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Abstract—This paper presents an analysis on the performance
of the prewhitening beamformer when applied to magnetoen-
cephalography (MEG) experiments involving dual (task and
control) conditions. We first analyze the method’s robustness to
two types of violations of the prerequisites for the prewhitening
method that may arise in real-life two-condition experiments.
In one type of violation, some sources exist only in the control
condition but not in the task condition. In the other type of vio-
lation, some signal sources exist both in the control and the task
conditions, and that they change intensity between the two con-
ditions. Our analysis shows that the prewhitening method is very
robust to these nonideal conditions. In this paper, we also present
a theoretical analysis showing that the prewhitening method is
considerably insensitive to overestimation of the signal-subspace
dimensionality. Therefore, the prewhitening beamformer does
not require accurate estimation of the signal subspace dimension.
Results of our theoretical analyses are validated in numerical ex-
periments and in experiments using a real MEG data set obtained
during self-paced hand movements.

Index Terms—Adaptive beamforming, brain noise, interference
removal, magnetoencephalography (MEG), neuromagnetic source
reconstruction, prewhitening.

I. INTRODUCTION

ONE MAJOR problem with magnetoencephalography
(MEG) measurements is that the measured MEG data

contain not only signals from brain regions of interest, but also
large interfering magnetic fields generated from spontaneous
brain activities all over the brain. Such background interference
degrades the quality of source reconstruction results, and often
makes interpreting the results difficult. Such background inter-
ference is sometimes referred to as brain noise or physiological
noise.

A common strategy for extracting the signal of interest from
measurements overlapped with a large amount of interference
is to design experiments with dual (control and task) condi-
tions. Subtraction between the reconstruction results obtained
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under these two conditions is a common procedure to recon-
struct signal sources of interest [1]. (This subtraction is often
performed as a part of calculating pseudo- statistics, which is
used for statistically evaluating the source configuration differ-
ence between the two conditions.) However, when the source
reconstruction is performed with adaptive spatial filter methods
[2]–[4], such subtraction-based methods cannot effectively re-
move the influence of the background interference [5]. This is
because the influence of the background activity is not simply
additive. It involves spatial blur and source location bias, as will
be shown in our computer simulation in Section V.

Recently, we have proposed a novel prewhitening method
suitable for reconstructing sources from evoked measurements
overlapped with large background interference [6]. The goal of
this paper is to show that the prewhitening method can also be
effective for measurements involving task and control condi-
tions. We first analyze the prewhitening method’s robustness to
two types of violations of the prerequisites for the prewhitening
method that may arise in real-life two-condition experiments.
We refer to these two types violations as the control-only source
scenario and the modulating source scenario in this paper. In the
control-only-source scenario, some sources appear only in the
control measurements and that they do not appear in the task
measurements. In the modulating-source scenario, some signal
sources of interest exist both in the control and the task mea-
surements, and they change intensity between the two condi-
tions. In real-life measurements, one or both of these scenarios
may arise. In this paper we demonstrate that the prewhitening
method is still effective under these scenarios.

This paper also presents an analysis on the influence caused
by the overestimation of the signal subspace dimensionality,
and it shows that the method is considerably insensitive to such
overestimation. Therefore, the accurate determination of the
signal subspace dimension is not essential for implementing
the prewhitened beamformer, and an intentionally large value
can be used for the signal subspace dimension.

Section II briefly reviews the prewhitening method that has
already been proposed in [6]. Section III presents our theoretical
analysis on the method’s performance under two realistic sce-
narios with dual-condition experiments. Section IV shows the
effects of overestimation of the signal subspace dimension. The
arguments in Sections III–IV are validated first by numerical
experiments in Section V and by an application to real MEG
data collected during self-paced finger flection in Section VI.
Throughout this paper, plain italics indicate scalars, lower-case
boldface italics indicate vectors, and upper-case boldface italics
indicate matrices. The eigenvalues are numbered in decreasing
order.
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II. PREWHITENING BEAMFORMING UNDER

AN IDEAL SCENARIO

We use a model for measurements expressed as

(1)

where is the magnetic field generated by signal sources
of interest, is the magnetic field generated by background
activity, and is the additive sensor noise. These vectors
are column vectors where is the number of sen-
sors. The covariance matrix of the measurements is denoted
such that where indicates an expectation
operator. We define the covariance matrix of the signal mag-
netic field as , such that . We assume
that the signal is low rank, i.e., the rank of is , which is
smaller than , the number of sensors. We also define the in-
terference-plus-sensor-noise covariance matrix , such that

. Note that this
is a positive definite matrix, because we assume that the sensor
noise is the white Gaussian noise uncorrelated between different
channels. Under the assumption that the signal source activity
is uncorrelated with the background interferences and sensor
noise, the relationship

(2)

holds. In the conventional (nonprewhitened) minimum-variance
spatial filter, the source power reconstruction is obtained
using this covariance matrix such that

(3)

where is an column vector representing the sensor
lead field in the estimated source direction1 at location . Equa-
tion (3) indicates that the influence of the additive interference is
not simply additive, but it affects the final source-reconstruction
results through in a highly nonlinear manner. The influ-
ence actually involves spatial blur and source location bias, as
will be shown in our computer simulation in Section V.

We next explain the prewhitening method of estimating the
signal covariance matrix ; the method was first reported in
[6]. We here assume the ideal scenario, in which control-state
measurements contain only the interference and sensor
noise, i.e.,

and the interference-plus-noise covariance matrix can
be obtained from such control-state measurements. Namely,
defining the covariance matrix from the control measurements
as , i.e., , the relationship

Control:

Task: (4)

1The method of estimating the source orientation at each voxel location is
presented in [7] and [8].

holds. To estimate the signal covariance matrix, we first calcu-
late the prewhitened measurement covariance matrix , which
is defined as . Thus, from (4), we have the
relationship

(5)

where

(6)

We define the eigenvalues and eigenvectors of an
matrix as and . Since is a pos-
itive semidefinite matrix with rank and is a nonsin-
gular matrix, is also a positive semidefinite matrix with rank

. Thus, the eigenvalues are positive and the other
eigenvalues are zero. (Here, we assume that the
eigenvalues are ordered in a decreasing manner.) Namely, we
have

(7)

Therefore, the eigendecomposition of can be expressed as

(8)

The above equation indicates that the largest eigenvalues of
are greater than 1 and the corresponding eigenvectors are the

same as those for the nonzero eigenvalues of . The eigen-
values of greater than 1 are referred to as the signal-level
eigenvalues and their corresponding eigenvectors as the signal-
level eigenvectors. Equation (8) indicates that it is possible to
retrieve from the signal-level eigenvalues and their corre-
sponding eigenvectors of . That is, defining a matrix as

, the signal covariance matrix, , can be
obtained using

(9)

In actual cases, the covariance matrices and are un-
known, and instead we should use the sample covariance ma-
trices, which are obtained using

(10)

where are the time points contained in a certain time

window. We define such that . Using (9),
the estimate of the signal covariance matrix can be obtained
using

(11)
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where , and are the signal-level

eigenvectors of . Given the estimate of the signal covariance
matrix , a reasonable estimate of the signal-plus-sensor-noise
covariance matrix, , can be obtained using

(12)

where is the regularization constant that should be set close
to the variance of the sensor noise . (Actually, since the noise
variance is unknown, an appropriate value of should be de-
termined from the measured data, and some empirical methods,
such as that of using the minimum-eigenvalue of , are em-
ployed to determine .) Consequently, using the minimum-vari-
ance spatial filter, the prewhitening source power reconstruction
free from the influence of the background activity, can be ob-
tained using

(13)

III. PREWHITENING BEAMFORMING UNDER

NONIDEAL SCENARIOS

In this section, we analyze the performance of the
prewhitening method under two kinds of nonideal scenarios
that may arise in real-life task and control-type measurements.
In the scenario argued first, there are some sources that appear
only in the control state and do not appear in the task state. Such
sources are called the control-only sources in this paper, and
this scenario is referred to as the control-only-source scenario.
In the scenario argued next, the signal sources of interest are
active in the control state as well as in the task state but they
change their intensities between the two states. Such sources are
called the modulating sources in this paper, and this scenario is
referred to as the modulating-source scenario.

A. Control-Only Source Scenario

In the control-only-source scenario, we assume that there are
sources that exist only in the control state and do not appear in

the task state. We also assume that the observed signal space is
still low-rank, i.e., . When such control-only sources
exist, the control state measurements can be expressed as

(14)

where indicates the magnetic field generated by control-
only sources. The covariance matrix relationships are then ex-
pressed as

Control:

Task: (15)

where

(16)

In deriving (15), we assume that the activity of control-only
sources is uncorrelated with the interference and sensor noise.
Using (15), we have

(17)

and thus

(18)

where . Since is a nonnegative defi-
nite matrix with rank and is a nonsingular matrix,
is a nonnegative definite matrix with rank . Thus, is de-
composed as

(19)

where , are nonzero eigenvalues of ,
and are the corresponding eigenvectors. Substituting (7) and
(19) into (18), we have

(20)

When the control-only sources are well separated from the
signal sources of interest, the relationship

(21)

approximately holds. Under this assumption, we will show that
a set of vectors

(22)

are the eigenvectors of , where are the
orthonormal basis set of the subspace , which is defined as

.
We first show that the relationship

(23)

holds. That is, we show that the vectors (where )
are the eigenvectors of and their corresponding eigenvalues
are . To show this, we calculate the right multiplication
of to , and using (20) this multiplication
results in

(24)
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The first term in the right-hand side becomes . The second
term becomes , because the relationship

(25)

holds. The validity of (25) is shown in the Appendix. The third
term in the right-hand side of (24) vanishes due to the orthog-
onality assumption in (21). Therefore, we can derive the rela-
tionship in (23), i.e., we can show that the vectors (where

) are the eigenvectors of .
Next, we show that the relationship

(26)

holds. That is, we show that the vectors
are the eigenvectors of and the corresponding eigenvalues

are equal to 1. To show this relationship, we calculate the right
multiplication of to , which is equal to

(27)

Since is orthogonal to both the subspace spanned by
and that spanned by , the only

nonzero term in the right-hand side is the second term, which
is equal to , because . Thus, we
have proved (26).

Finally, we calculate the right multiplication of
to , which produces that

(28)

On the right-hand side, the first term becomes zero due to the
orthogonality assumption in (21) and the second term becomes
zero due to the orthogonality relationship between the signal and
the noise subspaces. Thus, we have

(29)

Therefore, are eigenvectors of and the
corresponding eigenvalues are . We can also show that
these eigenvalues are positive but less than 1, i.e.,

, although we do not include the proof here. In summary, we
have shown that the vectors

are the eigenvectors of . The corresponding eigenvalues, in a
decreasing order, are

(30)

Here, the largest eigenvalues are greater
than 1, and therefore, (9) is still effective at retrieving , even
when the control-only sources exist.

In general, however, the subspace angle between
and may not be so large

and the assumption that these two subspaces are orthogonal
may not be satisfied. In such cases, (23) is changed to

(31)

This equation shows that is no longer the
eigenvector of and the second term on the right-hand side of
(31) indicates the error term. Thus, if the relationship

(32)

holds, the error term is negligibly smaller than the first term,
and are still approximately the signal-level eigenvectors of

. Conversely, when the error term is not small, the signal-co-
variance estimate obtained from (9) could be erroneous.

B. Modulating-Source Scenario

We next examine the modulating-source scenario. We define
the covariance matrix of the signal activity in the control state
as . Then we have the relationship

Control:

Task: (33)

Thus, we have

(34)

We consider a general case where some signal sources have their
intensities greater in the control state than in the task state, but
others have their intensities smaller in the control state than in
the task state. The power of the th signal source in the task and
the control conditions are denoted, respectively, and .
We assume that the signal sources with have
the relationship of , and that the signal sources with

have the relationship . Therefore,

defining , we have

(35)

where

(36)
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(37)

Therefore, we have

(38)

and thus

(39)

where

Because both and are the positive semidefinite matrices,
(39) is in principle the same as (18), and exactly the same argu-
ments hold as those in Section III-A. Therefore, we can estimate

by using

(40)

where is a matrix containing eigenvec-

tors of . We can estimate by changing the role of and .

That is, we first calculate such that ,
and then obtain an estimate of using

(41)

In the equation above, is defined as ,
which is a matrix containing (where ) signal-

level eigenvectors of . The prewhitening method in which the
roles of and are reversed is referred to as the “flipped”
prewhitening method in this paper. Therefore, the sources that
are stronger in the task state than in the control state can be
reconstructed using

(42)

The sources that are stronger in the control state than in the task
state can be reconstructed using the flipped prewhitening, i.e.,

(43)

IV. OVERESTIMATION OF SIGNAL-SUBSPACE DIMENSIONALITY

The prewhitening method requires us to determine , the di-
mension of the signal subspace of (or the rank of ). This
determination is usually performed by counting the number of
distinctively large eigenvalues of data covariance matrix . In
actual MEG measurements, however, it is often problematic to

accurately determine because the eigenvalue spectrum does
not have a clear separation between these two subspaces. Here,
we presents an analysis on the influence caused by the over-
estimation of the signal subspace dimensionality, and we show
that the prewhitening method is very insensitive to such over-
estimation. Therefore, the accurate determination of is not
needed and we can use an intentionally large to implement
the prewhitening method.

In the following, we discuss the influence caused when the
dimension of the signal-subspace of is overestimated. We
assume the ideal scenario in this section. Let us assume that
the signal subspace dimension is overestimated as
and define as . Ideally, the
prewhitened data covariance matrix, , has signal-level
eigenvalues greater than 1 and eigenvalues equal to
1. Therefore, according to (9), the overestimation of does
not affect the signal covariance estimate because the rela-
tionship holds. However, the prewhitened
covariance matrix is usually estimated from finite time
samples, and in such cases, the noise-level eigenvalues are
generally not equal to 1. We denote the noise-level eigenvalues

of the estimated prewhitened covariance matrix as
and assume for . Then, the estimated
signal covariance matrix, , is expressed in this case as

(44)

The second term on the right-hand side of the above equation
indicates the error term caused by the overestimation. The error
term, , is expressed as

(45)

where .
Let us define the signal and noise subspaces of the measure-

ment covariance matrix , as and , i.e.,

where is the th eigenvector of . Then, assuming that
, we can expand using such that

(46)

where . On the right-
hand side of (46), the first term is the signal subspace compo-
nent and the second term is the noise subspace component. To
obtain the source reconstruction in (13), we need to calculate
the signal-plus-sensor-noise covariance matrix. The estimate of
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the signal-plus-sensor-noise covariance matrix, , is in this
case given by

(47)

where is the th eigenvalue of , and we assume that
for .

The equation above indicates that the influence of the over-
estimation is mainly an increase of the regularization constant.
The regularization in the minimum variance beamformer,
known as diagonal loading, has been widely used and a signif-
icant increase of the regularization constant is known to cause
a spatial blur in the reconstruction results [5]. Therefore, the
overestimation of the signal subspace dimension should cause a
spatial blur. However, the blur should not be large if and the
resultant are small. In Section V, examples are presented
in which the prewhitening method can still provide successful
reconstruction, even when the signal subspace dimension is
significantly overestimated. In the analysis presented in this
section, we assume the ideal scenario. Considering the fact that
large eigenvalues are the same in the ideal and the nonideal
scenarios, it is obvious that the arguments here are also valid
for the nonideal scenarios.

V. COMPUTER SIMULATION

A. Data Generation

A computer simulation was performed to demonstrate the
validity of the arguments in the preceding sections. In our
experiments, we used a sensor alignment of the 275-sensor
array from the Omega™ (VMS Medtech, Coquitlam, Canada)
neuromagnetometer. Three sources were assumed to exist on
a single plane cm , and their coordinates were
(-2.1,9.5) cm, (2.6,10.5) cm, and (1.4,7.5) cm, respectively.
The source-sensor configuration and the coordinate system are
depicted in Fig. 1(a). The spherical homogeneous conductor
model [10] with the sphere origin set at (0,0,4) cm was used
for the forward calculation. The powers of the three sources
were set equal in the sensor-domain, i.e., the relationship,

, held where , ,
and were the location, the power, and the lead field vector
of the th source, respectively. Multiepoch measurements were
simulated.

Each epoch had two sets of data: the task and the con-
trol data sets. The task and the control data sets in the
th epoch are denoted and , respectively, and

they are expressed as , and

, where is the number of
time points. Since was set at 600 in our computer simu-
lation, and resulted in 275 600 spatio-temporal
data matrices. To calculate and , we assumed
uncorrelated sinusoidal time courses for the three sources; the
source time course for the th source and for the th epoch is
expressed as ,
where is the time window equal to , and the constant

controls the frequency, which was set at 6.3 for the first

Fig. 1. (a) Source-sensor configuration and the coordinate system used in the
numerical experiments. The plane at x = 0 cm is shown. The small filled
circles indicate the locations of the three sources. The large circle indicates
the boundary of the sphere used for the forward calculations. The center of
the sphere was set to (0,0,4) cm. (b) Representative examples of the generated
single-epoch dataBBB (upper panel), and BBB (lower panel).

source, 9.1 for the second source, and 13.1 for the third source.
The phase offset was generated using the random number
between 0 and , and different random number was used for

depending on , , and the two conditions. We therefore
simulated induced source activities, which are elicited by the
stimulus but not phase-locked to it.

B. Simulation for the Control-Only-Source Scenario

We first check the performance of the prewhitening method
under the existence of a control-only source. In this computer
simulation, the first source is the control-only source, and the
second and the third sources are the signal sources, which ap-
pear only in the task state. Namely, contains the magnetic
field from the second and the third sources, and contains
the magnetic field from the first source. Real spontaneous MEG
was used as the interference , and the signal-to-interfer-
ence ratio (SIR) was set equal to 0.3. That is, values of the source
power were determined in order for the SIR

defined as to be equal

to 0.3. A total of 96 epochs of and
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Fig. 2. Results of the source reconstruction experiments simulating the con-
trol-only-source scenario. (a) Results of conventional reconstruction for the task
condition, �(rrr). (b) Results of conventional reconstruction for the control con-
dition,� (rrr). (c) Results of the prewhitening source reconstruction. (d) Results
of the flipped prewhitening source reconstruction.

were generated. The representative examples of and
are shown in Fig. 1(b). The sample covariance matrices and

were calculated using

and where indicates the
number of epochs, which is equal to 96 in this computer simu-
lation. The total covariance matrix was calculated for later use,
using

(48)

The conventional beamformer source reconstruction was
performed for the control and the task data, using

and where

and are the source power reconstruction for
the control and the task states, respectively. The results are
shown in Fig. 2(a) and (b). These results contain severe blur
due to the interference inherent in the task and the control
data. The source reconstruction was next performed with
the prewhitening estimate of the signal covariance matrix

, using (13). The prewhitening estimate of , , was
also obtained from the flipped prewhitening method using

, and the source reconstruction was
performed using (13) with replaced by . The results of
prewhitening and flipped prewhitening source reconstructions
are shown in Fig. 2(c) and (d). Compared to the results in
Fig. 2(a) and (b), the results in Fig. 2(c) and (d) show that
the signal and the control-only sources were reconstructed
at the correct locations with much higher spatial resolution,
demonstrating that the prewhitening method is still effective in
the control-only-source scenario.

C. Simulation for the Modulating-Source Scenario

In this computer simulation, the intensity of the first source
was decreased by 30% from the control to the task conditions,

Fig. 3. Results of the source reconstruction experiments simulating the mod-
ulating-source scenario. (a) Results of conventional reconstruction for the task
condition, �(rrr). (b) Results of conventional reconstruction for the control con-
dition, � (rrr). (c) Results of calculating the pseudo-F image F (rrr). (d) Results
of applying the prewhitening source reconstruction. The signal subspace dimen-
sion was set to 15. (e) Results of the flipped prewhitening source reconstruction.

while the intensity of the third source was increased by 30%
from the control to the task conditions. The intensity of the
second source remained the same between the two conditions.
The SIR was set equal to 0.3.

The existing method of processing this type of data
calculates the following pseudo-F image[3], such that

, where and
are obtained using , and , and
where the beamformer weight is obtained using

(49)

In the above expression, the total covariance matrix is cal-
culated using (48). The results of calculating , , and

are shown in Fig. 3(a)–(c), respectively. In the pseudo-F
image in (c), the third source forms a positive peak, and the
first source forms a negative peak. Although these peaks are
blurred and the peak locations are biased, the pseudo-F image

can at least detect these two sources. Next, the methods
of prewhitening and flipped prewhitening source reconstruction
were performed, and the results are shown in Fig. 3(d) and (e).
In these results, the signal source and the control-only source
form clear peaks around the correct locations of these sources,
although a small bias of the reconstructed source location can
be observed, particularly for the third source.

To compare the source localization biases for the pseudo-F
and the prewhitening results, we performed a Monte Carlo-type
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Fig. 4. Results of the Monte Carlo-type computer simulation performed to es-
timate the amount of the source localization bias. The mean of the 40 sets of
the calculated distance between the true and the estimated locations of the third
source are plotted for four SIR values. The solid line represents the average
source localization bias for the prewhitening beamforming, and the broken line
represents that for the pseudo-F method. The error bars indicate �1 standard
deviation.

computer simulation in which 40 data sets, each containing
and , were generated and 40 sets of re-
construction results were obtained. In each set of the results,
the distance between the peak location and the true location
of the third source was calculated as the source localization
bias. The mean and the standard deviation of the 40 sets of the
source-bias results are plotted for four SIR values in Fig. 4. (The
values of 1/SIR were set to 1, 2, 3, and 4.) According to these
results, the amount of source bias is almost the same for the
prewhitening and pseudo-F results when the SIR is moderately
high SIR . However, when the SIR is low SIR ,
the prewhitening results have a significantly smaller source bias.
These results demonstrate the effectiveness and superiority of
the prewhitening method in the modulating-source scenario.

Finally, we show the robustness of the prewhitening method
to the overestimation of the signal-subspace dimension . The

eigenvalue spectrum of for obtaining the results in Fig. 3(d)
is shown in Fig. 5(a). This spectrum indicates that there is no
clear separation between the noise- and the signal-level eigen-
values, and there should be some ambiguity when determining
the signal subspace dimension. When obtaining the results in
Fig. 3(d), the signal subspace dimension was set to 15. The re-
construction results obtained with the signal subspace dimen-
sion set to 30 are shown in Fig. 5(b). Results almost identical
to those in Fig. 3(d) were obtained in spite of the fact that the
signal subspace dimension was significantly overestimated in
this case.

VI. EXPERIMENT

The effectiveness of the prewhitening method is further
demonstrated using real MEG data collected during finger flec-
tion. The measurement was performed using the 275-channel

Fig. 5. (a) Eigenvalue spectrum of RRR used for reconstruction in Fig. 3(d).
(b) The results of the prewhitening source reconstruction obtained with the
signal subspace dimension set to 30.

Omega-275™ whole-cortex biomagnetometer installed at the
Biomagnetic Imaging Laboratory, University of California, San
Francisco. Here, a subject was asked to press a button with his
right-index finger every 3–4 s. The onset of the movement was
indicated by a button press and defined as the time-origin. A
total of 200 epochs were acquired at a 1-kHz sampling rate.

We set two time windows for covariance matrix estimation:
the first from 1000–1300 ms, and the second from 300–0 ms.
The Fourier transforms of the th epoch data in the first and
the second time windows are respectively denoted and

. The frequency-domain sample covariance matrices for
the first and the second time windows, and , are obtained
using

(50)

where and . In this equation, is the epoch index and
the notation indicates the summation over a specific
frequency band , and was set to the beta-band region
between 15 and 25 Hz in our experiments. In these experiments,

and were used as the task and the control covariance
matrices.

It is well-known that the intensity of the magnetic field in
the beta-band spectral region decreases preceding and during
the button-press finger movements [11]. Therefore, these mea-
surements represent the modulating-source scenario where
signal sources are present both in the task and control condi-
tions but modulated in their amplitudes. First, we calculated
the pseudo-F map with the results shown in Fig. 6(a).
Although the pseudo-F map was able to detect source activities
in the left temporal region, the results are considerably blurry.
We next applied the prewhitening source reconstruction and
the results are shown in Fig. 6(b). We can see that the proposed
method can reconstruct a clear, localized source in the left
temporal region. The MRI overlay of these results is shown in
Fig. 6(c). The overlay shows that the center of the reconstructed
activity is located in contralateral hand-motor cortex. The



1120 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 55, NO. 3, MARCH 2008

Fig. 6. Results of the source reconstruction experiment using hand-motor MEG
data. The maximum-intensity projections of (a) the pseudo-F results F (rrr) and
(b) the prewhitening results. The left, middle, and the right columns, respec-
tively, show the maximum intensity projections of the 3-D reconstruction onto
the axial, coronal, and sagittal planes. The upper-case letters L and R show the
left and the right hemispheres. The signal subspace dimension was set to 15.
(c) MRI overlay of the prewhitening source reconstruction results in (b). (d) The

eigenvalue spectrum of RRR used for reconstructing the results in (b). (e) The re-
sults of the prewhitening source reconstruction obtained with the signal sub-
space dimension set to 25.

results in Fig. 6(b) and (c) demonstrate the effectiveness of the
prewhitening source reconstruction for this data set.

We again check the sensitivity of the prewhitening method to
the overestimation of the signal subspace dimension. The eigen-

value spectrum of is shown in Fig. 6(d). We can see that there
is no clear separation between the noise and the signal level
eigenvalues and that there would be some ambiguity when de-
termining the signal-subspace dimension. When obtaining the
results in Fig. 6(b), the signal-subspace dimension was set to
15. (This value was determined by our computer algorithm that
detects a point where the spectrum starts to rise above the noise
slope.) The reconstruction results obtained with the dimension
set at 25 are shown in Fig. 6(e). These results are almost iden-
tical to those in Fig. 6(b), demonstrating that results from the

prewhitening method are largely insensitive to the overestima-
tion of the signal subspace dimension.

APPENDIX

This appendix presents the proof of (25). We first point out
that the following relationship holds:

(51)

where indicates the empty set. Although we do not
provide the formal proof, it is easy to prove this rela-
tionship. Because this relationship holds, we can then
show . That is,

belongs to the complementary subspace of
, which is equal to ,

i.e., . Therefore, because
is the projector onto , the

application of this projector to results in

which is (25).
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