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Removal of Spurious Coherence in MEG
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Abstract—Source-space coherence analysis has become a pop-
ular method to estimate functional connectivity based on
MEG/EEG. Source-space analysis involves solving the inverse
problem, estimating the time courses of specific brain regions,
and then examining the coherence between activities at different
brain regions. However, source-space coherence analysis can be
confounded by spurious coherence caused due to the leakage prop-
erties of the inverse algorithm employed. Such spurious coherence
is typically manifested as an artifactual large peak around the seed
voxel, called seed blur, in the resulting coherence images. This seed
blur often obscures important details of brain interactions. This
paper proposes the use of the imaginary part of the coherence to
remove the spurious coherence caused by the leakage of an imaging
algorithm. We present a theoretical analysis that explains how the
use of imaginary part can remove this spurious coherence. We then
present results from both computer simulations and experiments
using resting-state MEG data which demonstrate the validity of
our analysis.

Index Terms—Bioelectromagnetism, coherence analysis,
functional connectivity, magnetoencephalography (MEG), MEG
source imaging, source coherence.

I. INTRODUCTION

THERE has been tremendous interest in estimating the func-
tional connectivity of neuronal oscillations across brain re-

gions based on electromagnetic measurements such as magne-
toencephalography (MEG) and electroencephalography (EEG).
However, prior studies using EEG or MEG have largely em-
ployed sensor-space analysis, in which brain interactions have
been analyzed using raw sensor recordings [1]–[3]. In sensor-
space analysis, the field spread across many sensors from a
single brain region leads to uncertainties in interpreting the es-
timation results of brain interactions, as pointed out in [4].

Recently, a number of studies have begun to use source-
space analysis. In source-space analysis, voxel time courses
are first estimated by solving the inverse problem and brain
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interactions are then analyzed using those estimated voxel time
courses [4]–[8]. Although a certain degree of inaccuracy exists
in the source inversion process, the source-space analysis has
the potential of providing more accurate information regarding
which brain regions are functionally coupled.

Either in sensor- or source-space analysis, some kind of a
measure for the interaction, called a connectivity metric, must
be computed. Among existing measures a widely used represen-
tative measure is coherence [5]–[7], [9]–[11]. In source-space
coherence analysis, a typical procedure involves first setting a
reference point, called the seed point, and computing the coher-
ence between the time courses from the seed point and another
voxel’s location, referred to as the target location in this paper.
By scanning through all target locations in a brain, a 3-D map-
ping of source coherence, namely a source-coherence image,
with respect to the seed location can be obtained.

A serious problem in source-coherence imaging arises from
the spurious coherence caused by the leakage of an inverse
algorithm, and such leakages are more or less inevitable in
any inverse algorithm [12]. One representative ramification of
this spurious coherence is an artifactual large peak around the
seed voxel, called seed blur, in the resulting coherence image.
Quite often, the seed blur dominates the resultant coherence
images, and obscures important details of the brain interactions.
Examples of the seed blur are shown in our computer simulations
and experiments using resting-state MEG data.

To remove such spurious coherence, this paper proposes the
use of the imaginary part of coherence, which is called the imag-
inary coherence. The use of imaginary coherence was originally
proposed by Nolte et al. [13] to remove the spurious coherence
caused by the volume conduction in EEG sensor-space coher-
ence analysis. This paper extends their sensor-space analysis of
imaginary coherence to source-space coherence analysis, and
presents a detailed theoretical analysis that explains how the
use of imaginary coherence leads to the removal of the spurious
coherence caused by the leakage of source imaging algorithms.
The validity of our analysis is then demonstrated by our com-
puter simulation and by experiments using resting-state MEG
data.

II. METHOD

A. Source-Space Coherence Analysis

Source-space coherence analysis (or source-coherence imag-
ing) requires a two-step procedure. In the first step, voxel time
courses are estimated using an inverse algorithm. In the second
step, the coherence measure is computed using the voxel time
courses estimated in the first step. In this paper, the coherence
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is computed between the time courses from the seed voxel and
from each of the target voxel. Let us define the time course from
the seed voxel as uS (t) and the time course from a target voxel
as uT (t), and let the spectra of the seed and the target voxels be
σS (f) and σT (f), respectively.

The coherence η(f) is obtained by computing the correlation
of these spectra

η(f) =
〈σT (f)σ∗

S (f)〉
√

〈|σT (f)|2〉〈|σS (f)|2〉
(1)

where the superscript ∗ indicates the complex conjugate, and the
bracket 〈·〉 indicates the ensemble average. In practical applica-
tions, this ensemble average is computed by averaging across
multiple trials. When only a single continuous dataset is mea-
sured, the single dataset is divided into many trials and coher-
ence is obtained by averaging across these trials.

In conventional source-coherence imaging, the magnitude co-
herence |η(f)| is computed and mapped by scanning through
the target voxels. It is, however, apparent from (1) that if the
seed and target spectra contain common components that do
not result from true brain interactions, then the magnitude co-
herence may contain spurious components. When coherence is
computed between estimated voxel time courses, the leakage of
the imaging algorithm used is a major source of such spurious
coherence.

B. Leakage Effects of Imaging Algorithms

1) Leakage Effects in the Magnitude Coherence: The esti-
mated source time courses at the seed voxel ûS (t) and at the
target voxel ûT (t) can be expressed as

ûS (t) = uS (t) + d1uT (t) + cS (t) (2)

and

ûT (t) = uT (t) + d2uS (t) + cT (t) (3)

where uS (t) and uT (t) are the true source time courses of the
seed and the target locations, respectively.1 In the aforemen-
tioned equations, d1uT (t) indicates the leakage of the target
signal in the estimated seed signal, and d2uS (t) indicates the
leakage of the seed signal in the estimated target signal. The
real-valued constants d1 and d2 express the relative amount of
these leakages.

In the aforementioned equations, cS (t) and cT (t) express the
interference terms, which may include the leakage from other
sources, contributions from external disturbances, and that of
the sensor noise. The influence of these interference terms can
be considered separately from the influence of the leakage terms
in Section V. In the arguments here, we ignore cS (t) and cT (t)
and the estimated spectra at the seed and target voxels, σ̂S (f)
and σ̂T (f), are, respectively, expressed as

σ̂S = σS + d1σT and σ̂T = σT + d2σS (4)

where we omit the explicit notation of (f) for simplicity.

1In this paper, the estimated values are indicated by ̂ to distinguish their
true values.

The magnitude coherence between the seed and the target
voxels is expressed as

|η̂| =

∣∣∣
∣∣

〈σ̂T σ̂∗
S 〉√

〈|σ̂T |2〉〈|σ̂S |2〉

∣∣∣
∣∣
. (5)

Using (4), we have

〈σ̂T σ̂∗
S 〉 = 〈σT σ∗

S 〉
+ d1〈|σT |2〉 + d2〈|σS |2〉 + d1d2〈σS σ∗

T 〉 (6)

〈|σ̂T |2〉 = 〈|σS |2〉 + d2
1〈|σT |2〉 + 2d1� (〈σT σ∗

S 〉) (7)

and

〈|σ̂S |2〉 = 〈|σT |2〉 + d2
2〈|σS |2〉 + 2d2� (〈σT σ∗

S 〉) (8)

where � ( · ) indicates the real part. Therefore, even when there
is no true source interaction, i.e., even when 〈σT σ∗

S 〉 = 0 and
〈σS σ∗

T 〉 = 0, |η̂| has a nonzero value, which is equal to

|η̂| =
|d1〈|σT |2〉 + d2〈|σS |2〉|√

(〈|σS |2〉 + d2
1〈|σT |2〉) (〈|σT |2〉 + d2

2〈|σS |2〉)
. (9)

Such spurious coherence is typically manifested as an artifac-
tual large peak around the seed voxel, called seed blur, in the
resulting coherence images.

2) Leakage Effects in the Imaginary Coherence: Using (6)
and the relationship

〈σT σ∗
S 〉 + 〈σS σ∗

T 〉 = 2� (〈σS σ∗
T 〉)

the cross spectrum 〈σ̂T σ̂∗
S 〉 can be expressed as

〈σ̂T σ̂∗
S 〉 = (1 − d1d2)〈σT σ∗

S 〉 + d1〈|σT |2〉
+ d2〈|σS |2〉 + 2d1d2� (〈σT σ∗

S 〉) . (10)

By taking the imaginary part of (10), we can derive

� (〈σ̂T σ̂∗
S 〉) = (1 − d1d2)� (〈σT σ∗

S 〉) (11)

where � ( · ) indicates the imaginary part. The aforementioned
equation indicates that, aside from the multiplicative constant,
the imaginary part of the cross spectrum between the seed and
target voxels is equal to � (〈σT σ∗

S 〉), which is the imaginary
part of the true cross spectrum.

To compute coherence, the cross spectrum 〈σ̂T σ̂∗
S 〉 is normal-

ized by
√
〈|σ̂T |2〉〈|σ̂S |2〉. Thus, we obtain the imaginary part

of the estimated coherence � (η̂) as

� (η̂) =
� (〈σ̂T σ̂∗

S 〉)√
〈|σ̂T |2〉〈|σ̂S |2〉

=
(1 − d1d2)� (〈σT σ∗

S 〉)√
〈|σ̂T |2〉〈|σ̂S |2〉

= Ω� (η) (12)

where� (η) indicates the true value of the imaginary coherence.
Using (7) and (8), Ω is obtained as

Ω =
(1 − d1d2)√

φ1φ2
(13)

where

φ1 = 1 + d2
1
〈|σT |2〉
〈|σS |2〉

+ 2d1
� (〈σT σ∗

S 〉)
〈|σS |2〉

(14)
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and

φ2 = 1 + d2
2
〈|σS |2〉
〈|σT |2〉

+ 2d2
� (〈σT σ∗

S 〉)
〈|σT |2〉

. (15)

Equation (12) shows that when � (η) = 0, we have � (η̂) = 0,
indicating that no spurious coherence has been generated.

However, (12) also indicates that the value of � (η̂) differs
from the true value � (η), i.e., the amplitude of the estimated
imaginary coherence is biased and the bias is represented by
Ω, which is called the amplitude bias factor in this paper. Let
us calculate the amplitude bias factor assuming a simple sce-
nario in which d1 = d2 = d and 〈|σS |2〉 = 〈|σT |2〉. Under these
assumptions, the bias factor is simplified to

1 + |d|
1 − |d| ≥ Ω =

1 − d2

1 + d2 + 2�(η)d
≥ 1 − |d|

1 + |d| . (16)

The aforementioned equation shows how the amount of leakage
|d| affects the amplitude bias Ω, and it shows that if |d| is
small such as |d| < 0.1, the amplitude bias is less than 10%.
The narrow-band adaptive spatial filter used in our investigation
generally has small leakages [12], and thus, this amplitude bias is
generally small. We check this fact in our computer simulation.

C. Statistical Thresholding of an Imaginary-Coherence Image

In practical applications, we need to assess the statistical
significance of the imaginary coherence. In this paper, the sur-
rogate data method [14], [15] is used for this assessment. In this
method, the surrogate voxel spectra are created by multiplying
random phases with the original voxel spectra. The surrogate
spectra for the seed and the target voxels σ̃S (f) and σ̃T (f) are
expressed as

σ̃S = σ̂S e2πεS and σ̃T = σ̂T e2πεT (17)

where εS and εT are the uniform random numbers between 0 and
1, and the explicit notation of (f) is again omitted for simplicity.
Note that the surrogate spectra have the same original power
spectra but the phase relationship is destroyed by multiplying
the random phases to the original spectra. The value of the
imaginary coherence calculated using the surrogate spectra σ̃S

and σ̃T is expressed as

ξ =
� (〈σ̃T σ̃∗

S 〉)√
〈|σ̃T |2〉〈|σ̃S |2〉

=
�

(
〈σ̂T σ̂∗

S e2πΔε〉
)

√
〈|σ̂T |2〉〈|σ̂S |2〉

(18)

where Δε = εT − εS . The generation of ξ is repeated with
B times, and a total B values of ξ, which are denoted
ξ1 , ξ2 , . . . , ξB , are obtained. These ξ1 , . . . , ξB can form an em-
pirical null distribution at each target voxel. We then could
derive a voxel-by-voxel statistical threshold using this empiri-
cal null distribution. However, the statistical threshold derived in
this manner does not take the multiple comparisons into account
and it generally leads to a situation in which many false-positive
voxels arise, i.e., many voxels that contain no brain interaction
are found to be interacting. To avoid this problem, the statistical
significance is determined using a procedure that takes multiple
comparisons into account. For this purpose, we use the maximal
statistics [16], [17].

To utilize maximum statistics, the values ξβ (β = 1, . . . , B)
are first standardized and converted into pseudo-t values, such
that

Tβ =
ξβ − ξ̄

σξ
(19)

where ξ̄ and σ2
ξ are the average and the variance of ξβ (β =

1, . . . , B), respectively. Since these ξ̄ and σ2
ξ are obtained at

each target voxel, the values at the jth target voxel are denoted
as ξ̄(j) and σ2

ξ (j). The maximum value of Tβ obtained at the
jth voxel is denoted as Tmax(j). Denoting a total number of
voxels NV , we have Tmax(1), . . . , Tmax(NV ) to form the null
distribution. We then sort these values in an increasing order

Tmax(1̃) ≤ Tmax(2̃) ≤ · · · ≤ Tmax(ÑV )

where Tmax(k̃) is the kth minimum value. We set the level
of the statistical significance to α, and choose Tmax(p̃) where
p̃ = 
αNV � where 
αNV � indicates the maximum integer not
greater than αNV . The threshold value for the jth voxel ξth(j)
is derived as

ξth(j) = Tmax(p̃)σξ (j) + ξ̄(j). (20)

We evaluate, at the jth voxel, the statistical significance of the
imaginary coherence by comparing |� (η̂) | with |ξth(j)|. When
|� (η̂) | > |ξth(j)|, the imaginary coherence at the jth voxel
� (η̂) is considered to be statistically significant. Conversely,
if |ξth(j)| > |� (η̂) |, � (η̂) is not considered to be statistically
significant, and it is set to 0.

III. COMPUTER SIMULATION

A. Data Generation

Computer simulations were performed to verify the argu-
ments in Section II-B. In our simulations, we used a sensor align-
ment of the 275-sensor array from the Omega (VMS Medtech
Ltd., Coquitlam, BC, Canada) neuromagnetometer. A single
vertical plane (x = 0 cm) was assumed at the middle of the
whole-head sensor array, and three sources were assumed to
exist on this plane. The source–sensor configuration and the co-
ordinate system are depicted in Fig. 1. The (y, z) coordinates
of the three sources were (−1.0, 9.5), (1.5, 10.0), and (1.0, 7.5)
cm, respectively.

Multiple-trial measurements were simulated, in which a total
of 120 trial recordings were generated. Each trial consists of 600
time points where the sampling interval was assumed to be 2 ms.
The time courses of the three sources had the same shape with
trial-to-trial time jitters. The time jitter between the first and
second sources and the jitter between the second and the third
sources were both generated using Gaussian random numbers
with a standard deviation equal to 15 time points. There is a
50-time-point mean delay between the time courses of the first
and the second sources, and also between those of the second
and the third sources. Here, the amount of jitter controls the
value of coherence, and setting the jitters in the aforementioned
manner results in the following values: |�(η1,2)| = 0.27 and
|�(η2,3)| = 0.23 where η1,2 indicates the coherence between
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Fig. 1. Coordinate system and source–sensor configuration used in the com-
puter simulation. The coordinate origin was set at the center of the sensor coil
located at the center of the array. The plane at x = 0 cm is shown. The large
circle shows the cross section of the sphere used for the forward calculation,
and the small circles show the locations of the three sources. The square shows
the region for which reconstruction results are shown in Figs. 3–5.

Fig. 2. Time courses assigned to the three sources in the computer simulation.
The time courses in the top, middle, and bottom panels are those for the first,
second, and the third sources, respectively. These time courses have trial-to-trial
time jitters, and the time courses in the first three trials are shown. The solid,
broken, and dashed-dotted lines, respectively, show the time courses for the first,
second, and third trials.

the first and second sources and η2,3 that between the second and
third sources. Also, �(η1,2) and �(η2,3) indicate the imaginary
parts of these coherence values. The source time courses in the
first three trials are shown in Fig. 2.

Fig. 3. Results of reconstructing source power distribution on the plane x = 0
cm. (a) SIR was set equal to 4.0. (b) SIR was set equal to 0.25. Asterisks show
the location of the seed that was set for computing the coherence images shown
in Fig. 4.

Defining the jth-source time course given as uj (t), the signal
magnetic recordings bs(t) were computed using

bs(t) =
3∑

j=1

Ajuj (t)lj (21)

where lj is the lead field vector of the jth source and Aj is its
amplitude. Here, the powers of the three sources were set equal
in the sensor domain, i.e., the relationship

A2
1‖l1‖2 = A2

2‖l2‖2 = A2
3‖l3‖2

held. The lead field was calculated using the spherical homo-
geneous conductor model [18] with the sphere origin set to
(0, 0, 4) cm.

The simulated sensor recordings b(t) were generated by
adding spontaneous MEG signal to the computed signal record-
ings bs(t), such that

b(t) = bs(t) + γbI (t) (22)

where bI (t) is the spontaneous MEG measured using the same
275 whole-head sensor array, and γ is a constant that controls
the signal-to-interference ratio (SIR) of the simulated sensor
recordings. In our computer simulations, an SIR was set equal
to 4.0 and 0.25, where SIR is defined as the ratio of the aver-
age signal power 〈‖bs(t)‖2〉 to the average interference power
〈‖bI (t)‖2〉. Note that the coherence analysis is usually per-
formed using non-averaged trial data. Therefore, an SIR of 4.0
is considered a significantly high SIR and the SIR of 0.25 can
be considered a typical SIR for non-averaged trials.

B. Source-Coherence Imaging

The voxel time-course estimation was performed using the
narrow-band adaptive spatial filter [12], [19] with a data co-
variance matrix obtained with a frequency band between 8 and
12 Hz. This is because the spectra of source time courses are
bandlimited to this bandwidth. Reconstructed source power im-
ages on the plane x = 0 cm are shown in Fig. 3 for both SIR
cases. The reconstructed images show that the three sources are
resolved for the both SIR cases. We then set a seed point at
the location of the second source to compute coherence images.
The seed point is marked by asterisks in Fig. 3.

The resultant coherence images are shown in Fig. 4. To obtain
these results, statistical thresholding using the surrogate data
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Fig. 4. Results of imaging the source coherence on the plane x = 0 cm.
The seed was set at the second source location indicated by the asterisk.
(a) Magnitude-coherence image when SIR was set equal to 4.0. (b) Imaginary-
coherence image when SIR was set equal to 4.0. (c) Magnitude-coherence image
when SIR was set equal to 0.25. (d) Imaginary-coherence image when SIR was
set equal to 0.25. Statistical thresholding using the surrogate data method de-
scribed in Section II-C was applied with the number of surrogate datasets to
200 and the level of the statistical significance set to 0.99.

method described in Section II-C was applied. Here, the number
of surrogate datasets B was set to 200, and the level of the
statistical significance α was set to 0.99. The upper panels in
Fig. 4(a) and (b) show the results for the case of the SIR equal
to 4.0, and the lower panels in Fig. 4(c) and (d) show the results
for the case of the SIR equal to 0.25. Also, the left panels in
Fig. 4(a) and (c) show the magnitude-coherence images and the
right panels in Fig. 4(b) and (d) show the imaginary-coherence
images.

When the SIR is equal to 4.0, i.e., when the SIR is very high,
the magnitude-coherence image [see Fig. 4(a)] manages to show
the first and the third sources, although a large seed blur exists at
the second source location. That is, the two sources interacting
with the second source can be observed in spite of the existence
of the seed blur when the SIR is very high. In the imaginary-
coherence image [see Fig. 4(b)], the intensity of the seed blur is
much reduced, and the first and the third sources, which interact
with the second source, are clearly shown.

When the SIR is equal to 0.25, i.e., when the SIR is typi-
cal of coherence analysis, the seed blur dominates and it ob-
scures the other sources in the magnitude-coherence image [see
Fig. 4(c)]. Thus, it is difficult to obtain information on the in-
teracting sources from the magnitude-coherence image. On the
contrary, in the imaginary-coherence image [see Fig. 4(d)], the
intensity of the seed blur is much reduced and the two sources
that interact with the second source can clearly be observed.

The narrow-band adaptive spatial filter generally has a small
leakage [12]. In this computer simulation, the leakage constants
d1 and d2 are approximately equal to 0.01 between the first
and the second sources, and also between the second and the
third sources. Therefore, the bias factor Ω in (16) is nearly
equal to 1, and the amplitude bias should be small. Actually, in

Fig. 5. Results of imaging the source coherence on the plane x = 0 cm when
the seed was set at a location where no active source existed. The first source
was made inactive, and the seed was set at the first source location indicated
by the asterisks. (a) Reconstructed source power distribution. (b) Magnitude-
coherence image. (c) Imaginary-coherence image. Statistical thresholding using
the surrogate data method described was applied with the number of surrogate
datasets to 200 and the level of the statistical significance set to 0.99.

our computer simulation, the estimated imaginary coherence,
|�(η̂1,2)| and |�(η̂3,2)| are equal to 0.275 and 0.23 when the
SIR was set to 4, and 0.26 and 0.21 when the SIR was set
to 0.25. These values of the estimated imaginary coherence are
very close to their true values, |�(η1,2)| = 0.27 and |�(η2,3)| =
0.23, and thus, the amplitude bias is not evident in this computer
simulation.

Next, we performed computer simulation in which no source
activity existed at the seed location. Here, the first source was
made inactive and the seed was set at the first source location.
The results of the source power reconstruction in this case are
shown in Fig. 5(a). The results contain the second and the third
sources but do not contain the first source. The seed location
is indicated by the asterisk at the first source location. The
thresholded magnitude-coherence and the imaginary-coherence
images are shown in Fig. 5(b) and (c). The magnitude-coherence
image [see Fig. 5(b)] shows a large blurred peak at the seed
location, as if the large region surrounding the seed location is
synchronously active. This large region represents the spurious
coherence expressed in (9). The imaginary-coherence image
[see Fig. 5(c)], however, shows no activity.

IV. EXPERIMENTS WITH RESTING-STATE MEG DATA

We performed source-coherence imaging using resting-state
MEG data. Three healthy subjects participated in the study,
which was approved by the ethics committee of University of
California, San Francisco. The data were acquired using a 275-
channel CTF Omega 2000 whole-head MEG system (VSM
MedTech Ltd.). When collecting the data, subjects were laid
down with their eyes closed, and 60-s-long single continu-
ous datasets were acquired with a 1200 Hz sampling rate. The
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Fig. 6. Power spectra of the sensor data for three subjects. The power spectrum
is the mean power spectrum across all sensors and all trials. The two red lines
denote the beta range used for the coherence analysis.

single trial data were divided into 2-s-long trials with half over-
lap, resulting in a total of 60 trials. The power spectra of the
sensor data for three-subject cases are shown in Fig. 6. Each
power spectrum was computed using the mean power spectrum
across all sensors and all trials.

The voxel time courses were estimated using the narrow-band
adaptive spatial filter [12], [19] with the frequency band tuned
to the individual subjects’ beta band, approximately between 14
and 27 Hz. The two red lines in Fig. 6 denote the beta range for
each individual subject used for the narrow-band spatial filter.
The source reconstruction was performed using the NUTMEG
toolbox [20], and the results are shown in Fig. 7 for the three-
subject cases. In these results, the reconstructed voxel power,
which is the squared mean of the voxel time course, was mapped,
and three orthogonal MR slices at the voxel with the maximum
intensity are shown. In all three-subject cases, a large blurred
peak exists in a middle, posterior region, and the peak maxima
are not necessarily located near primary motor areas.

We then performed source-coherence imaging by setting seed
voxels at the left motor area. To obtain seed voxels, we selected
all the voxels whose location was determined to be within the
precentral gyrus. These location labels were obtained by normal-
izing the subjects MRI to the Montreal Neurological Institute
template brain. We then computed the centroid for these voxels
and selected the nine nearest voxels to the centroid, resulting in
ten seed voxels in the left precentral gyrus for each subject. The
seed voxels for each individual subject are shown in the two
leftmost columns of Fig. 8.

We computed the magnitude and imaginary coherence be-
tween the seed voxels and the remaining voxels, resulting in ten
coherence images corresponding to each of the ten seed voxels.
The final coherence image was obtained by averaging those ten

Fig. 7. Results of source power reconstruction for the three-subject cases. The
results from the first, second, and third subjects are, respectively, shown in the
upper, middle, and bottom rows. The reconstructed voxel power is computed
using the squared mean of the voxel time course. The normalized voxel power
is color-coded according to the color bar, and overlaid onto each subject’s MRI.
Three orthogonal MR slices at the voxel with the maximum intensity are shown.

coherence images. The statistical thresholding using the surro-
gate data method was applied to select voxels with statistically
significant values of coherence. Here, the number of surrogate
datasets was set to 200, and the level of statistical significance α
was set to 0.99. The results are shown in Fig. 8 in which the two
central columns show the magnitude-coherence images, and the
two rightmost columns show the imaginary-coherence images.

The results here show that the magnitude-coherence images
are dominated by the seed blur. That is, for all three subjects,
large blurred peaks are located near the seed voxels and no
other peaks are seen in the magnitude-coherence images. On
the contrary, the imaginary-coherence images are able to detect
the right motor cortex and show the connectivity between the
left and right motor cortices in the beta band. The seed blur that
dominates the magnitude-coherence images is not seen in the
imaginary-coherence images. These results effectively demon-
strate that the artifactual seed blur does not exist when using
imaginary coherence as the connectivity metric.

V. DISCUSSION

In the analysis so far, we have ignored the interference terms
cS (t) and cT (t). Here, we discuss the influence of these inter-
ference terms, and we use the expressions

σ̂S = σ̄S + CS and σ̂T = σ̄T + CT . (23)

Here, CS and CT are the spectra of the interference terms,
and σ̄S and σ̄S are the source spectra including only the leak-
age terms, which are defined such that σ̄S = σS + d1σT and
σ̄T = σT + d2σS . We assume that the interference spectra are
independent from the source spectra, i.e., the relationships,
〈σ̄T C∗

T 〉 = 0, 〈σ̄T C∗
S 〉 = 0, 〈σ̄S C∗

T 〉 = 0, and 〈σ̄S C∗
S 〉 = 0,

hold.
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Fig. 8. Results of imaging beta-band coherence between the left and right primary motor cortices. The coherence images were obtained using the resting-state
MEG data, and results for three subjects are shown. In each of the three pair of columns, a coronal view is presented on the left, and a sagittal view on the right.
The two leftmost columns show the ten seed voxels in the precentral gyrus. The two middle columns show the magnitude-coherence images. The two rightmost
columns show the imaginary-coherence images. The value of magnitude coherence is color-coded according to the upper color bar and the value of imaginary
coherence to the lower color bar. The results from the first, second, and third subjects are, respectively, shown in the upper, middle, and bottom rows.

Then, using (23), the cross spectrum 〈σ̂T σ̂∗
S 〉 is expressed as

〈σ̂T σ̂∗
S 〉 = 〈σ̄T σ̄∗

S 〉 + 〈CT C∗
S 〉 (24)

where 〈CT C∗
S 〉 indicates the spurious component due to the in-

terference terms. The aforementioned equation indicates that the
spurious component caused by the interference terms is additive
to that caused from the leakage terms. Taking the imaginary part
of both sides of (24), we derive

� (〈σ̂T σ̂∗
S 〉) = � (〈σ̄T σ̄∗

S 〉) + � (〈CT C∗
S 〉) . (25)

If 〈CT C∗
S 〉 is real valued, we have � (〈σ̂T σ̂∗

S 〉) = � (〈σ̄T σ̄∗
S 〉),

and taking the imaginary part removes 〈CT C∗
S 〉.

To further investigate what scenarios make 〈CT C∗
S 〉 real

valued, we must take the property of inverse algorithms into
consideration. We assume that the voxel time courses are
estimated using a spatial filter with real-valued weight vec-
tors.2 Under this assumption, the interference time courses
cS (t) and cT (t) are expressed as cS (t) = wT (rS )bI (t) and
cT (t) = wT (rT )bI (t), where w(rS ) and w(rT ) are real-
valued weight vectors of the spatial filter at the seed and the
target locations, respectively, and bI (t) is the sensor recordings
due to the interference and sensor noise.

By Fourier transforming cS (t) and cT (t), we obtain CS (f) =
wT (rS )βI (f) and CT (f) = wT (rT )βI (f), where βI (f) is
the Fourier transform of bI (t). The cross spectrum 〈CT C∗

S 〉 is,
thus, expressed as

〈CT C∗
S 〉 = wT (rT )〈βI (f)βH

I (f)〉w(rS ) (26)

where the superscript H indicates the Hermitian transpose (the
complex conjugation plus matrix transpose).

2Most of existing spatial filters including the narrow-band adaptive spatial
filter used in our experiments employ real-valued weight vectors.

Since the weight w(r) is assumed to be a real-valued vector,
in order for 〈CT C∗

S 〉 to be real valued, the matrix 〈βI (f)βH
I (f)〉

should be real valued. The diagonal elements of 〈βI (f)βH
I (f)〉

are real valued. The (j, k)th off-diagonal element of this matrix
is given by

〈β(j )
I (f)β(k)∗

I (f)〉 =
∫ ∞

−∞
R

(j,k)
I (τ)e−2πif τ dτ (27)

where β
(j )
I (f) and β

(k)
I (f) is the jth and kth elements of βI (f),

respectively. Here, R
(j,k)
I (τ) is the cross correlation defined as

R
(j,k)
I (τ) =

∫ ∞

−∞
b
(j )
I (t)b(k)

I (t + τ)dt (28)

where b
(j )
I (t) and b

(k)
I (t) are the jth and the kth elements of

bI (t), respectively. Note that since bI (t) is real valued, R(j,k)
I (τ)

is real valued.
In general, we can decompose R

(j,k)
I (τ) into

R
(j,k)
I (τ) = R

(j,k)
E (τ) + R

(j,k)
O (τ) (29)

where R
(j,k)
E (τ) is an even function and R

(j,k)
O (τ) is an odd

function. Since the Fourier transform of a real even function is
real valued, the real part of 〈β(j )

I (f)β(k)∗
I (f)〉 is caused from the

even-function component R
(j,k)
E (τ), and the imaginary part of

〈β(j )
I (f)β(k)∗

I (f)〉 is caused from the odd-function component

R
(j,k)
O (τ).
Assuming that the interference bI (t) is a stationary process,

we have the relationship R
(j,k)
I (−τ) = R

(k,j )
I (τ) = R

(j,k)
I (τ).

Thus, R
(j,k)
I (τ) is an even function and 〈CT C∗

S 〉 is real valued.
As a result, taking the imaginary part of 〈CT C∗

S 〉 can effec-
tively remove the spurious cross spectrum 〈CT C∗

S 〉. However,
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when bI (t) deviates from a stationary process, R
(j,k)
O (τ) may

become significant, and using the imaginary coherence may be
less effective in removing 〈CT C∗

S 〉.
Imaginary coherence has already been applied to MEG

source-space connectivity analysis, and resting-state functional
connectivity mappings have been performed using imaginary
coherence for schizophrenia patients [21] and for brain tumor
patients [7], [22]. In these publications, however, the primary
scope has been on the clinical implications of the connectivity
results and no rigorous arguments have been presented regarding
the choice of imaginary coherence.

This paper has presented detailed theoretical analysis on the
properties of imaginary coherence in source-space coherence
imaging. Our analysis and experiments show that magnitude-
coherence images are confounded by the spurious coherence
caused by the leakage properties of the inverse algorithm. The
spurious coherence is manifested as the seed blur, which is an
artifactual large peak around the seed voxel in the resulting co-
herence images. This paper proposes the use of the imaginary
coherence to remove this seed blur, and presents a detailed theo-
retical analysis that explains how the use of imaginary coherence
leads to the removal of the seed blur. The effectiveness of us-
ing imaginary coherence has been validated by our computer
simulation and experiments using resting-state MEG data.

It should be pointed out that the effectiveness of using imag-
inary coherence holds, regardless of the source imaging al-
gorithm used to estimate voxel time courses. The use of the
adaptive spatial filter in our computer simulation and the ex-
periments was mainly due to the convenience in our software
developments. It should, however, be emphasized that the use of
imaginary coherence cannot retrieve source activities the source
imaging algorithm fails to reconstruct.

Our analysis shows that the estimated imaginary coherence
has the amplitude bias due to the leakage of an imaging al-
gorithm employed. Recently, Brookes et al. [23] reported that
the length of a time window for coherence computation also
affects the amplitude of estimated coherence. Further studies
are needed to examine whether other factors exist that also pro-
duce the amplitude bias, and whether such amplitude biases in
imaginary coherence are really problematic for the estimation
of functional connectivity with this metric.
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