also
contained in the pseudo-signal subspace.

Let us derive the orthonormal basis vectors of the pseudo-signal subspace. To do so, we compute the singular value decomposition of F:

F ¼
XM
j¼1

λjejf
T
j ; (A.5)

where ej and f j are left and right singular vectors. In Eq. (A.5), we assume the relationshipM < N, and the singular values are numbered in a decreasing
order. If the singular values λ1;…; λτ are distinctively large and other singular values λτþ1;…; λM are nearly equal to zero, the leading τ singular vectors

e1;…; eτ form orthonormal basis vectors of the pseudo-signal subspace �E S. Thus, the projector onto �E S is obtained using

PS ¼ ½e1;…; eτ�½e1;…; eτ�T : (A.6)

Note that ðI � PSÞySðtÞ ¼ ðI � PSÞBS ¼ 0 holds.

Appendix A.3. DSSP algorithm

The DSSP algorithm applies PS and I � PS to the data matrix B to create two kinds of data matrices:

PSB ¼ BS þ PSBI þ PSBε; (A.7)

ðI � PSÞB ¼ ðI � PSÞBI þ ðI � PSÞBε: (A.8)

Let us use the notation rspðXÞ to indicate the row space of a matrix X. Then, the relationships, rspðPSBIÞ ¼K I , rspððI� PSÞBIÞ ¼K I , and rspðBSÞ ¼
K S hold, where K S and K I respectively indicate the time-domain signal and interference subspaces. According to arguments in (Sekihara and
Nagarajan, 2017), we can finally derive the relationship:

K I⊃rspðPSBÞ \ rspððI � PSÞBÞ: (A.9)

The equation above shows that the intersection between rspðPSBÞ and rspððI � PSÞBÞ forms a subset of the interference subspace K I . The basis
vectors of the intersection can be derived using the algorithm described in (Gene et al., 2012). Once the orthonormal basis vectors of the intersection
ψ1;…;ψ r are obtained, we can compute the projector onto the intersection ΠI such that

ΠI ¼ ½ψ1;…;ψr�½ψ1;…;ψr �T : (A.10)

Using this ΠI as the projector onto the (time-domain) interference subspace K I , the interference removal is achieved and the signal matrix is
estimated by the time-domain signal space projection (Sekihara and Nagarajan, 2017), which is

bBS ¼ BðI �ΠIÞ ¼ B
�
I � ½ψ1;…;ψr�½ψ1;…;ψr �T

�
: (A.11)

The method of removing the interference in a manner described above is called dual signal space projection (DSSP). Note that since the basis vectors
of the intersection, ψ1;…;ψr , span only a subset of the interference subspaceK I , this method cannot perfectly remove interferences. However, when the
intersection rspðPSBÞ \ rspððI � PSÞBÞ is a reasonable approximation of K I , interferences can effectively be removed by the DSSP algorithm.
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