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Abstract: We have applied the eigenspace-based beamformer to reconstruct spatio-temporal activities of
neural sources from MEG data. The weight vector of the eigenspace-based beamformer is obtained by
projecting the weight vector of the minimum-variance beamformer onto the signal subspace of a mea-
surement covariance matrix. This projection removes the residual noise-subspace component that con-
siderably degrades the signal-to-noise ratio (SNR) of the beamformer output when errors in estimating the
sensor lead field exist. Therefore, the eigenspace-based beamformer produces a SNR considerably higher
than that of the minimum-variance beamformer in practical situations. The effectiveness of the eigens-
pace-based beamformer was validated in our numerical experiments and experiments using auditory
responses. We further extended the eigenspace-based beamformer so that it incorporates the information
regarding the noise covariance matrix. Such a prewhitened eigenspace beamformer was experimentally
demonstrated to be useful when large background activity exists. Hum. Brain Mapping 15:199–215, 2002.
© 2002 Wiley-Liss, Inc.
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INTRODUCTION

Among the various kinds of functional neuroimag-
ing methodologies, magnetoencephalography (MEG)
has the the major advantage that it can provide fine
time resolution of the millisecond order [Hämäläinen
et al., 1993]. Neuromagnetic imaging can thus be used
to visualize neural activities with such a fine time
resolution and to provide functional information
about brain dynamics [Roberts et al., 1998]. Toward
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this goal, a number of algorithms for reconstructing
spatio-temporal source activities have been investi-
gated.

In our study, we explore the possibility of applying
a class of techniques referred to as the adaptive beam-
former to this spatio-temporal reconstruction of the
neural-source activities. The adaptive beamformer
provides a versatile form of spatial filtering, and it has
been originally developed in the fields of array signal
processing, including radar, sonar, and seismic explo-
ration [van Veen and Buckley, 1988]. One well-known
technique of this kind, the minimum-variance beam-
former, has already been successfully applied to solve
the MEG/EEG source-localization problem [Gross
and Ioannides, 1999; Robinson and Vrba, 1999; Spen-
cer et al., 1992; van Veen et al., 1997]. We found,
however, that the minimum-variance beamformer
generally is very sensitive to errors in the forward
modeling or errors in estimating the data covariance
matrix when it is applied to the reconstruction of
source activities at each instant in time. Because such
errors are almost inevitable in neuromagnetic mea-
surements, the minimum-variance beamformer gener-
ally provides noisy spatio-temporal reconstruction re-
sults, as is demonstrated later in this study.

One technique has been developed to overcome the
poor performance of the minimum-variance-based
technique caused by the forward modeling errors
[Cox et al., 1987] and covariance-matrix estimation
errors [Carlson, 1988]. The technique, referred to as
the diagonal loading, uses the regularized inverse of
the measurement covariance matrix, instead of its di-
rect matrix inverse, when calculating the weight vec-
tor. Although this technique has been applied to the
MEG source localization problem [Gross and Ioan-
nides, 1999; Robinson and Vrba, 1999], it has been
known that the regularization leads to a trade-off be-
tween the spatial resolution and the SNR of the beam-
former output. The results from our experiments dem-
onstrate this trade-off relationship.

We propose to apply the eigenspace-based beam-
former [Feldman and Griffiths, 1991; van Veen, 1988]
to reconstructing spatio-temporal activities of neural
sources. The weight vector of the eigenspace-based
beamformer is obtained by projecting the weight vec-
tor of the minimum-variance beamformer onto the
signal subspace of the measurement covariance ma-
trix. This projection removes a residual noise-subspace
component that considerably degrades the signal-to-
noise ratio (SNR) of the beamformer output when the
above-mentioned errors exist. Therefore, the eigens-
pace-based beamformer produces a SNR significantly
higher than that from the minimum-variance beam-

former; thus, it is a suitable method for spatio-tempo-
ral reconstruction of the neural source activities.

After a brief introduction to the minimum-variance
beamformer, we describe the principle of the eigens-
pace-based beamformer. We also present a theoretical
comparison between these beamformer techniques
and numerical experiments that validate our argu-
ments. We also describe the application of the beam-
former techniques to auditory-evoked responses. The
results demonstrate that the eigenspace-based beam-
former techniques are highly effective for the spatio-
temporal reconstruction of source activities.

MATERIALS AND METHODS

Definitions and Fundamental Relationships

Let us define the magnetic field measured by the
mth detector coil at time t as bm(t), and a column
vector b(t) � [b1(t), b2(t),…, bM(t)]T as a set of measured
data where M is the total number of detector coils and
the superscript T indicates the matrix transpose. A
spatial location is represented by a 3D vector r:r
� (x,y,z). A total of Q current sources are assumed to
generate the neuromagnetic field, and the locations of
these sources are denoted as r1, r2,…, rQ. The moment
magnitude of the qth source at time t is denoted as s(rq,
t), and the source magnitude vector is defined as s(t)
� [s(r1, t), s(r2, t)…, s(rQ, t)]T. The orientation of the qth
source is defined as a 3D column vector �(rq, t) � [�x
(rq, t), �y (rq, t), �z (rq, t)]T whose � component (where
� equals x, y, or z in this study) is equal to the cosine
of the angle between the direction of the source mo-
ment and the � direction. We assume that the orienta-
tion of each source is time independent. Omitting the
time notation t, we define a 3Q � Q matrix that
expresses the orientations of all Q sources as � such
that

� � �
��r1� 0 · · · 0

0 ��r2� •
······ • · · · 0

0 · · · 0 ��rQ�
� .

Let us define lm
� (r) as the mth sensor output induced

by the unit-magnitude source located at r and directed
in the � direction. The column vector l�(r) is defined as
l�(r) � [l1

�(r), l2
�(r),. . .,lM

� (r)]T. We define the lead field
matrix, which represents the sensitivity of the whole
sensor array at r, as L(r) � [lx(r), ly(r), lz(r)]. We define,
for later use, the lead-field vector in the source-mo-
ment direction as l(r); it is obtained by using l(r)

� Sekihara et al. �

� 200 �



� L(r)�(r). The composite lead field matrix for the
entire set of Q sources is defined as

Lc � �L�r1�, L�r2�, . . . , L�rQ��. (1)

The relationship between b(t) and s(t) is then ex-
pressed as

b�t� � �Lc��s�t� � n�t�, (2)

where n(t) is the additive noise.
Let us define the measurement covariance matrix as

Rb; i.e., Rb � 	b(t)bT(t)
, where 	 � 
 indicates the en-
semble average (this ensemble average is usually re-
placed with the time average over a certain time win-
dow). Let us also define the covariance matrix of the
source-moment activity as Rs; i.e., Rs � 	s(t)sT(t)
.
Then, using equation (2), we get the relationship be-
tween the measurement covariance matrix and the
source-activity covariance matrix such that

Rb � �Lc��Rs��TLc
T� � �2I, (3)

where the noise in the measured data is assumed to be
the white Gaussian noise with the variance of �2 and
I is the unit matrix.

Let us define the jth eigenvalue and eigenvector of
Rb as �j and ej, respectively. Unless some source ac-
tivities are perfectly correlated with each other, the
rank of Rs is equal to the number of sources Q. There-
fore, according to equation (3), Rb has Q eigenvalues
greater than �2 and M–Q eigenvalues that are equal to
�2. Let us define the matrices ES and EN as ES �
[e1,…,eQ] and EN � [eQ  1, …, eM]. The column span of
ES is the maximum-likelihood estimate of the signal
subspace of Rb and the span of EN is that of the noise
subspace [Scharf, 1991]. Using equation (3), it can be
shown that, at source locations, the lead field matrix
with the correct source orientation is orthogonal to the
noise subspace of the measurement covariance matrix
[Schmidt, 1981], i.e.,

�L�r���r��TEN � lT�r�EN � 0. (4)

Minimum-Variance Beamformer

To estimate the source moment, we have focused on
using the class of techniques referred to as the spatial
filter. The spatial filter techniques use the following
simple linear operation for estimating the source mo-
ment,

ŝ�r, t� � wT�r�b�t�, (5)

where ŝ(r,t) is the estimated magnitude of the source-
moment at r and time t. In this equation, w(r) is a
column vector characterizing the filter weight. Note
that because this weight vector is calculated for any
spatial location r, the source-moment distribution can
be reconstructed by scanning the output of the spatial
filter over a region of interest in a perfectly post-
processing manner. One well-known spatial filter of
this kind is the minimum-variance distortion-less
beamformer originally developed for seismic-array
signal processing [Capon, 1969]. In this technique, the
filter weight vector wm(r) is obtained by minimizing
wm

T (r)Rbwm(r) under the constraint of lT(r)wm(r) � 1.
The explicit form of the weight vector for the mini-
mum-variance beamformer is known to be

wm�r� �
Rb

� 1l�r�
lT�r�Rb

� 1l�r�
. (6)

This minimum variance beamformer has been one of
the most popular spatial-filter techniques in various
signal-processing fields. It has also been applied to
neuromagnetic source localization [Robinson and
Vrba, 1999; Spencer et al., 1992; van Drongelen et al.,
1996; van Veen et al., 1997].

Eigenspace-Based Beamformer

The eigenspace-based beamformer [Feldman and
Griffiths, 1991; van Veen, 1988; Yu and Yeh, 1995] pro-
vides an output SNR much higher than that of the min-
imum-variance beamformer in practical situations. Let
us decompose the measurement covariance matrix Rb

into its signal and noise subspace components; i.e.,

Rb � ES�SES
T � EN�NEN

T . (7)

Here, we define the matrices �S and �N as

�S � diag��1, . . . , �Q� and

�N � diag��Q � 1, . . . , �M�, (8)

where diag[…] indicates a diagonal matrix whose di-
agonal elements are equal to the entries in the paren-
thesis. Using equations (6) and (7), and defining �
� 1/[lT(r)Rb

� 1l(r)], we express the weight vector for
the minimum-variance beamformer as

wm�r� � �Rb
� 1l�r� � ��Sl�r� � ��Nl�r�, (9)
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where

�S � ES�S
� 1ES

T, and �N � EN�N
� 1EN

T .

In equation (9), the second term on the right side,
��Nl(r), should ideally be equal to zero because the
lead-field vector l(r) is orthogonal to EN at the source
locations as indicated by equation (4). Various factors,
however, prevent this term from being zero, and a
non-zero ��Nl(r) seriously degrades SNR as explained
in the next section. Therefore, the eigenspace-based
beamformer uses only the first term of equation (9) to
calculate its filter weight vector we(r); i.e.,

we�r� � ��Sl�r� �
�Sl�r�

lT�r�Rbl�r� . (10)

Note that we(r) is equal to the projection of wm(r) onto
the signal subspace of Rb. The following relationship
holds [Feldman and Griffiths, 1991]:

we�r� � ESES
Twm�r�. (11)

Comparison Between Minimum-Variance and
Eigenspace Beamformers

Although the minimum-variance beamformer ide-
ally has exactly the same SNR as that of the eigens-
pace-based beamformer, the SNR of the eigenspace
beamformer is significantly higher in practical appli-
cations, as demonstrated in the following sections. The
reason of this high SNR can be understood as follows.

Let us assume that a signal source with a moment
magnitude equal to s(t) exists at r. Then, the estimate
of s(t), ŝ(t), is derived by ŝ(t) � wTb(t) � wTl(r)s(t) and
the average power of ŝ(t), P̂s, is expressed as

P̂s � 	ŝ�t�2
 � wTl�r�	s�t�2
lT�r�w � wTl�r�PslT�r�w

� Ps�lT�r�w�T�lT�r�w�, (12)

where Ps is the average power of s(t) defined by Ps �
	s(t)2
. Similarly, the average noise power contained in
the estimated results, P̂n is given by

P̂n � wT	n�t�nT�t�
w � �2wTw, (13)

where we again assume that 	n(t)nT(t)
 � �2I. Thus,
the output SNR of the minimum-variance beam-
former, SNR(MV), is expressed as [Chang and Yeh,
1992, 1993],

SNR�MV� �
P̂s

P̂n
�

Ps

�2

�lT�r��Sl�r��2

�lT�r��S
2l�r� � lT�r��N

2 l�r��
. (14)

The SNR for the eigenspace-based beamformer,
SNR(ES), is obtained as

SNR�ES� �
P̂s

P̂n
�

Ps

�2

�lT�r��Sl�r��2

�lT�r��S
2l�r��

. (15)

The only difference between equations, namely (14)
and (15) is the existence of the second term lT(r)�N

2 l(r)
in the denominator of the right-hand side of equation
(14). It is readily apparent that SNR(MV) and SNR(ES)
are equal if we can use an accurate noise subspace
estimate and an accurate lead-field vector, because the
term lT(r)�N

2 l(r) is exactly equal to zero in this case. It
is, however, generally difficult to attain the relation-
ship, lT(r)�N

2 l(r) � 0. One obvious reason for this
difficulty is that when calculating �N

2 in practice, in-
stead of using Rb, the sample covariance matrix R̂b

must be used; R̂b is calculated from R̂b �
�k � 1

K b(tk)bT(tk) where K is the number of time points.
Use of the sample covariance matrix inevitably makes
lT(r)�N

2 l(r) have a non-zero value and causes SNR of
the minimum-variance beamformer to degrade [Rich-
mond, 1998].

Another factor that is specific to MEG and causes
lT(r)�N

2 l(r) to have a non-zero value is that it is almost
impossible to use a perfectly accurate lead-field vector.
This is because a conductivity distribution in the brain
usually be approximated by using some kind of con-
ductor model, such as the spherically homogeneous
conductor model [Sarvas, 1987], to calculate the lead
field matrix. Although this error may be reduced to a
certain extent by using a realistic head model, the
error cannot be perfectly avoided. Let us define the
overall error in estimating l(r) as �. Assuming that
�l(r)�2���ε�2, we can get

SNR�MV� �
P̂s

P̂n
�

Ps

�2

�lT�r��Sl�r��2

�lT�r��S
2l�r� � εT�N

2 ε�
. (16)

Note that, in the denominator of the right-hand side of
this equation, the norm of the matrix εT�N

2 ε has an
order of magnitude proportional to �ε�2/�2, where �N

represents one of the noise-level eigenvalues of Rb.
The eigenvalue �N is usually significantly smaller than
the signal-level eigenvalues. Therefore, equation (16)
indicates that even when the error �ε� is very small,
the term εT�N

2 ε may not be negligibly small compared
to the first term in the denominator.
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Extension to Prewhitened Eigenspace
Beamformer

Real-life MEG data often contain interference aris-
ing from background brain activities [Sekihara et al.,
1997]. Such interference does not affect the final recon-
struction results if the sources of interference are spa-
tially well separated from the signal source of interest.
The influence, however, may not be negligible if the
interference source is located close to the signal source
(within the range of the spatial resolution). Such in-
terference is known to cause spatially non-white noise
in neuromagnetic measurements, and if the informa-
tion regarding the noise covariance matrix is obtained,
the effect of such interferences can be significantly
reduced by using the prewhitened eigenspace beam-
former technique described below.

When the noise is nonwhite, equation (3) becomes

Rb � �Lc��Rs��TLc
T� � Rn, (17)

where Rn is the noise covariance matrix obtained from
Rn � 	n(t)nT(t)
. Let us denote ẽj as an eigenvector
obtained by solving the generalized eigenvalue prob-
lem,

Rbẽj � �̃jRnẽj. (18)

In this case, it is easy to show that the following
orthogonality relationship holds,

�L�r���TẼN � 0, (19)

where ẼN � [ẽQ�  1,…,ẽM] and Q� is the number of
sources. Thus, the signal subspace projector can be
formed by using ẼSẼS

T, where Q̃S � [ẽ1,…,ẽ�Q] and the
weight vector for the prewhitened eigenspace beam-
former, w̃e(r), is obtained from

w̃e�r� � ẼSẼS
Twm�r�. (20)

The effectiveness of the beamformer based on this
equation in removing background interferences is
demonstrated in the following sections.

NUMERICAL EXPERIMENTS

Data Generation

We conducted a series of numerical experiments to
test the effectiveness of the eigenspace-based beam-
former techniques. The coil alignment of the 37-chan-

nel Magnes™ biomagnetic measurement system (Bio-
magnetic Technologies Inc., San Diego) was used in
these experiments. The coordinate origin was defined
as the center of the detector coil located at the center of
the coil alignment. Three signal sources were assumed
to exist on a plane defined as x � 1.0 cm; their loca-
tions were (1, �1, �6), (1, 1, �6), and (1, 1.6, �7.2) cm.
The source and detector configuration is shown sche-
matically in Figure 1. The spherically homogeneous
conductor model with the origin set at (1, 0, �11) (cm)
was used. The magnetic field was generated at 1-msec
intervals from �300 to 400 msec. The time courses of
the three source activities assumed in our numerical
experiments are shown in Figure 2. The first and sec-
ond sources were the sources of interest, and the third
source simulated background interference. Gaussian
noise was added to the generated magnetic field so
that the SNR was set at 8 and the SNR was defined by
the ratio of the Frobenius norm of the signal-magnetic-
field data matrix to that of the noise matrix. The gen-
erated 37-channel magnetic-field recordings are also
shown in Figure 2.

Spatio-Temporal Reconstruction Experiments

The reconstruction region was set as an area defined
by �2 � y � 2 and �8 � z � �5 (cm) (as indicated by
the square in Fig. 1), and the interval of the reconstruc-
tion grid was 1 mm in both directions. In our experi-

Figure 1.
The source and detector configuration used in the numerical
experiments. The circle shows the cross section of the sphere
used for the forward calculation. The square shows the recon-
struction region used for our numerical experiments.
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ments, when applying beamformer techniques, we
first used the method described in the Appendix for
estimating the optimum source orientation �̂opt and
we then estimated the lead field vector l(r) �
L(r)�̂opt at each scanning grid point. To display the
results of the spatio-temporal reconstruction, three
time instants at 220, 268, and 300 msec (marked by
three vertical broken lines in Fig. 2) were selected. The
amplitude of the second source was zero at 220 msec,
all the sources had non-zero amplitudes at 268 msec,
and only the second source had a non-zero amplitude
at 300 msec (Fig. 2). The measurement covariance
matrix was calculated by using a time window be-
tween 0–400 msec. The power, averaged over this
time window, of the second source is 1.5 times stron-
ger than that of the first source.

Results From Minimum-Variance Beamformer

We first applied the minimum-variance beam-
former to the generated data set in Figure 2. The
results of the spatio-temporal reconstruction are
shown in Figure 3a. Contour maps in the upper-left,
upper-right and lower-left positions indicate the dis-
tributions of the source-moment power ŝ(r, t)2 at the
three time instants of 220, 268, and 300 msec, respec-
tively. The lower-right contour map shows the time-

Figure 2.
The moment time courses of the three sources assumed in the
numerical experiments. Time courses from the first to the third
sources are shown from the top to the third row, respectively.
Each waveform is normalized by its maximum value and the three
vertical broken lines show the three time points 220, 268, and 300
msec. The simulated 37-channel magnetic field recordings are
shown in the bottom row.

Figure 3.
The results obtained using the minimum-variance beamformer. (a)
Snapshots of source activities at 220 msec (upper left), 268 msec
(upper right), and 300 msec (lower left). The time-averaged re-
construction is shown in the lower-right position. The recon-

structed region is indicated by the square in Figure 1. (b) Estimated
time courses of the first source (top), the second source (middle),
and the third source (bottom). The three vertical broken lines
show the three time points 220, 268, and 300 msec.
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averaged reconstruction, obtained by averaging ŝ(r, t)2

over the time window from 0–400 msec. The esti-
mated time courses at the pixels nearest to the three
source locations are shown in Figure 3b. These results
show that the spatio-temporal reconstruction obtained
by using the minimum variance beamformer was
fairly noisy; that is, the estimated time courses con-
tained a considerable amount of noise, and the three
snapshots of the source activity contained the influ-
ence of this noisy reconstruction. The time-averaged
results, however, did not contain this influence and
clearly detected the three sources.

Results From Minimum-Variance Beamformer
With Regularized Inverse

We next tested the minimum-variance weight vec-
tor together with the use of the regularized inverse (Rb

 �I)�1. The regularization parameter was set at
0.003�1

1 where �1 is the largest eigenvalue of Rb. The
results of the reconstruction are shown in Figure 4a,b.

The time course estimation in Figure 4b shows that the
SNR of the beamformer output was greatly improved,
but the contour maps in Figure 4a indicate that a
considerable amount of blur was introduced. Our re-
sults here confirm the trade-off relationship between
the spatial resolution and the output SNR.

Results From Eigenspace-Based Beamformer

We applied the eigenspace-based beamformer given
by equation (10) to the same computer-generated data
set. The reconstructed source distributions are shown
in Figure 5a, and the estimated time courses are
shown in Figure 5b. These figures show that this
beamformer technique considerably improved the
output SNR with almost no sacrifice of spatial resolu-
tion.

Results From Prewhitened Eigenspace
Beamformer

We tested the effectiveness of the prewhitened ei-
genspace beamformer proposed earlier in reducing
the background interference; namely the influence
from a third source. First, we estimated the noise
covariance matrix using the prestimulus time window

1 This value was chosen so that the SNR of the estimated time
courses in Figure 4b is nearly equal to that of the time courses in
Figure 5b, which was obtained by using the eigenspace-based beam-
former.

Figure 4.
The results obtained using the minimum-variance beamformer
with the regularized inverse. (a) Snapshots of source activities at
220 msec (upper left), 268 msec (upper right), and 300 msec
(lower left). The time-averaged reconstruction is shown in the

lower-right position. (b) Estimated time courses of the first source
(top), the second source (middle), and the third source (bottom).
The three vertical broken lines show the three time points 220,
268, and 300 msec.
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Figure 5.
The results obtained using the eigenspace-based beamformer. (a)
Snapshots of source activities at 220 msec (upper left), 268 msec
(upper right), and 300 msec (lower left). The time-averaged re-
construction is shown in the lower-right position. (b) Estimated

time courses of the first source (top), the second source (middle),
and the third source (bottom). The three vertical broken lines
show the three time points 220, 268, and 300 msec.

Figure 6.
The results obtained using the prewhitened eigenspace-based
beamformer. (a) Snapshots of source activities at 220 msec (upper
left), 268 msec (upper right), and 300 msec (lower left). The
time-averaged reconstruction is shown in the lower-right position.

(b) Estimated time courses of the first source (top), the second
source (middle), and the third source (bottom). The three vertical
broken lines show the three time points 220, 268, and 300 msec.
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from �300–0 msec. We then applied the prewhitened
eigenspace beamformer (equation (20)) with this esti-
mated noise covariance matrix to reconstruct the
source-moment distribution (Fig. 6a). The estimated
time courses are shown in Figure 6b. These results
show that the influence of the third source was nearly
completely removed. Also, the results in Figure 6b
show that the time courses of the first and the second
sources were not affected by the prewhitening proce-
dure.

APPLICATION TO AUDITORY-EVOKED
RESPONSES

Data acquisition Condition

To further demonstrate the superiority of the ei-
genspace-based beamformer over the minimum-vari-
ance beamformer, we applied these beamformer tech-
niques to auditory-evoked responses. Auditory-
evoked fields were measured by using the 37-channel
Magnes™ magnetometer installed at the Biomagnetic
Imaging Laboratory, University of California, San
Francisco. Healthy male volunteers participated in the
MEG measurements. Their written informed consents
were obtained and the MEG measurements were ap-
proved by the Committee on Human Research, Uni-
versity of California, San Francisco. All measurements
were done in a magnetically-shielded room. Auditory

stimuli were presented to a subject’s right ear. The
sensor array was placed above a subject’s left hemi-
sphere with the position adjusted to optimally record
the N1m auditory-evoked field. The inter-stimulus in-
terval randomly varied between 1.75 sec and 2.25 sec,
and the average interval was 2 sec. The sampling
frequency was set at 1 kHz. An on-line filter with a
bandwidth from 1–400 Hz was used, and no post-
processing digital filter was applied. To express the
results of reconstructing source activities in this sec-
tion, we used the head coordinates illustrated in Fig-
ure 7.

Results From Minimum-Variance and
Eigenspace Beamformer

The auditory stimulus was a 1,000-Hz pure tone,
and we measured 256 epochs. The auditory-evoked
response averaged across these epochs is shown be-
tween 0–300 msec in Figure 8a. We applied the eigens-
pace-based beamformer to reconstruct the spatio-tem-
poral source activities from this auditory data set. The

Figure 7.
The x, y, and z coordinates used to express the reconstruction
results in the application to auditory-evoked responses. The mid-
point between the left and right pre-auricular points is defined as
the coordinate origin. The axis directed away from the origin
toward the left pre-auricular point is defined as the y axis and
that from the origin to the nasion is the x axis. The z axis is
defined as the axis perpendicular to both these axes and is di-
rected from the origin to the vertex.

Figure 8.
(a) Thirty-seven channel recordings of auditory evoked magnetic
field measured using a 1-kHz pure tone. A total of 256 epochs
were averaged. Three vertical broken lines indicate time instants
at 87, 90, 101 msec, at which the snapshots of the source activity
are shown in Figures 9a, 10a, and 11a. (b) Eigenvalue spectrum of
Rb obtained from the time window between 0 and 300 msec of the
data set shown in (a).
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Figure 9.
Results of applying the eigenspace-based beamformer to the data
shown in Figure 8. (a) Reconstructed source magnitude distribu-
tions at 87 msec (top row), 90 msec (middle row), and 101 msec
(bottom row). The maximum-intensity projections onto the axial
(left column), coronal (middle column), and sagittal (right column)

directions are shown. The upper-case letters L and R indicates the
left and right hemispheres. (b) Estimated time course obtained at
a location where the intensity in the results in (a) has the maxi-
mum value.
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Figure 10.
Results of applying the the minimum-variance beamformer to the
data shown in Figure 8. (a) Reconstructed source magnitude
distributions at 87 msec (top row), 90 msec (middle row), and 101

msec (bottom row). (b) Estimated time course obtained at a
location where the intensity in the results in Figure 9a has the
maximum value.
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Figure 11.
Results of applying the the minimum-variance beamformer with
the regularized inverse to the data shown in Figure 8. (a) Recon-
structed source magnitude distributions at 87 msec (top row), 90

msec (middle row), and 101 msec (bottom row). (b) Estimated
time course obtained at a location where the intensity in the
results in (a) has the maximum value.
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time window ranging from 0–300 msec was used for
calculating the covariance matrix Rb. The eigenvalue
spectrum of Rb is shown in Figure 8b. The dimension
of the signal subspace was set at 1 because the eigen-
value spectrum contained one distinctly large eigen-
value. Three time instants, 87, 90, 101 msec, were
selected near the peak vertex of N100m. These instants
are shown by three vertical broken lines in Figure 8a.
The reconstructed source-magnitude maps at these
three latencies are shown in Figure 9a. These three
snapshots of the source activities contain a single,
sharply-localized activity in the left temporal-lobe,
probably near the primary auditory cortex area. The
time course in the maximum point in these contour
maps is shown in Figure 9b. The time course has a
clear negative peak near the latency of 50 msec and a
large positive peak near the latency of 100 msec.

We next applied the minimum-variance beam-
former to the same data set, and the results are shown
in Figure 10a,b. These results are very noisy. The
snapshots at 87 msec and 90 msec contain false sources
in addition to the source near the primary auditory
area. The time course of the auditory source in Figure
10b is so noisy that the N100m can hardly be identi-
fied. We then applied the minimum-variance beam-
former with the regularized inverse. The results are
shown in Figure 11a,b. Here, the regularization pa-
rameter � was set at 0.04�1. This value was chosen so
that the SNR of the time course in Figure 11b was
nearly equal to that of the time course in Figure 9b.
The results in Figures 9–11 demonstrate that the reg-
ularization causes a spatial blur although it improves
the SNR in the time course estimate.

Results From Prewhitened Beamformer

We applied the prewhitened beamformer to the data
set shown in Figure 12a. The data set was one of the
100-epoch selectively averaged results obtained in a se-
ries of syllable-discrimination experiments. The auditory
stimuli used in the experiments were four kinds of syl-
lables /dae/, /bae/, /pae/, and /tae/. The subject was
asked to discriminate the voiced syllables /dae/ and
/bae/ from the voiceless syllables /pae/ and /tae/. The
subject pressed one response button when perceiving a
/dae/ or /bae/ and pressed another button when per-
ceiving a /pae/ or /tae/. Stimuli were presented to the
subject’s right ear, and the sensor array was placed
above the subject’s left hemisphere. The subject used his
left fingers to press the response buttons. The four syl-
lables were presented in a pseudo random order at a
variable inter-stimulus interval ranging from 1–1.5 sec.
The averaged response for the particular syllable /bae/

are shown in Figure 12a. The activity in the motor area
elicited by button pressing was roughly time locked to
the stimulus and thus the influence from such a motor
activity was contained to some extent in this auditory
response despite that the subject used his epsi-lateral
fingers.

We applied the prewhitened eigenspace beam-
former to test its effectiveness in removing the influ-
ence of the motor activities. The measurement covari-
ance matrix was calculated from the time window
between 0–200 msec, and the noise covariance matrix
was calculated from the time window between
�100–0 msec (the whole prestimulus portion). The
dimension of the signal subspace was set at 1 because
the prewhitened eigenvalue spectrum (shown in Fig.
12b) contained one large eigenvalue. The recon-
structed source-magnitude maps for two time in-
stants, 78 and 101 msec, are shown in Figure 13a; these
time instants are shown by two vertical lines in Figure
12a. At both time instants, the activation in the pri-
mary auditory area was clearly detected by the pro-
posed prewhitened beamformer. The results from the

Figure 12.
Thirty-seven channel recordings of an auditory magnetic field
evoked by the voiced syllable /bae/. A total of 100 epochs were
averaged. The two vertical broken lines indicate time instants at
78, 101 msec, at which the snapshots of the source activity are
shown in Figures 13 and 14. (b) Prewhitened eigenvalue spectrum
of Rb obtained from the time window between 0 and 200 ms of
the data set shown in (a).
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non-prewhitened eigenspace-based beamformer are
shown in Figure 13b for comparison. The source re-
construction at 101 msec contains a single localized
activity in the left primary auditory area. At the la-
tency of 78 msec, however, the non-prewhitened
beamformer failed to detect the auditory source due,
probably, to the existence of the background motor
activity.

DISCUSSION

In our numerical experiments the results of the spa-
tio-temporal reconstruction obtained by using the

minimum variance beamformer was fairly noisy. In
these experiments, the spherically homogeneous con-
ductor model was used for both procedures: the gen-
eration of the simulated magnetic field and the for-
ward calculation in the reconstruction. Therefore, the
cause of such noisy reconstruction was primarily be-
cause of the use of the sample covariance matrix R̂b. In
our auditory experiments, because the spherically ho-
mogeneous conductor model was used for the for-
ward calculation, the lead field matrix was not per-
fectly accurate and the primary cause of the noisy
reconstruction is probably the use of such an inaccu-

Figure 13.
(a) Results of applying the prewhitened eigenspace-based beam-
former to the data shown in Figure 12a. Reconstructed source
magnitude distributions at 78 msec (upper row) and 101 msec
(bottom row). (b) Results of applying the non-prewhitened eigens-

pace beamformer to the same data. Reconstructed source mag-
nitude distributions at 78 msec (upper row) and 101 msec (bot-
tom row).
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rate lead field in addition to the use of the sample
covariance matrix. Therefore, these auditory experi-
ments had very noisy results. A comparison among
Figures 9–11 suggests that the use of the eigenspace-
based beamformer is highly effective for the spatio-
temporal reconstruction of source activities.

We emphasize, though, that the effectiveness of the
eigenspace-based beamformer becomes evident only
when we perform spatio-temporal reconstruction. For
time-averaged reconstruction, the results obtained us-
ing either the minimum variance or the eigenspace-
based beamformer were more or less the same (as
shown by the time-averaged reconstruction in Figs. 3
and 5). This is probably the reason why the poor
performance of the minimum-variance beamformer
has been somewhat overlooked in the previous inves-
tigations [Robinson and Vrba, 1999; van Drongelen et
al., 1996; van Veen et al., 1997]. In these investigations,
the spatio-temporal reconstruction of source activities
was not emphasized; instead, a time-averaged recon-
struction of the source activities was obtained.

The signal subspace dimension Q in equation (8) is
in principle determined by separating distinctly large
eigenvalues from the small eigenvalues. This separa-
tion, however, may not be easy if there is no clear
threshold in the eigenvalue spectrum. For example,
the results in Figure 13a were obtained by setting the
signal subspace dimension to one. This determination,
however, is somewhat ambiguous because, as can be
seen in Figure 12b, there are two more eigenvalues
that are much smaller than the first eigenvalue but still

greater than the noise-level eigenvalues. The results
obtained by setting the signal-subspace dimension at
three are shown in Figure 14. The comparison between
Figures 13a and 14 shows that when the signal sub-
space dimension was determined differently, the final
results were not significantly different.

In general, the overestimation of the signal subspace
dimension gives intermediate results between those
from the minimum-variance beamformer and those
from the eigenspace beamformer with a correct signal-
subspace dimension. Let us consider the case where
the signal subspace dimension is overestimated at Q
 �. Then, the SNR of such an eigenspace beam-
former, SNR� is expressed as,

SNR� �
P̂s

P̂n
�

Ps

�2

�lT�r��Sl�r��2

�lT�r��S
2l�r� � εT��

2 ε�
, (21)

where

�� � �eQ � 1, . . . , eQ � ��

� � �Q � 1 · · · 0
···

· · ·
···

0 · · · �Q � �

� � 1

�eQ � 1, . . . , eQ � ��T

Because the relationship εT��
2 ε � εT�N

2 ε holds, the re-
lationship SNR(ES) � SNR� � SNR(MV) always holds
true. Moreover, if εT��

2 ε is small compared to εT�S
2ε ,

the eigenspace-based beamformer with an overesti-

Figure 14.
Results of applying the prewhitened eigenspace-based beamformer to the data shown in Figure 12a
with the signal subspace dimension set at 3.
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mated signal-subspace dimension gives nearly the
same SNR as that from the eigenspace-based beam-
former with a correct signal-subspace dimension. The
results in Figure 14 exactly show this case.

In summary, we have applied the eigenspace-based
beamformer to reconstruct spatio-temporal activities
of neural sources. This beamformer attains a SNR
significantly higher than that of the minimum-vari-
ance beamformer, particularly when errors in estimat-
ing the sensor lead field exist. We further extended the
eigenspace beamformer so that it incorporates the in-
formation regarding the noise spatial correlation. The
effectiveness of these eigenspace-based beamformer
techniques was validated in our numerical experi-
ments and experiments using auditory responses.
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APPENDIX

This appendix describes the method of obtaining a
reasonable estimate of the source orientation. This
method was used in our experiments. The source ori-
entations can be obtained by utilizing the orthogonal-
ity relationship in equation (4). The optimum estimate
of � is one that minimizes the following measure of
this orthogonality;
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J��, r� �
�ENL�r���2

�L�r���2 �
��TLT�r��ENEN

T �L�r���

��TLT�r���L�r���
. (22)

This minimization problem can be solved by using the
generalized-eigenproblem formulation. The optimum
orientation �̂opt(r) satisfies the relationship,

�LT�r�ENEN
T L�r���̂opt�r� � �min�LT�r�L�r���̂opt�r�, (23)

where �min indicates the minimum eigenvalue of this
generalized eigenvalue problem. Therefore, the opti-
mum estimate of the source-moment orientation is
obtained by finding the eigenvector corresponding to
the minimum eigenvalues of equation (23).

When noise is non-white and has a known covari-
ance matrix, the orthogonality relationship is ex-

pressed in equation (19). The optimum orientation
�̂opt(r) should therefore be obtained solving

�LT�r�ẼNẼN
T L�r���̂opt�r� � �̃min�LT�r�Rn

� 1L�r���̂opt�r�.

(24)

That is, the eigenvector corresponding to the mimi-
num eigenvalue �̃min in the above equation gives the
optimum estimate of the source-moment orientation.
The method presented in this appendix was originally
developed for estimating the polarization of wave-
fronts received by an array of antennas in radar-signal
processing [Ferrara and Parks, 1983; Li, 1994; Schmidt,
1981], and its application to estimating an orientation
of neuromagnetic sources has been reported [Mosher
et al., 1992; Mosher and Leahy, 1998; Sekihara and
Scholz, 1996].
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