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This paper formulates a novel probabilistic graphical model for noisy

stimulus-evoked MEG and EEG sensor data obtained in the presence of

large background brain activity. The model describes the observed data

in terms of unobserved evoked and background factors with additive

sensor noise. We present an expectation maximization (EM) algorithm

that estimates the model parameters from data. Using the model, the

algorithm cleans the stimulus-evoked data by removing interference

from background factors and noise artifacts and separates those data

into contributions from independent factors. We demonstrate on real

and simulated data that the algorithm outperforms benchmarkmethods

for denoising and separation. We also show that the algorithm improves

the performance of localization with beamforming algorithms.
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Introduction

Electromagnetic source imaging (ESI), the reconstruction of the

spatiotemporal activation of brain sources from MEG and EEG

data, is increasingly being used in numerous studies of human

cognition in both normals and in various clinical populations

(Hmlinen et al., 1993; Baillet et al., 2001; Ebersole, 1997). The

major advantage of ESI over other noninvasive functional brain

imaging techniques is the ability to obtain valuable information

about neural dynamics with high temporal resolution on the order

of milliseconds. A major problem in ESI is that MEG and EEG

measurements, which use sensors located outside the brain,

generally contain not only signals associated with brain sources

of interest, but also signals from other sources such as spontaneous
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brain activity, eye blinks and other biological and non-biological

sources of artifacts. Interference signals from these sources overlap

spatially and temporally with those from the brain sources of

interest, making it difficult to obtain accurate reconstructions.

Many approaches have been taken to address the problems of

reducing noise from artifacts and from interference signals due to

background brain activity, with varying degrees of success. First,

event-related averaging of multiple trials may be used to reduce the

contributions from non-stimulus-locked and non-phase-locked

activity. Averaging reduces the contribution of background brain

activity on the order of the square root of the number of trials. This

is often performed after rejection of manually selected trials that

contain conspicuous artifacts, such as eye blinks or saccades.

However, averaging and manual trial segment rejection require that

the data be collected for a large number of trials, which effectively

limits the number of stimulus conditions in a particular experiment.

Second, model-based approaches have been used to either

model the neural generator (de Munck et al., 2004; Bijma et al.,

2003, 2004; Baryshnikov et al., 1981) or to model artifacts (Berg et

al., 1991). The former involves defining a parametric model for the

event-related brain response and the background noise and

estimating parameters using a maximum-likelihood methods. The

latter involves denoising of the data by identifying and removing

portions of data that fit to previously estimated models of an array

of artifacts. With the latter technique, only irregularities that have

been previously identified and modeled well can be removed.

Third, data-driven approaches such as Principal Component

Analysis (PCA), Wiener filtering and matched filtering and, more

recently, Independent Components Analysis (ICA) have been used

for denoising and artifact rejection (de Weerd, 1981a,b; de Weerd

and Kap, 1981; Lutkenhoner et al., 1984; Makeig, 2002; Makeig et

al., 1997; Vigario et al., 2000; Jung et al., 2000; Ikeda and Toyama,

2000; Tang et al., 2002; Sander et al., 2002; James and Gibson,

2003; Lee et al., 2003; Joyce et al., 2004).These approaches have

provided some benefits but require a subjective choice of many

parameters such as dimensionality, thresholds and component
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Fig. 1. SEIFA graphical model. Left column shows the graphical model

for pre-stimulus data. y is the observed spatiotemporal data, B is the

interference factor loading matrix and u the unobserved interference

factors. Right column shows the graphical model for post-stimulus data.

Note the addition of stimulus-evoked factors x, which are modeled as a

mixture of Gaussians defined by states s, and the stimulus-evoked mixing

matrix A. The dashed box encloses all the variables and the nodes

outside the box indicate parameters, all of which are estimated from the

data.
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selection. Most of these methods usually do not work well for low

SNR and are computationally prohibitive for multichannel systems

with large number of channels. Furthermore, most of these

algorithms also provide no principled mechanism for model order

selection. Hence, the selection of the number of spatially distinct

evoked sources and the number of sources of interest must be

based on ad-hoc methods or by expert analysis.

In this paper, we present a novel and powerful approach for the

suppression of interference signals and the separation of signals

from individual evoked sources. This approach is formulated in the

framework of probabilistic graphical models with latent variables,

which has been developed and studied in the fields of machine

learning and statistics (Jordan, 1998). In the graphical modeling

framework, observed data are modeled in terms of a set of latent

variables, which are signals that are not directly observable. The

dependence of the data on the latent variables is specified by a

parameterized probability distribution. The latent variables are

modeled by their own probability distribution. The combined

distributions define a probabilistic model for the observed data.

The model parameters are inferred from data using an expectation

maximization (EM) type algorithm, which is a standard technique

for performing maximum likelihood in latent variable models.

Problems such as interference suppression and source separation

then translate to the problem of probabilistic (Bayesian) inference

of appropriate latent variables.

In our case, stimulus-evoked MEG and EEG data are modeled

using a new probabilistic graphical model, which is based on the

well known factor analysis model (Rubin and Thayer, 1982), and

on its extension, independent factor analysis (Attias, 1999). The

new model is termed stimulus-evoked independent factor analysis

(SEIFA). This model describes the observed data in terms of two

sets of independent latent variables, termed factors. The factors in

the first set represent evoked sources, and the factors in the second

set represent interference sources. The sensor data are generated by

linearly combining the factors in the two sets using two mixing

matrices followed by adding sensor noise. The mixing matrices and

the precision matrix of the sensor noise constitute the SEIFA model

parameters. The interference mixing matrix (the one applied to the

interference factors) and the noise precision are inferred from pre-

stimulus data, whereas the evoked mixing matrix is inferred from

the post-stimulus data.

The paper is organized as follows. The SEIFA probabilistic

graphical is defined in mathematical terms in SEIFA probabilistic

graphical model. Inferring the SEIFA model from data: a VB-EM

algorithm presents a VB-EM (a generalization of standard

expectation maximization) algorithm (Neal and Hinton, 1998;

Attias, 1999, 2000) for inferring this model from data. Estimating

clean-evoked responses and their correlation matrices provides an

estimator for the clean-evoked response, i.e., the contribution of the

evoked factors alone to the sensor data, using the model to remove

the contribution of the interference sources. It also breaks this

estimator into the separate contributions from each independent

evoked factor. Moreover, this section presents an automatically

regularized estimator of the correlation matrix of the clean evoked

response, as well as the correlation matrix of the separate

contribution from each evoked factor. Localization of cleaned

evoked responses demonstrates, using real and simulated data, that

the algorithm provides interference-robust estimates of the time

course of the stimulus evoked response. Furthermore, it shows that

using the regularized evoked covariance in an existing source

localization method improves the performance of that method.
Results concludes with a discussion of our results and of

extensions to the SEIFA framework.
SEIFA probabilistic graphical model

This section presents the SEIFA probabilistic graphical model,

which is the focus of this paper. The SEIFA model describes

observed MEG and EEG sensor data in terms of three types of

underlying unobserved signals: (1) signals arising from stimulus-

evoked sources, (2) signals arising from interference sources and (2)

sensor noise signals. Themodel is inferred from data by an algorithm

presented in the next section. Following inference, the model is used

to separate the evoked source signals from those of the interference

sources and from sensor noise, thus providing a clean version of the

evoked response. The model further separates the evoked response

into statistically independent factors. In addition, it produces a

regularized correlation matrix of the clean-evoked response and of

each independent factors, which facilitates localization. A graphical

representation of the model is shown in Fig. 1.

Let yin denote the signal recorded by sensor i = 1 : K at time

n = 1 : N. We assume that these signals arise from L evoked factors

and M interference factors that are combined linearly. Let xjn
denote the signal of evoked factor j = 1 : L, and let ujn denote the

signal of interference factor j = 1 : M, both at time n. We use the

term factor rather than source for a reason explained below. Let Aij

denote the evoked mixing matrix, and let Bij denote the

interference mixing matrix. Those matrices contain the coefficients

of the linear combination of the factors that produces the data.

They are analogous to the factor loading matrix in the factor

analysis model. Let vin denote the noise signal on sensor i.

Mathematically,

yin ¼ ~
L

j¼1
Aijxjn þ ~

M

j¼1
Bijujn þ vin ð1Þ

We use an evoked stimulus paradigm, where a stimulus is

presented at a specific time, termed the stimulus onset time, and is

absent beforehand. The stimulus onset time is defined as n = N0 + 1.

The period preceding the onset n = 1 : N0 is termed pre-stimulus

period, and the period following the onset n = N0 + 1 : N is termed
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post-stimulus period. We assume the evoked factors are active only

post-stimulus and satisfy xjn = 0 before its onset. Hence

yn ¼
Bun þ vn; n ¼ 1 : N0

Axn þ Bun þ vn; n ¼ N0 þ 1 : N

�
ð2Þ

To turn Eq. (2) into a probabilistic model, each signal must be

modeled by a probability distribution. Here, each evoked factor is

modeled by a mixture of Gaussian (MOG) distributions. For factor

j, we have a MOG model with Sj components, also termed states,

p xjn
� �

¼
XSj
sj ¼ 1

N xjnjlj;sj ; mj;sj
� �

pj;sj ð3Þ

State s of source j is a Gaussian1 with mean lj,s j
and precision

mj,s j, and its probability is pj,s j
. We model the factors as mutually

statistically independent, hence

p xnð Þ ¼
YL
j ¼ 1

p xjn
� �

ð4Þ

There are two reasons for using MOG distributions, rather than

Gaussians, to describe the evoked factors. First, evoked brain

sources are often characterized by spikes or by modulated

harmonic functions, leading to non-Gaussian distributions. Second,

previous work on ICA has shown that independent Gaussian

sources that are linearly mixed cannot be separated. Since we aim

to separate the evoked response into contributions from individual

factors, we must therefore use independent non-Gaussian factor

distributions. Third, as is well known, a MOG model with a

suitably chosen number of states can describe arbitrary distribu-

tions at the desired level of accuracy.

For interference signals and sensor noise, we employ a Gaussian

model. Each interference factor is modeled by a zero-mean

Gaussian distribution with unit precision, p ujn
� �

¼ N ujnj0; 1
� �

.

SEIFA describes the factors as independent,

p unð Þ ¼
YM
j ¼ 1

p ujn
� �

¼ N unj0; Ið Þ ð5Þ

The Gaussian model implies that we exploit only second order

statistics of the interference signals. This contrasts with the evoked

signals, whose MOG model facilitates exploiting higher order sta-

tistics, leading to more accurate reconstruction and separation.

The sensor noise is modeled by a zero-mean Gaussian

distribution with a diagonal precision matrix E,

p vnð Þ ¼ N vnj0;Eð Þ ð6Þ

From Eq. (2) we obtain p( yn|xn,un) = p(vn) where we substitute

vn = yn � Axn � Bun with xn = 0 for n = 1 : N0. Hence, we obtain

the distribution of the sensor signals conditioned on the evoked and

interference factors,

p ynjxn; un;A;Bð Þ ¼ N ynjBun;Eð Þ; n ¼ 1 : N0

N ynjAxn þ Bun;Eð Þ; n ¼ N0 þ 1 : N

�

ð7Þ
1 A Gaussian distribution over a random vector x with mean l and preci-

sionmatrix� is defined byN xjl;Lð Þ ¼ j L
2p j

1=2
exp
h
� 1

2
x� lð ÞTLðx� lÞ

i
.

The precision matrix is defined as the inverse of the covariance matrix.
SEIFA also makes an i.i.d. assumption, meaning the signals at

different time points are independent. Hence

p yjx; u;A;Bð Þ ¼ k
N

n¼1
p ynjxn; un;A;Bð Þ

p xð Þ ¼
YN

n ¼ N0 þ 1

p xnð Þ

p uð Þ ¼
YN
n ¼ 1

p unð Þ ð8Þ

where y, x, u denote collectively the signals yn, xn, un at all time

points. The i.i.d. assumption is made for simplicity and implies that

the algorithm presented below can exploit the spatial statistics of

the data but not their temporal statistics.

To complete the definition of SEIFA, we must specify prior

distributions over the model parameters. For the noise precision

matrix E, we choose a flat prior, p(E) = const. For the mixing

matrices A, B we use a conjugate prior. A prior distribution is

termed conjugate w.r.t. model when its functional form is identical

to that of the posterior distribution (see the discussion below Eq.

(58)). We choose a prior where all matrix elements are independent

zero-mean Gaussians

p Að Þ ¼
Y
ij

N Aijj0;Eiaj

� �

p Bð Þ ¼
Y
ij

N Bijj0;Eihj

� �
ð9Þ

and the precision of the ijth matrix element is proportional to the

noise precision Ei on sensor i. It is the E dependence which makes

this prior conjugate. (It can be shown that, in the limit of zero

sensor noise, E Y V, the impact of the prior on the posterior mean

of A, B would vanish in the absence of this dependence, which

would be undesirable.) The proportionality constants aj and hj

constitute the parameters of the prior, also known as hyper-

parameters. Eqs. (8) and (9) together with Eqs. (4), (5) and (7) fully

define the SEIFA model.
Inferring the SEIFA model from data: a VB-EM algorithm

This section presents an algorithm that infers the SEIFA model

from data. SEIFA is a probabilistic model with latent variables since

the evoked and interference factors are not directly observable. We

use an extended version of the expectation maximization (EM)

algorithm to infer the model from data. This version is termed

variational Bayesian EM (VB-EM) (Attias, 2000).

Standard EM computes the posterior most likely parameter

value given the observed data, aka the maximum a posteriori

(MAP) estimate. In contrast, VB-EM considers all possible

parameters values and computes the posterior probability of each

value conditioned on the observed data. VB-EM therefore treats

latent variables and parameters on equal footing by computing

posterior distributions for both quantities. One may, however,

choose to compute a posterior only over a subset of model

parameters, while computing just a MAP estimate for the rest.

VB-EM is an iterative algorithm, where each iteration consists

of an E-step and an M-step. The E-step computes the sufficient

statistics (SS) of the latent variables, and the M-step computes the
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SS of the parameters. (SS of an unobserved variable are quantities

that define its posterior distribution.) The algorithm is iterated to

convergence, which is guaranteed.

The VB-EM algorithm has several advantages compared to

standard EM. It is more robust to overfitting, which can be a

significant problem when working with high-dimensional but

relatively short time series, as we do in this paper. It produces

automatically regularized estimators, such as for the evoked

response correlation matrix, where standard EM produces poorly

conditioned ones. In addition, the variance of the posterior

distribution it computes (essentially the estimator’s variance, or

squared error) provides a measure of the range of parameter values

compatible with the data.

We now describe the VB-EM algorithm for the SEIFA model.

A full derivation is provided in Appendix A.

E-step

The E-step of VB-EM computes the SS for the latent variables

conditioned on the data. For the pre-stimulus period, n = 1 : N0, the

latent variables are the interference factors un. Compute their

posterior mean ūn and covariance A by

ūn ¼ AB̄
T
Eyn

A ¼ B̄
T
EB̄ þ I þ KWBB

� ��1
ð10Þ

where B̄ are WBB are computed in the M-step by Eqs. ((16)–(18)).

B̄ is the posterior mean of the interference mixing matrix, and WBB

is related to its posterior covariance (specifically, the posterior

covariance of the ith row of B is WBB/Ei; see Appendix A).

For the post-stimulus period, n = N0 + 1 : N, the latent variables

include the evoked and interference factors xn, un. They also

include the collective state sn of the evoked factors, defined by the

L-dimensional vector sn = (s1n, s2n, . . . sLn), where sjn = 1 : Sj is

the state of evoked factor j at time n. The total number of collective

states is S = Cj Sj.

To simplify the notation, we combine the evoked and

interference factors into a single vector, and their mixing matrices

into a single matrix. Let LV = L + M be the combined number of

evoked and interference factors. Let AV denote the K � LV matrix

containing A and B, and let xnV denote the LV � 1 vector containing

xn and un,

xVn ¼
xn
un

��
; AV ¼ A Bð Þ ð11Þ

The SS are computed as follows. At time n, let r run over all the

S collective states. For a given collective state r, compute the

posterior means x̄rn and ūrn of the evoked and interference factors,

and their posterior covariance Gr, conditioned on r, by

x̄ Vrn ¼ Gr ĀVTEyn þ rVr lVrÞ
�

Gr ¼ ĀVTE ĀVþ rVrþ KW
� ��1 ð12Þ

Here, as in Eq. (11), we have combined the posterior means of

the factors into a single vector x̄rnV , and the posterior means of the

mixing matrices into a single matrix ĀV,

x̄ Vrn ¼
x̄rn
ūrn

��
; ĀV¼ Ā B̄

� �
ð13Þ
where Ā, B̄, W are computed in the M-step by Eqs. (16)–(18). As

explained in Appendix A, W/Ei is the posterior covariance of row i

of AV, lrV, rrV are given in Eqs. (38) and (53).

The covariances Gxx
r and Guu

r of the evoked and interference

factors, and their cross-covariance Gxu
r , conditioned on collective

state r, are obtained by appropriately dividing Gr into quadrants

Gr ¼
Gr
xx Gr

xu

Gr
xu

� �T
Gr
uu

��
ð14Þ

where Gxx
r is the top left L � L block of Gr, Gxu

r is the top

right L � M block, and Guu
r is the bottom right M � M block.

These covariances are used in the M-step.

Finally, for a given collective state r, compute its posterior

probability by

p̄rn ¼
1

zn
pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrrjjGrj

p
exp � 1

2
yTnEyn þ

1

2
lT
r rrlr �

1

2
x̄VrnG

�1
r x̄Vrn

��

ð15Þ

where zn is a normalization constant ensuring ~r p̄rn = 1 and the

MOG parameters lr, rr are given in Eq. (38).

M-step

The M-step of VB-EM computes the SS for the model

parameters conditioned on the data. We divide the parameters into

two sets. The first set includes the mixing matrices A, B, for which

we compute full posterior distributions. The second set includes the

noise precision E and the hyperparameters matrices a, h, for which
we compute MAP estimates.

Compute the posterior means of the mixing matrices by

Ā ¼ RyxW

B̄ ¼ RyuW ð16Þ

where

W ¼ Rxx þ a Rxu

RT
xu Ruu þ h

�� �1
ð17Þ

The quantities Ryx, Ryu, Rxx, Rxu and Ruu are posterior

correlations between the factors and the data and among the

factors themselves and are computed below. The hyperparameters

aj, hj are diagonal entries of diagonal matrices a, h.
The covariances WAA and WBB corresponding to the evoked

and interference mixing matrix (see Appendix A), and WAB

corresponding to their cross-covariance, are obtained by appropri-

ately dividing W into quadrants

W ¼ WAA WAB

WT
AB WBB

��
ð18Þ

where WAA is the top left L � L block of W, WAB is the top right

L � M block, and WBB is the bottom right M � M block.
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Next, use those covariances to update the hyperparameter

matrices A, B by

a�1 ¼ diag
1

K
Ā
T
E Ā þWAA

��

h�1 ¼ diag
1

K
B̄
T
E B̄ þWBB

��
ð19Þ

and to update the noise precision matrix E by

E�1 ¼ 1

N
diag Ryy � ĀRT

yx � B̄R
T

yu

� �
ð20Þ

Posterior means and correlations of the factors

Here, we compute the posterior correlations, used above,

between the factors and the data and among the factors themselves.

Let x̄n = bxn� and ūn = bun� denote the posterior mean of the

evoked and interference factors. During the pre-stimulus period

n = 1 : N0, x̄n = 0 and ūn is given by Eq. (10). During the

post-stimulus period n = N0 + 1 : N, they are given by

x̄n ¼
XS
r ¼ 1

p̄rn x̄rn

ūn ¼
XS
r ¼ 1

p̄rnūrn ð21Þ

Let Ryx = ~nbynxn
T
� and Ryu = ~nbynun

T
� denote the data–

evoked and data– interference posterior correlations. Then

Ryx ¼
XN

n ¼ N0 þ 1

ynx̄
T
n

Ryu ¼
XN
n ¼ 1

ynū
T
n ð22Þ

Let Rxx = ~nbxnxn
T
�, Rxu = ~nbxnun

T
� and Ruu = ~nbunun

T
�

denote the evoked–evoked, evoked–interference and interfer-

ence– interference posterior correlations. Then

Rxx ¼
XN

n ¼ N0 þ 1

XS
r ¼ 1

p̄rn x̄rnx̄
T
rn þ Gr

xx

� �

Rxu ¼
XN

n ¼ N0 þ 1

XS
r ¼ 1

p̄rn x̄rnū
T
rn þ Gr

xu

� �

Ruu ¼
XN0

n ¼ 1

ūnū
T
n þA

� �
þ

XN
n ¼ N0 þ 1

XS
r ¼ 1

p̄rn ūrnū
T
rn þ Gr

uu

� �
ð23Þ

using the factors covariances (14).

Finally, let Ryy denote the data–data correlation

Ryy ¼
XN
n ¼ 1

yny
T
n ð24Þ
Estimating clean-evoked responses and their correlation

matrices

In this section, we present two sets of estimators computed by

the SEIFA model after inferring it from data. The first set of

estimators computes the clean-evoked response and decomposes it

into independent factors. The second set of estimators computes

well-conditioned correlation matrices for the signals obtained by

the first set.

Let zin
j denote the individual contribution from evoked factor j

to sensor signal i, and let zin denote the combined contribution

from all evoked factors to sensor signal i. Then

z
j
in ¼ Aijxjn

zin ¼
XL
j ¼ 1

Aijxjn ¼
XL
j ¼ 1

z
j
in ð25Þ

Let z̄in
j and z̄in denote the estimators of zin

j and zin. This means

that z̄in
j = bzin

j
� and z̄in = bzin� where the average is w.r.t. the

posterior over A, x. Computing these estimates amounts to

obtaining a clean version of the individual contribution from each

factor and of their combined contribution and removing contribu-

tions from interference factors and sensor noise. For the individual

contributions, we obtain

z̄
j
in ¼ Āijx̄jn ð26Þ

For the combined contribution we obtain

z̄in ¼
XL
j ¼ 1

Āijx̄jn ¼
XL
j ¼ 1

z̄
j
in ð27Þ

Next, consider the correlation matrix of the evoked response,

which is a required input for localization algorithms such as

beamforming. Let C j denote the correlation of the individual

contribution from evoked factor j, and let C denote the correlation

of the combined contribution from all evoked factors. Then

C j ¼
XN

n ¼ N0 þ 1

z jn z jn
� �T

C ¼
XN

n ¼ N0 þ 1

znz
T
n ð28Þ

Let C̄ j and C̄ denote the estimators of C j and C. This means, as

above, that C̄ j = bC j
� and C̄ = bC�. For the former, we obtain

C̄
j ¼ ā j ā j

� �T þ E�1 WAAð Þjj
h i

Rxxð Þjj ð29Þ

where ā j denotes the jth column of Ā and is a K � 1 vector, and

the posterior correlations matrices are given by Eqs. (55), (56) and

(60). For the latter correlation matrix, we similarly obtain

C ¼ ĀRxxĀ
T þ E�1Tr RxxWAAð Þ ð30Þ

We point out two facts about C̄ j and C̄. First, unlike the signal

estimates which satisfy z̄in = ~jz̄in
j, their correlation matrices satisfy

~jC
j
m C. Second, and most importantly, all estimated correlation

matrices are well-conditioned due to the diagonal WAA terms.

Hence, the VB-EM approach automatically produces regularized
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correlation matrices. Notice that the correlation matrix obtained

directly from the signal estimates, ~nz̄nz̄n
T, is poorly conditioned.
Localization of cleaned evoked responses

The localization of cleaned sensor responses from the individ-

ual evoked factors zn
j and from the combined contribution of all

evoked factors zn can be achieved with many algorithms, such as

maximum-likelihood dipole estimation or tomographic reconstruc-

tion methods. In this paper, we use adaptive spatial filters that use

data correlation matrices as inputs for localization because these

methods have been shown to have superior spatial resolution and

zero localization bias (Sekihara et al., 2005). Here, we use an

adaptive spatial filtering algorithm called the minimum-variance

vector beamformer which we briefly review here (Van Veen et al.,

1997; Sekihara et al., 2001).

Let zin denote the magnetic field of the cleaned evoked

response (either from a single factor or from the sum of all evoked

factors) measured by the ith sensor at time n, and let the column

vector zn = [z1n, z2n, . . ., zKn]
T denote the set of cleaned evoked

response data across sensor array. Let Rz denote the correlation

matrix of the cleaned sensor data. For SEIFA, we compute

correlation matrix Rz of this evoked response as described in the

previous section for each evoked factor (C̄j) or the summed

contribution from all evoked factors (C̄). Many denoising

algorithms such as SVD (Sekihara et al., 2002) and JADE

(Cardoso, 1999) do not provide regularized source correlation

matrices. In such cases, one must apply regularization methods

such as Tikhonov or its variants to the matrix ~nznzn
T.

We assume a current dipole at each location whose position,

orientation and magnitude are fixed over time. Let the spatial

location of each brain source be denoted by a 3-D vector r = (x,

y, z). The dipole moment magnitude of each source at time n is

denoted by qn. The orientation of the source g is denoted by the

angles between its moment vector and the x, y and z axes as gx,

gy and gz, respectively. The forward field vector for the x

component of a source at r is denoted by fx(r) = [ f 1
x(r), f 2

x(r),

� � �, fKx(r)]T, where f k
x(r) expresses the kth sensor output induced

by the unit-magnitude source that is located at r and directed in

the x direction. The forward field matrix F(r) = [ f x(r), f y(r),

f z(r)] represents the sensitivity of the sensor array at r in all

directions. The forward field vector which represents the sensitivity

of the sensor array in the g direction at r is denoted by f (r, g) =
F(r)gT.

An adaptive spatial filter estimate of the moment magnitude, qn
located at r and directed in the g direction uses the following linear

spatial filter operation:

qn rð Þ ¼ wT r; g;Rzð Þzn ð31Þ

The column vector w(r, g, Rz) represents a set of weights that

characterizes the property of the beamformer. In this paper, we use

a linearly constrained minimum variance vector beamformer with

optimized orientation estimates, where the weight vector w(r) for

each voxel is:

w r; g;Rzð Þ ¼ R�1z F rð Þg
gTFT rð ÞR�1z F rð Þg

ð32Þ

The optimum orientation gopt for each voxel is computed by

maximizing bqnqn
T
� with respect to g and is given by the eigen-
vector corresponding to the minimum eigenvalue of the matrix:

[FT(r)Rz
�1F(r)] (Sekihara et al., 2004).
Results

Simulated data

Computer simulations are shown for a small number of evoked

and background sources, each of which has a sinusoidal time

course of random frequency (chosen uniformly over a finite range).

The finite length of each evoked source is enforced by modulating

the corresponding sinusoid by a Hanning window having random

length and random placement within the post-stimulus window. In

contrast, the background sources were not modulated by a Hanning

window. A spherical volume conductor model is assumed, and

simulated sources are assumed to lie in the x = 0 (coronal) plane. A

275 axial gradiometer whole-head MEG system is simulated by

passing the source activity through an estimated forward field

matrix using a random physical location and orientation for each

neural signal and then adding white Gaussian noise to each sensor.

The power of the evoked sources relative to the power of the

background sources (computed in sensor space and averaged over

all channels) is referred to as the signal-to-interference ratio (SIR),

which is defined by

SIR¼ 10log10

XK
i ¼ 1

XN
n ¼ 1

Aixnð Þ2

XK
i ¼ 1

XN
n ¼ 1

Biunð Þ2

1
CCCCA

0
BBBB@ dBð Þ ð33Þ

where Ai and Bi are the ith rows of A and B, respectively.

Likewise, the signal-to-noise ratio (SNR) defined by,

SNR¼ 10log10

XK
i ¼ 1

XN
n ¼ 1

Aixnð Þ2

XK
i ¼ 1

XN
n ¼ 1

v 2
in

1
CCCCA

0
BBBB@ dBð Þ ð34Þ

is used to quantify the power of the evoked sources relative to the

power of the additive sensor noise. A larger SNR is used for shorter

data lengths to emulate the fact that averaging data over trials has

the effect of increasing the stimulus-locked signal power relative to

the power of the sensor noise at the cost of reducing N, the number

of data samples. The SNR for the simulations is fixed at 10 dB

for N = 1000 and at 5 dB for N = 10,000. The stimulus onset,

N0, is 375 for N = 1000 and is 3750 for N = 10,000. The results

below are given for several different values of SIR.

The comparisons include the proposed method (SEIFA), an

ICA method (JADE), results obtained by selecting the most

energetic singular-value components (SVD) and the results

obtained when no denoising procedure is used (raw data). For

the simulated results, it is assumed that the number of evoked

sources and background sources is known. Consequently, the

number of components extracted using SEIFA is explicitly set to L.

ICA is performed using JADE following an SVD truncation, where

the number of components kept during the truncation is L + M.

The denoised sensor signals are based on the L ICA components

that have the highest ratio of post-stimulus energy to pre-stimulus

energy. The SVD results are based on keeping the largest L

components. For SVD and JADE, a regularized covariance matrix



S.S. Nagarajan et al. / NeuroImage 30 (2006) 400–416406
was computed on the denoised sensor data output and used for

beamforming.

Fig. 2 shows results for two configurations of evoked and

interference sources. The left two columns show a simulation

with two evoked sources, L = 2, three interference sources, M =

3, with N = 10,000 and SIR = 0 dB and SNR = 5 dB. The right

two columns show a simulation with L = 2, M = 20, N = 1000,

SNR = 5 dB and SIR = 10 dB. The time axis is represented in

terms of milliseconds, where the sample frequency is 1 kHz. The

time axis is also shifted so that 0 ms corresponds to the stimulus

onset, N0 + 1. The first and third panel of the first row in this

figure show the true locations of the evoked sources, each of

which is denoted by &, and the true locations of the background

sources, each of which is denoted by �. The second and fourth

columns of the first row show the time courses of the evoked

sources as they appear at the sensors. The time courses of the

actual sensor signals, which also include the effects of back-

ground sources and sensor noise, are shown in the second and

fourth columns of the last row. Rows 2–4 show the localization

and the time courses of the denoised outputs of the competing
Fig. 2. Simulation results. The left two columns show a simulation with two evok

SIR = 0 dB and SNR = 5 dB. The right two columns show a simulation with L

and third panels from left show the localization of the stimulus-evoked sources

sources as they appear at the sensors. Top row shows the true location of th

background sources, each of which is denoted by �. Second row—results fro

corresponding results from SVD. Fifth row—results from raw data. For M = 3 ba

localization of the two evoked factors, whereas the raw data and SVD activatio

increased to 20, the results for JADE, SVD, and the Raw Data include one or

diffuse. Results for SEIFA, however, are largely unaffected by the increase in t
methods. For M = 3, background sources SEIFA and JADE

provide good localization of the two evoked sources, whereas the

raw data and SVD activations have spread to include one or more

background sources. Furthermore, the raw data include an

additional peak corresponding solely to a background source.

When M is increased to 20, the results for JADE, SVD and the

raw data include one or more spurious peaks, and the activation

for JADE becomes much more diffuse. The results for SEIFA,

however, are largely unaffected by the increase in the number of

background sources.

Fig. 3 shows the separation results for the single dataset that

corresponds to the left two columns of Fig. 2. Notice that SEIFA

separates the two sources quite well and provides an accurate

localization of each individual evoked source. JADE, which is able

to separate the evoked sources from the background sources as

indicated by Fig. 2, is unable to completely separate the two

evoked sources from each other. The error in the separation is

sufficient so that the localization of each Findependent_ component

produces erroneous results. Notice that, due to the nonlinearity

(due to beamforming) involved in constructing the localization
ed sources, L = 2, three interference sources, M = 3, with N = 10,000 and

= 2, M = 20, N = 1000, SNR = 5 dB and SIR = 10 dB. For all rows, first

. Second and fourth panel from left show the time courses of the evoked

e evoked sources which is denoted by & and the true locations of the

m SEIFA. Third row—corresponding results from JADE. Fourth row—

ckground sources (left two columns), both SEIFA and JADE provide good

ns have spread to include one or more background sources. When M is

more spurious peaks and the activation for JADE becomes much more

he number of background sources.



Fig. 3. Separation of individual (estimated) evoked factors for the simulated dataset that corresponds to the left two columns of Fig. 1, for L = 2, M = 3, K =

275, N = 10,000. SEIFA separates the two sources quite well and provides an accurate localization of each individual evoked source. JADE, which is able to

separate the evoked sources from the background sources as indicated by Fig. 1, is unable to completely separate the two evoked sources from each other.
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maps, the sum of the two individual localizations in Fig. 3 is not

guaranteed to equal the single localization of the combined result

shown in Fig. 2. Results are not shown for SVD because of poor

separation performance.
Fig. 4. Simulation results using 50 Monte Carlo trials for L = 2, M = 3, K = 275, N

right column. An SNR of 10 dB is assumed for all simulations, and performance is

frequency of the evoked sources and the interference sources were randomized. To

row—mean SSNIR for SEIFA and JADE. Bottom row—mean localization error
Figs. 2 and 3 correspond to two specific examples. Figs. 4 and

5, on the other hand, show the mean results across 50 Monte Carlo

trials as a function of SIR for L = 2 and for four combinations of M

and N; namely, M/N = 3/1000, 20/1000, 3/10,000 and 20/10,000.
= 1000 in the left column and for L = 2, M = 3, K = 275, N = 10,000 in the

plotted as a function of the input SIR. For each condition, the location and

p row—mean output SNIR for SEIFA, JADE, SVD and Raw Data. Middle

for SEIFA, JADE, SVD and Raw Data.



Fig. 5. Legend same as for Fig. 3 but for larger number of interference sources M = 20.
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For these figures, the amount of denoising is quantified using the

output signal-to-(noise + interference) ratio (SNIR), which is

defined by

Output SNIR ¼ 10log10
1

K

XK
i ¼ 1

XN
n ¼ N0 þ 1

y4inð Þ2

XN
n ¼ N0 þ 1

yVin � y4inð Þ2

1
CCCCA

0
BBBB@ ðdBÞ

ð35Þ
where yin* is the portion of the ith sensor at time n due only to the

set of evoked sources and yinV represents the denoised signal at the

ith sensor found by applying one of the methods above to the

observed (raw) data. Larger values of the output SNIR represent

improved performance, and an infinite value represents perfect

denoising.

The separation metric is given by the (separated-signal)-to-

(noise + interference) ratio (SSNIR),

SSNIR¼ 1

L

XL
j ¼ 1

10log10
1

2� 2






 1
N � N0

XN
n ¼ N0 þ 1

x4jnxjn








0
BBBB@

1
CCCCA dBð Þ

ð36Þ

where xjn* is the value of the jth evoked factor at time n, xjn is the jth

estimated factor, both xjn* and xjn are normalized to have unit
variance, and the ordering of the factor estimates is such that it

produces the best alignment between the evoked factors and the

factor estimates. This last requirement is needed due to a
fundamental permutation indeterminacy of BSS. The argument of

the absolute value represents the normalized correlation coefficient

between a particular evoked source and the corresponding source

estimate, which takes values between �1 and +1. Similar to the

output SNIR, the separation metric becomes infinite when the

source estimates perfectly match the true evoked sources. The

output SNIR can be thought of as a collective measure of separation

between the set of evoked sources and the set of background

sources/sensor noise, whereas the separation metric provides a

mean measure of separation between a specific evoked source and

all other signals (including other evoked sources). The localization

error is the mean distance in centimeters between the true evoked

source locations and the estimated locations. It is defined by

Localization Error¼ 1

L

XL
j ¼ 1

jjr4j � rjjj cmð Þ ð37Þ

where rj* is the true location of the jth evoked source in the y –z

plane, rj represents the estimated location, the estimated locations

are determined as the locations of the L largest peaks that result

from the beamforming reconstruction of the set of denoised

observations, and the estimated locations are paired with the true

source locations in the manner that minimizes the mean distance.

Unlike the preceding two metrics, smaller values of the localization

metric indicate improved performance. Error bars, not shown in the

figures, are on the order of 0.4 dB, 0.9 dB and 0.3 cm for the

output SNIR, separation metric and localization error, respectively.

In terms of denoising performance, SEIFA provides a 5–10 dB

improvement over JADE for small N and a 2–3 dB advantage over

JADE for large N. Both SEIFA and JADE outperform SVD, which

provides no improvement over the raw data for low SIR and a

significant improvement over the raw data for large SIR. In terms
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of separation performance, the results for SEIFA far outperform

those of JADE for this set of examples. JADE is able to separate

the background sources from the evoked sources (hence gives

good denoising performance), but it is not always able to separate

the evoked sources from each other (the results shown in Fig. 3 are

fairly representative). The Infomax algorithm (Bell et al., 1995),

results not shown, also exhibited poor separation performance on

these data, similar to JADE. These ICA algorithms perform poorly

for the separating of these source presumably due to incorrect

assumptions about the source distributions and due to limited data

length (especially in the case of N = 1000). In terms of localization,

notice that using SVD actually hurts performance. JADE has

trouble for the most challenging case, where N is small and M + L

is large. SEIFA, on the other hand, performs quite well across all

conditions and consistently outperforms the other three methods.

Note that we model background sources as Gaussians instead of

bimodal probability distributions corresponding to sinusoidal

sources. Yet, performance of SEIFA is not affected by violation

of this assumption. Therefore, according to these data, SEIFA

appears to be quite robust to the i.i.d. assumption of the evoked and

background sources.

Real data

SEIFA is also applied to real data produced from four

experiments. These experiments are chosen to demonstrate the

performance of SEIFA for denoising, artifact rejection and two

examples of separation of multiple evoked sources. MEG data for

these experiments were collected using a 275-channel, whole-head

MEG system (Omega 2000, VSM MedTech Inc., Port Coquitlam,
Fig. 6. Denoising auditory-evoked responses. Each row shows the averaged audito

the performance of SEIFA, JADE, SVD and Raw Data. Using SEIFA, it can be se

number of trials.
Canada). The MRI data were collected using either a 1.5 T Signa or

3.0 T Signa Excite by General Electric (Milwaukee, WI). For each

experiment, either an auditory and/or somatosensory stimulus are

presented for a total of Navg number of trials. The Fraw_ magnetic

field is defined as the trial-averaged data, which are found by

aligning the trials based on the timing of the stimulus presentation

and computing the mean.

For visualization of the results of these experiments, three kinds

of displays are used. First, the time courses of the cleaned evoked

factors before and after denoising are displayed. Second, a contour

map that shows the polarity and magnitude of the denoised and raw

sensor signals in sensor space is shown. The contour plot of the

magnetic field on the sensor array corresponds to the mapping of

three-dimensional sensor surface array to points within a circle.

The contour map typically shows the magnetic field profile at a

particular instant of time relative to the stimulus presentation. Third

and finally, localization of a particular evoked factor or the sum of

all evoked factors are overlaid on the subjects’ MRI. Three

orthogonal projections—axial, sagittal and coronal MRI slices—

that highlight all voxels having 80% or more of the energy found in

the maximum-energy voxel (the energy of each voxel is time-

averaged over the entire post-stimulus period) are shown. All

results are shown in the neurological convention. MRI coregistra-

tion is done using the NUTMEG software toolkit (http://

www.mrsc.ucsf.edu/~sarang/nutmeg/).

Denoising averages from small number of trials

Results for the first experiment are shown in Figs. 6 and 7. The

stimulus is a 400 ms duration, 1 kHz tone presented binaurally

once every 1.35 s (T100 ms). Fig. 6 shows a representative set of
ry-evoked response for Navg = 10, 50, 150, 250 respectively. Columns show

en that an evoked response is observable even for averages with very small

 http:\\www.mrsc.ucsf.edu\~sarang\nutmeg\ 


Fig. 7. Denoising performance for auditory-evoked data. The output SNIR is plotted as a function of the number of trials used in the averages. The inset shows

the signals used as a surrogate reference for ground-truth response. Superior performance of SEIFA can be observed for averages from a small number of trials.
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the denoised sensor signals (every tenth channel) from each of four

methods as a function of the number of trials used to compute the

average. The number of components used for SEIFA is L = 1, and

SVD uses the 10 largest singular vectors, and JADE was performed

after preprocessing with SVD. The results for JADE and SVD
Fig. 8. Auditory-evoked responses contaminated by eye blink artifacts. Each factor

First, localizations are overlaid on the subjects’ MRI. Three orthogonal projection

shown. In each MR overlay, all voxels having 80% or more of the energy found in

the entire post-stimulus period) are shown in white. The bottom row shows the tim

contour map (center right) that shows the polarity and magnitude of the sensor sig

the vertical dotted line in the bottom panel. (a) The averaged auditory-evoked resp

in the left hemisphere, using 2 largest singular vectors. (c) SVD results for senso
assume L = 5 and M = 5. Subsequently, for reconstruction of

denoised signals with SVD and JADE; specific components were

picked to maximize pre–post-stimulus power. The results from all

four methods produce meaningful time courses for large Navg, but

there is a significant deterioration of the results as Navg is reduced.
localization plot in this figure and all subsequent ones consist of five panels

s-coronal (top left), sagittal (top right) and axial (center left) MRI slices are

the maximum-energy voxel (the energy of each voxel is time-averaged ove

e course of the cleaned evoked factors after denoising are also displayed. A

nals in sensor space is shown for a particular instant of time as indicated by

onses that is dominated by the eye blink artifact. (b) SVD results for sensors

rs in the right hemisphere, using 2 largest singular vectors.
.

r
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Notice that the M100 and the M150 responses for SEIFA are still

clearly distinguishable for Navg as small as 10.

For real data, the time courses at the sensors generated solely by

the evoked sources, yin* , are not known, hence the previously

defined denoising metric is not directly applicable. In an attempt to

quantify the performances of the different methods, a filtered

version of the raw data for Navg = 250 is used in place of yin*.

Filtering was done using a zero-phase band-pass filter with cutoff

frequencies of 1 and 100 Hz. Fig. 7 shows the output SNIR as a

function of Navg and in the inset shows the signals used for yin*. For

this example, the output SNIR for SEIFA is nearly flat for Navg >

50. SEIFA also produces the best performance of the four methods

for Navg < 225. As can be seen, the SVD method outperforms the

others as Navg becomes large since SVD becomes an ideal method

in this case, i.e., for large SIR.

Artifact rejection

Results for the second experiment are shown in Figs. 8 and 9.

The stimulus is a binaural presentation of a 400 ms duration, 1 kHz
Fig. 9. Localization of SEIFA estimated factors for eye blink data. Legend for each

factor from sensors in left hemisphere. (c and d) SEIFA results for the first and seco

can be localized to the eye blink and another to auditory cortex.
tone every 1 s. Data were collected for Navg = 100 trials. The subject

was also asked to blink both eyes every other tone presentation to

ensure that, for the purpose of this experiment, the eye blink

artifacts occur synchronously with the stimulus. This unrealistic

scenario is chosen for demonstrative purposes only. SVD and

SEIFA are applied separately to the left-half and right-half sensors.

In both cases, SVD uses the two largest singular vectors and SEIFA

assumes L = 2 since two evoked sources are expected, one due to

the eye blink and one due to the auditory stimulus. The eye blink

may be considered to be Fevoked_ for these data due to the

experimental design. Fig. 8a shows the original trial-averaged

magnetic fields recorded at the sensors. Notice that the subject was

anticipating the regularly occurring tones. It is surmised that the

subject started the eye blink early so that her eyes were shut just as

the tone occurred. The auditory response is completely obscured

by the eye blinks, which have a much larger magnitude. Figs. 8b

and c show the two results for SVD, one for each subset of sensors.

The contour plots are shown for t = 150 ms since this corresponds

to the expected timing of one of the two largest auditory responses
sub-figure is similar to Fig. 7. (a and b) SEIFA results for first and second

nd factor from sensors in the right hemisphere. In each hemisphere, a factor



Fig. 10. Localization of SEIFA estimated evoked sources for auditory–somatosensory data in Experiment #3. Three factors extracted using SEIFA for the

combined auditory/somatosensory stimulus are shown. Legend for each sub-figure is identical to Fig. 7. (a and b) Two factors that localize to somatosensory

cortex correspond to and early and late somatosensory response. (c) A third factor localizes to auditory cortex and has the time course consistent with an

auditory-evoked response.
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and since the eye blink magnitude at this time is relatively small.

The reconstruction using the left-half sensors shows a response in

A1, as desired. The reconstruction using the right-half sensor,

however, does not show a response in A1.

Figs. 9a and c show the reconstructions of the first of the two

factors using SEIFA for the left and right hemispheres, respective-

ly. These are clearly due to the eye blink artifact. Figs. 9b and d

show the second factors for both hemispheres, which both show

activity in A1. Notice that the extracted auditory responses have a

significantly smaller magnitude than the eye blink. This demon-

strates the ability of SEIFA to remove artifacts, although it should

be mentioned that there are other approaches that could be used for

this particular dataset. Namely, one could use SVD and remove the

most energetic singular-value component, which is expected to be

related to the eye blink.
Fig. 11. Localization of SEIFA estimated auditory-evoked sources in Patient F. Leg

using two largest singular vectors using sensors in both hemispheres localize to th

corresponds to auditory cortex in the left hemisphere and has an early response (85

to auditory cortex in the right hemisphere with a later response (100 ms).
Separation of evoked sources I

To highlight SEIFA’s ability to separately localize evoked factors

and sources, we conducted an experiment involving simultaneous

presentation of auditory and somatosensory stimuli. We expected

simultaneous activation of contralateral auditory and somatosensory

cortex. A pure tone (400 ms duration, 1 kHz, 5 ms ramp up/down)

was presented binaurally with a delay of 50 ms following a

pneumatic tap on the left index finger. Averaging is performed over

Navg = 100 trials triggered on the onset of the tap. Results for this

experiment are shown in Fig. 10. Results are based on using the right

hemisphere channels above contralateral somatosensory and auditory

cortices. The figure shows localization and time course of each of the

three factors extracted by SEIFA. The first two factors localize to

primary somatosensory cortex (SI), however, with differential

latencies. The first factor shows a peak response at a latency of 50
end for each sub-figure is the same as in Fig. 8. (a) SVD beamformer results

e center of the head. (b) Localization of the first factor estimated by SEIFA

ms). (c) Localization of the second factor estimated by SEIFA corresponds
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ms, whereas the second factor shows the response at a later latency.

Interestingly, the third factor localizes to auditory cortex, and the

extracted time course corresponds well to an auditory evoked

response that is well-separated from the somatosensory response.

Separation of evoked sources II

The patient involved in this example represents an interesting

clinical case in that the auditory response in the right hemisphere is

noticeably delayed relative to the response in the left hemisphere.

This is particularly pronounced for the case of 500 Hz tones, such as

used in this example. The cause of this anomaly is unknown but

may be related to the presence of a brain tumor on one side.

Auditory responses are otherwise normal. Responses to such data

are normally analyzed by beamformer localization one hemisphere

at a time. Beamforming of the entire sensor array produces

(incorrect) localizations in the center of the brain due to the

presence of highly correlated source activity in both hemispheres.

SEIFAwas run on data from the entire sensor array, and results are

shown in Fig. 11. Fig. 11a shows the SVD reconstruction, which is

based on the two largest singular vectors. The reconstruction shows

center of the head localization. This is expected since SVD is not

able to separate spatially distinct sources, and the activation is

symmetric with respect to the center of the head. SEIFAwas able to

successfully separate the sources in each hemisphere. Figs. 11b–c

show the first and second factors extracted by SEIFA, respectively.

The first factor shows significant activity near the left A1, and the

second factor shows activity near the right A1. The time course of

these factors clearly shows the early response in the left hemisphere

(¨85 ms) when compared with the right (¨100 ms). Hence, SEIFA

is able to separate constituent sources in this experiment.
Discussion

We have presented a novel algorithm for denoising, separation

and localization of stimulus-evoked brain activity obtained from

MEG and EEG measurements. Although the results presented here

focus on MEG data, the framework presented here is applicable to

EEG data and combined measurements as well. We used a latent

variable probabilistic modeling approach to model sensor measure-

ments as the sum of unobserved non-Gaussian stimulus-evoked

sources, Gaussian interference sources and Gaussian sensor noise.

We used an VB-EM algorithm to infer the latent variables and

model parameters. We further exploited the pre-stimulus data to

infer parameters of interference sources and sensor noise. We

demonstrate the superior performance of our algorithm with other

benchmarks both for simulations with high noise and interference

and small data lengths and with real data.

Whereas the framework presented in this paper bears some

similarities to the Independent Components Analysis (ICA)

approach, there are several important differences. ICA algorithms

learn unmixing matrices and are limited to square noiseless mixing

of independent brain sources. In the case of measurement systems

with 275 channels, for good performance, dimensionality reduction

is necessary. Often, SVD methods are used in conjunction with

ICA algorithms for dimensionality reduction. Signal sub-space

dimensionality estimation can be difficult for low SIR and SNR

data, and dimension reduction will result in erroneous results. In

contrast, SEIFA learns unknown mixing matrices for cases that are

not limited to square-mixing and offers a natural form of

dimensionality reduction with no loss of information. Furthermore,
it is optimal in non-zero noise and also can exploit pre-stimulus

data to learn the interference model. As we have shown, SEIFA

significantly outperforms JADE in our simulations, especially for

short data lengths and high noise conditions.

One advantage of the algorithm presented here is that it offers a

principled way of model order selection and to learn evoked source

distributions. In our simulations and data analysis presented so far,

we have assumed that the number of factors L is known. In our

algorithm, one can use the MAP estimates of the hyperparameters

of the mixing matrices to estimate the number of factors by

thresholding. Alternatively, one can determine the number of

factors in the data by computing the evidence or marginal

likelihood for different number of factors and then choose L such

that the marginal likelihood of the data is maximized. This involves

computing Eq. (46) for different model orders and choosing the

model order that maximizes F . We also assume that the source

distributions are known and correspond to damped and windowed

sinusoids. Using the EM algorithm, we can also in principle learn

the means and variances of these mixture of Gaussian distribution

parameters from the data. Model order selection and learning of

source distributions within the SEIFA framework presented in this

paper are currently under investigation.

SEIFA improves localization of denoised and separated sources

with beamforming by computing regularized data covariance

matrices of evoked sources and the noise. Localization of data

denoised using SEIFA can be achieved by algorithms other than

beamforming. Since SEIFA computes regularized evoked source

and noise correlation matrices, it can also be used in conjunction

with maximum-likelihood dipole estimation procedures and with

MUSIC (Mosher et al., 1992). Such investigations are also

currently underway.
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Appendix A. The VB-EM algorithm

This section outlines the derivation of the VB-EM algorithm

that infers the SEIFA model from data.

A.1. Model

We start by rewriting the model in a form that explicitly includes

the collective states sn of the evoked factors as latent variables. Let r

be an L-dimensional vector denoting a particular collective state: r =

(r1, r2, . . ., rL) denotes the configuration where evoked factor j is in
state rj = 1 : Sj; there are S = CjSj configurations. Let the L-

dimensional vector lr and diagonal L � L matrix rr denote the

mean and precision, respectively, corresponding to collective state

r, and let pr denote its probability. Hence

lr ¼

l1;r1

l2;r2

N

lL;rL

1
CCCA

0
BBB@ ; rr ¼

r1;r1
r2;r2

N

rL;rL

1
CCCA

0
BBB@ ;

pr ¼ p1;r1p2;r2 � � � pL;rL ð38Þ
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We now have

p xnjsn ¼ rð Þ ¼ N xnjlr; mrð Þ; p sn ¼ rð Þ ¼ pr ð39Þ

and from the i.i.d. assumption

p xjsð Þ ¼
YN

n ¼ N0 þ 1

p xnjsnð Þ

p sð Þ ¼
YN

n ¼ N0 þ 1

psn ð40Þ

The full joint distribution of the SEIFA model is given by

p y; x; s; u;A;Bð Þ ¼ p yjx; u;A;Bð Þp xjsð Þp sð Þp uð Þp Að Þp Bð Þ ð41Þ

together with Eqs. (5), (7), (8), (39) and (40).

A.2. Variational Bayesian inference

The Bayesian approach, as discussed above, treats latent

variables and parameters on equal footing: both are unobserved

quantities for which posterior distributions must be computed. A

direct application of Bayes’ rule to the SEIFA model would

compute the joint posterior over the latent variables x, s, u and

parameters A, B

p x; s; u;A;Bjyð Þ ¼ 1

p yð Þ p y; x; s; u;A;Bð Þ ð42Þ

where the normalization constant p( y), termed the marginal

likelihood, is obtained by integrating over all other variables

p yð Þ ¼
X
s

Z
dx du dA dB p y; x; s; u;A;Bð Þ ð43Þ

However, this exact posterior is computationally intractable

because the integral above cannot be obtained in closed form.

The VB approach approximates this posterior using a varia-

tional technique. The idea is to require the approximate posterior to

have a particular factorized form then optimize it by minimizing

the Kullback–Leibler (KL) distance from the factorized form to

the exact posterior. Here, we choose a form which factorizes the

latent variables from the parameters given the data

p x; s; u;A;BjyÞ , q x; s; u;A;Bjyð Þ ¼ q x; s; ujyð Þq A;Bjyð Þð ð44Þ

It is worth emphasizing that (1) beyond the factorization

assumption, we make no further approximation when computing

q and (2) the factorized form still allows correlations among x, s, u,

as well as among the matrix elements of A, B, conditioned on the

data.

Rather than minimize the KL distance directly, it is convenient

to start from an objective function defined by

F q½ � ¼
X
s

Z
dx du dA dB q x; s; u;A;Bjyð Þ½log p y; x; s; u;A;Bð Þ

� log q x; s; u;A;Bjyð Þ� ð45Þ

It can be shown that

F q½ � ¼ log p yð Þ � KL q x; s; u;A;Bjyð Þjjp x; s; u;A;Bjyð Þ½ � ð46Þ
and since the marginal likelihood p( y) is independent of q,

maximizing F w.r.t. q is equivalent to minimizing the KL distance.

Furthermore, F is upper bounded by log p( y) because the KL

distance is always nonnegative. Hence, any algorithm that succes-

sively maximizes F , such as VB-EM, is guaranteed to converge.

A.3. Derivation of VB-EM

VB-EM is derived by alternately maximizing F w.r.t. the two

components of the posterior q. In the E-step, one maximizes w.r.t.

the posterior over latent variables q(x, s, u|y), keeping the second

posterior fixed. In the M-step, one maximizes w.r.t. the posterior

over parameters q(A, B |y), keeping the first posterior fixed. When

performing maximization, normalization of q must be enforced by

adding two Lagrange multiplier terms to F in Eq. (45).

Maximization is performed by setting the gradients to zero

BF

Bq x; s; ujyð Þ ¼ blog p y; x; s; u;A;Bð Þ�2 � log q x; s;ujyð Þ þC1 ¼ 0

BF
Bq A;Bjyð Þ ¼ blog p y; x; s; u;A;Bð Þ�1 � log q A;Bjyð Þ þ C2 ¼ 0

ð47Þ

where C1, C2 are constants depending only on the data y and not

on the variables that are used in the E- and M-steps. bI�1 denotes

averaging only w.r.t. q(x, s, u|y), and bI�2 denotes averaging only

w.r.t. q(A, B |y). Hence, the posteriors are given by

q x; s; ujyð Þ ¼ 1

Z1
exp blog p y; x; s; u;A;Bð Þ�2½ �

q A;Bjyð Þ ¼ 1

Z2
exp blog p y; x; s; u;A;Bð Þ�1½ � ð48Þ

where Z1, Z2 are normalization constants.

A.4. E-step

It follows from Eq. (48) that the posterior over u, x, s factorizes

over time and has different pre- and post-stimulus forms,

q u; x; sjyð Þ ¼
YN0

n ¼ 1

q unjynð Þ I
YN

n ¼ N0 þ 1

q un; xn; snjynð Þ ð49Þ

It also follows that in the pre-stimulus, period q(un|yn) is

Gaussian in un, and, in the post-stimulus period, q(un, xn, sn |yn) is

Gaussian in un, xn for a given sn. To see this, consider log q(x, s,

u|y) in Eq. (48) and observe that it is a sum over n, where the nth

element depends only on xn, un and the dependence is quadratic.

For the pre-stimulus period, we obtain

q unjynð Þ ¼ N unjūn;A�1
� �

ð50Þ

with mean ūn and covariance matrix A given by Eq. (10). (One

first obtains A = (bBTEB� + I)�1 and then performs the average

using Eq. (61).) For the post-stimulus period, we write the posterior

in the form

q un; xn; snjynð Þ ¼ q xn; unjsn; ynð Þq snjynð Þ ð51Þ
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The first component on the right hand side is Gaussian

q xn; unjsn ¼ r; ynð Þ ¼ q xVnjsn ¼ r; ynð Þ ¼ N xVnjx̄Vrn;G�1r

� �
ð52Þ

with mean x̄rnV and covariance matrix Gr
�1 given by Eq. (12) (as for

A above, one first obtains Gr = (bAVTE AV� + I)�1 then applies Eq.

(61).) lrV and rrV are defined as the LV � 1 mean vector and LV � LV
diagonal precision matrix, respectively, for collective state r,

obtained from mr and Nr of Eq. (38) by padding with M zeros

lVr ¼
lr

0M

��
rVr ¼

rr
0M

��
ð53Þ

The state posterior is given by q(sn = r|yn) = p̄rn (15), which is

obtained by some further algebra.

It is useful to make explicit the correlations among the factors

implied by their posteriors ((50), (52)). For the pre-stimulus period,

we obtain

bunu
T
n � ¼ ūn ū

T
n þA ð54Þ

For the post-stimulus period, we obtain conditioning on the

collective state, bxnV |sn = r� = x̄rnV and bxnV xnV
T|sn = r� = x̄rnV x̄rnV

T + Gr.

In terms of xn, un

bxnjsn ¼ r� ¼ x̄rn

bunjsn ¼ r� ¼ ūrn

bxnx
T
n jsn ¼ r� ¼ x̄rn x̄

T
rn þ Gr

xx

bunu
T
n jsn ¼ r� ¼ ūrn ū

T
rn þ Gr

uu

bxnu
T
n jsn ¼ r� ¼ x̄rn ū

T
rn þ Gr

xu ð55Þ

where we have used Eqs. (13) and (14).

To obtain the posterior means and correlations ((21), (23)), we

must sum over the collective state since

bx Vn � ¼
X
r

Z
dx Vn q sn ¼ rð Þq x Vn jsn ¼ rð Þx Vn ¼

X
r

p̄rnbx Vn jsn ¼ r�

bx Vn xV
T
n � ¼

X
r

Z
dx Vn q sn ¼ rð Þq x Vn jsn ¼ rð Þx Vn xVTn

¼
X
r

p̄rnbx Vn xV
T
n jsn ¼ r� ð56Þ

Eqs. (55) and (56) lead to the results (21) and (23).

A.5. M-step

It follows from Eq. (48) that the parameter posterior factorizes

over the rows of the mixing matrices and correlates their columns.

Let wi denote a column vector containing the ith row of the

combined mixing matrix AV = (A, B)

AV ¼
� � � w1 � � �
� � � w2 � � �
� � � � � � � � �
� � � wK � � �

1
CCA

0
BB@ ð57Þ
so wj
i = AijV . Then, the posterior over each row is Gaussian

q A;Bjyð Þ ¼ q AVjyð Þ ¼
YK
i ¼ 1

N wijw̄i;EiW
�1� �

ð58Þ

with mean w̄j
i = Āij computed by Eq. (16). The precision matrix

EiW
�1 is computed using Eq. (17). To see this, consider log q(A, B |y)

in Eq. (48) and observe that it is a sum over i, where the ith element

depends only on the ith rows of A, B and the dependence is

quadratic.

It is now evident that p(A, B) of Eq. (9) is indeed a conjugate

prior. Rewriting it in the form

p A;Bð Þ ¼ p AVð Þ ¼
YK
i ¼ 1

N wij0; EiaVÞ
�

ð59Þ

where aV is a diagonal matrix with the hyperparameter matrices A,

h on its diagonal, shows that its functional form is identical to that

of the posterior (58), with W�1 replacing aV.
It is useful to make explicit the correlations among the elements

of the mixing matrices implied by their posterior (58). They are

bAijV AklV � = ĀijV ĀklV + yikWjl/Ei, or in terms of A, B

bAijAkl� ¼ ĀijĀkl þ dik
1

Ei

WAAð Þjl

bBijBkl� ¼ B̄ijB̄kl þ dik
1

Ei

WBBð Þjl

bAijBkl� ¼ ĀijB̄kl þ dik
1

Ei

WABð Þjl ð60Þ

where we used Eq. (18). It follows that

bATEA� ¼ Ā
T
EĀ þ KWAA

bBTEB� ¼ B̄
T
EB̄ þ KWBB

bAVTEAV� ¼ ĀVTEĀVþ KW ð61Þ

which are needed for Eqs. (10) and (12).

To obtain the update rules for the hyperparameters (19), observe

that the part of the objective function F (45) that depends on A, B

is

blog p Að Þ þ log p Bð Þ� ð62Þ

where the averaging is w.r.t. the posterior q. Next, compute the

derivative of this expression w.r.t. a, h and set it to zero. The

solution of the resulting equation is Eq. (19). It is easier to first

compute the derivative and then apply the average. Similarly, to

obtain the update rule for the noise precision (20), observe that the

part of F that depends on E is

blog p yjx; u;A;Bð Þ þ log p Að Þ þ log p Bð Þ� ð63Þ

and set its derivative w.r.t. L to zero.
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