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A probabilistic algorithm integrating source localization and noise
suppression for MEG and EEG data
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We have developed a novel probabilistic model that estimates neural
source activity measured by MEG and EEG data while suppressing the
effect of interference and noise sources. The model estimates
contributions to sensor data from evoked sources, interference sources
and sensor noise using Bayesian methods and by exploiting knowledge
about their timing and spatial covariance properties. Full posterior
distributions are computed rather than just the MAP estimates. In
simulation, the algorithm can accurately localize and estimate the time
courses of several simultaneously active dipoles, with rotating or fixed
orientation, at noise levels typical for averaged MEG data. The
algorithm even performs reasonably at noise levels typical of an
average of just a few trials. The algorithm is superior to beamforming
techniques, which we show to be an approximation to our graphical
model, in estimation of temporally correlated sources. Success of this
algorithm using MEG data for localizing bilateral auditory cortex,
low-SNR somatosensory activations, and for localizing an epileptic
spike source are also demonstrated.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Mapping the spatiotemporal neural activity of the entire brain is
an important problem in basic neuroscience research. It is also
clinically important for patients with brain tumors and epilepsy,
both in localizing regions important for cognitive function and for
identifying epileptogenic brain regions. Such brain mapping
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procedures are useful to guide neurosurgical planning, navigation,
and resection.

Many noninvasive techniques have emerged for functional
brain mapping, such as functional magnetic resonance imaging
(fMRI) and magnetoencephalography (MEG). Although fMRI is
the most popular method for functional brain imaging with high
spatial resolution, it suffers from poor temporal resolution since it
measures blood oxygenation level-dependent (BOLD) signals with
fluctuations in the order of seconds. These BOLD signals are also
indirect measures of neural activity which might not accurately
reflect neural activity, especially in regions of altered vasculature.
However, dynamic neuronal activity has fluctuations in the
submillisecond time scale that can only be directly measured with
magnetoencephalography (MEG) and/or electroencephalography
(EEG). MEG data are the measurements of tiny magnetic fields
surrounding the head while EEG data are the measurements of
voltage potentials using an electrode array placed on the scalp.

The past decade has shown rapid development of whole-head
MEG/EEG sensor arrays and of algorithms for reconstruction of
brain source activity from MEG and EEG data, termed source
localization. All existing methods for brain source localization are
hampered by the many sources of noise present in MEG/EEG data.
The magnitude of the stimulus-evoked neural sources is on the
order of noise on a single trial, and so typically 50–200 averaged
trials are needed in order to clearly distinguish the sources above
noise. This limits the type of cognitive questions that can be asked
and is prohibitive for examining processes such as learning that can
occur over just one or several trials. Needing to average trials is
time consuming and therefore difficult for a subject or patient to
hold still or pay attention through the duration of the experiment.
Gaussian thermal noise or Gaussian electrical noise is present at the
MEG or EEG sensors themselves. Background room interference
such as from powerlines and electronic equipment can be
problematic. Biological noise such as heartbeat, eyeblink or other
muscle artifact can also be present. Ongoing brain activity itself,
including the drowsy-state alpha (∼10 Hz) rhythm can drown out
evoked brain sources. Finally, many localization algorithms have
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difficulty in separating neural sources of interest that have
temporally overlapping activity.

Noise in MEG and EEG data is typically reduced by a
variety of preprocessing algorithms before being used by source
localization algorithms. Simple forms of preprocessing include
filtering out frequency bands not containing a brain signal of
interest. Additionally and more recently, ICA algorithms have
been used to remove artefactual components, such as eyeblinks
(Jung et al., 2000). More sophisticated techniques have also
recently been developed using graphical models for preproces-
sing prior to source localization (Nagarajan et al., 2005, 2006).
Therefore, current algorithms for source localization from MEG
and EEG data typically use a two-stage procedure — the first
for noise/interference removal and the second for source
localization.

This paper presents a probabilistic modeling framework for
MEG/EEG source localization that estimates Source Activity using
Knowledge of Event Timing and Independence from Noise and
Interference (SAKETINI). The framework uses a probabilistic
hidden variable model that describes the observed sensor data in
terms of activity from unobserved brain and interference sources.
The unobserved source activities and model parameters are
inferred from the data by a variational Bayesian Expectation
Maximization algorithm. The algorithm then creates a spatiotem-
poral image of brain activity by scanning the brain, inferring the
model parameters and variables from sensor data, and using them
to compute the likelihood of a dipole at each grid location in the
brain.

We first describe the generative model for the data. We
complete specification of the model for post-stimulus sources by
including prior distributions and compute the unknown quantities
learned from the data. We then describe the model for learning
interference and noise sources from pre-stimulus data. We finish
the Methods by showing that an established source localization
method, the minimum variance adaptive beamformer (MVAB)
(Sekihara et al., 2001), is an approximation of our framework. In
the Results section, we show performance of SAKETINI relative to
MVAB and sLORETA (Pascual-Marqui, 2002) both in localization
ability and in time course estimation for MEG data. We show the
effect of number of sensors and time points for all three methods.
We further show the proposed method's performance applied to a
real auditory-evoked MEG dataset, a low-SNR somatosensory
MEG dataset, and an epileptic spike MEG dataset. We conclude
with a discussion on the model order and inputs to the algorithm,
extensions of the model, and its relationship to other methods in
the literature. A preliminary report of this work was shown in
Zumer et al. (2007).

Methods

Probabilistic model integrating source localization and noise
suppression

This section describes the generative model for the data. We
assume that the MEG/EEG data have been collected such that
stimulus onset or some other experimental marker indicated the
“zero” time point. Ongoing brain activity, biological noise,
background environmental noise, and sensor noise are present in
both pre-stimulus and post-stimulus periods; however, the evoked
neural sources of interest are only present in the post-stimulus time
period. We therefore assume that the sensor data can be described
as coming from four types of sources: (I) evoked source at a
particular voxel (grid point), (II) all other evoked sources not at
that voxel, (III) all background noise sources with spatial
covariance at the sensors (including brain, biological, or environ-
mental sources), and (IV) sensor noise. We first infer the model
describing source types (III) and (IV) from the pre-stimulus data,
then fix certain quantities (described below in next subsection) and
infer the full model describing the remaining source types (I) and
(II) from the post-stimulus data (described below in the third
subsection). After inference of the model, a map of the source
activity is created, as well as a map of the likelihood of activity
across voxels.

Let yn denote the K×1 vector of data from sensor data for time
point n, where K is the number of sensors (typically ∼200). Time
ranges from −Npre:0:Npost−1 where Npre(Npost) indicates the
number of time samples in the pre-(post-)stimulus period. The
generative model for data yn is

yn ¼ Bun þ vn n ¼ �Npre; N ;� 1

Frsrn þ Aqrxqr
n þ Bun þ vn n ¼ 0; N ; Npost � 1

�
ð1Þ

The K×q forward lead field matrix Fr represents the physical (and
linear) relationship between a dipole source at voxel r for each
dipole orientation q along a coordinate basis and its influence on
sensor k=1:K (Sarvas, 1987). The lead field Fr is calculated from
knowing the geometry of the source location to the sensor
location, as well as assuming the type of conducting medium in
which the source lies. The human head is most commonly
approximated as a single-shell sphere volume conductor for MEG
data; for EEG data, a more detailed model taking into account the
tissue conductance boundaries is usually needed. In the most
general case, q=3 for all three possible directions of coordinate
bases of a source dipole. In the case of the single-shell sphere, the
radial component of source dipoles contributes nothing to MEG
sensors, thus q=2. If there is knowledge of subject-specific
cortical anatomy, the source may be constrained to be perpendi-
cular to the gray matter surface, thus q=1. Throughout the rest of
this paper, we use the single-shell model with q=2 for both
simulations and real data from MEG.

The source activity sn
r is a q×1 vector of dipole strength at

time n for the voxel r. The K×L matrix Ar and the L×1 vector
xn
r represent the post-stimulus mixing matrix and evoked non-
localized factors, respectively, corresponding to source type (II)
discussed above, where the \r superscript indicates for all voxels
not at voxel r. We leave these superscripts off in the rest of this
paper for clarity. The K×M matrix B and the M×1 vector un
represent the background mixing matrix and background factors,
respectively, corresponding to source type (III) discussed above.
The K×1 vector vn represents the sensor-level noise, which is
assumed to be drawn from a Gaussian distribution with zero-
mean and precision (inverse covariance) defined by the diagonal
matrix λ. All quantities depend on r in the post-stimulus period
except for B, un and λ, which will be learned from the pre-
stimulus data, and fixed as the other quantities are learned for
each voxel. Note, however, that the posterior update for un
(represented by ūn) does depend on the voxel r. The graphical
model is shown in Fig. 1. This generative model becomes a
probabilistic model when we specify prior distributions, as
described in the next two sections (see Jordan (1999) and Beal
et al. (2003) for additional information on related graphical
models).



Fig. 1. (Left) SAKETINI graphical model. Variables dependent on time are inside dotted box; parameters independent of time outside dotted box. Values in
circles are unknown and learned from the model, and values in squares are known. After applying a simpler model to the pre-stimulus data to learn the sensor
noise precision and interference mixing matrix, these quantities are then known and placed in squares. (Right) Representation of factors influencing the data
recorded at the sensors. In orange, a post-stimulus source at the voxel of interest, focused on by the lead field F. In red, other post-stimulus sources not at that
particular voxel. In green, all background sources, including on-going brain activity, eyeblinks, heartbeat, and electrical noise. In blue, thermal noise present in
each sensor.
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Separation of background sources learned from pre-stimulus data

We learn the background mixing matrix B and sensor noise
precision λ=diag(λ1,…,λK) from the pre-stimulus data using a
variational Bayesian factor analysis model. All variables, para-
meters and hyperparameters are hidden and are learned from the
pre-stimulus data. We assume Gaussian prior distributions on the
background factors and sensor noise; we assume a flat prior on the
sensor noise precision. We further assume that the background
factors are independent and identically distributed (i.i.d.) across
time. All normal distributions specified in this paper are defined by
their mean and precision (inverse covariance). The following is
assumed for n=−Npre:−1:

pðuÞ ¼ j
n
pðunÞ; pðunÞ ¼ Nðunj0;IÞ; ð2Þ

pðvÞ ¼ j
n
pðvnÞ; pðvnÞ ¼ N ðvnj0;kÞ; pðkÞ ¼ const: ð3Þ

pðyju; B;kÞ ¼ j
n
pðynjun; B; kÞ; pðynjun; B;kÞ ¼ N ðynjBun; kÞ

ð4Þ
We define the notation pðunÞ ¼ N ðunjA;DÞ to mean that the
probability distribution of un is a normal Gaussian distribution with
mean μ and precision (inverse covariance) Δ. To complete the
specification of this model, we need prior distributions on the
model parameters. We use a conjugate prior for the background
mixing matrix B, as follows,

pðBÞ ¼ j
km

pðBkmÞ; pðBkmÞ ¼ N ðBkmj0;kkbmÞ ð5Þ

where βm is a hyperparameter over the mth column of B and λk is
the precision of the kth sensor. The matrix β=diag(β1,… ,βM)
provides a robust mechanism for automatic model order selection,
so that the optimal size of B is inferred from the data through β (for
general reference, see Neal (1996)).
In general, for any “free” probability density function (pdf) q,
the “free energy” F (so-called in statistical physics) is written as

Fðq;HÞ ¼
Z

du dB qðu;Bjy;HÞ½log pðy;u;BjHÞ � logqðu;Bjy;HÞ�
¼ Eqðu;Bjy;HÞ½lðy;u;BjHÞ� þ Hq

¼ R
du dB q u;Bjy;Hð Þ log

pðu;Bjy;HÞ
qðu;Bjy;HÞ þ logp yjHð Þ

� �

¼ log pðyjHÞ � KL½qðu;Bjy;HÞjjpðu;Bjy;HÞ�
¼ LðHÞ � KL½qðu;Bjy;HÞjjpðu;Bjy;HÞ�

ð6Þ

where Θ is the set of all model parameters, in this case Θ={β, λ},
and Hq is the entropy of q(u,B|y,Θ). The Kullback–Leibler
divergence between distributions q and p, defined KL(q||p)=
∫dx q(x)[log q(x)− log p(x)], is always non-negative and can equal
zero if the two distributions are equal; thus, F is a lower bound to
the log likelihood function L. Exact inference on this model is
intractable using the true joint posterior over the background
factors u and mixing matrix B. We desire the marginal conditional
posterior estimates of the background factors and mixing matrix,
given the data. We could choose to estimate just the maximum a
posteriori (MAP) estimates, but this ignores the full distribution
including its precision. We could also choose to estimate points of
the distribution extensively, using, for example, Markov Chain
Monte Carlo methods (Jun et al., 2005; Gelman and Rubin, 1996);
however this is computationally costly as well as dependent on the
sampled points. Instead, we choose to factorize the distribution
assuming conditional independence of the factors and parameters,
also termed the mean field approximation.

pðu;BjyÞcqðu;BjyÞ ¼ qðujyÞqðBjyÞ ð7Þ
This approximation restricts the posterior to a product of factor
distributions but allows the solution to be computed analytically.
F is equal to log p(y|Θ) when the approximation in Eq. (7) is
true, thus making the KL-divergence zero. The variational Bayesian
Expectation Maximization (VB-EM) algorithm (Attias, 1999;
Ghahramani and Beal, 2001; Beal, 2003) iteratively maximizes F
with respect to (w.r.t.) each factorized distribution to, at least, a local
maximum of F , alternating w.r.t. the posteriors q(u|y) and q(B|y). In

ð6Þ



ð18Þ
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the E-step, F is maximized w.r.t. q(u|y), keeping q(B|y) constant,
and the sufficient statistics of the hidden variables are computed. In
the M-step, F is maximized w.r.t. q(B|y), keeping q(u|y) constant,
and the MAP estimate of the parameters and hyperparameters is
computed. The q(u,B|y)=q(u|y)q(B|y) that maximizes F is the
distribution that minimizes the KL-divergence, thus making the
mean field approximation as close to equivalence as possible under
the constraint implied by Eq. (7). A derivation of a similar model is
described in the Appendix of Nagarajan et al. (2006) and the
variational approximation has been shown to be a powerful and
flexible tool (Jordan et al., 1999). It can further be shown that, given
our previous assumptions of Gaussian prior distributions, the form
of the posterior q(u|y) must also be Gaussian, by showing that the
function log q is quadratic in u.

In the E-step, maximizing F w.r.t. q(u|y) holding q(B|y) fixed
gives the following posterior estimate update for the factors.

qðujyÞ ¼ j
n
qðunjynÞ; qðunjynÞ ¼ N ðunjūn ;gÞ

ūn ¼ g�1B̄Tkyn; g ¼ B̄TkB̄ þ Kw�1 þ I

ð8Þ

For all variables in this paper, a bar over the variable indicates its
posterior mean. In the M-step, we compute the full posterior
distribution of the background mixing matrix B, including its
precision matrix ψ, and the MAP estimates of the noise precision λ
and the hyperparameter β.

qðBjyÞ¼N ðBjB̄;wÞ
B̄ ¼ Ryuw; w ¼ ðRuu þ bÞ�1

b�1 ¼ diag
1
K
B̄TkB̄ þ w

� �
; k�1 ¼ 1

N
diag Ryy � B̄RT

yu

� � ð9Þ

The matrices, such as Ryu, represent the posterior covariance
between the two subscripts.

Ryy ¼
XN
n¼1

yny
T
n ; Ryu ¼

XN
n¼1

ynū
T
n ð10Þ

Localization of evoked sources learned from post-stimulus data

In the stimulus-evoked paradigm, the source strength at each
voxel is learned from the post-stimulus data. The background
mixing matrix B and sensor noise precision λ are fixed, after
having been learned from the pre-stimulus data, as described in the
previous section. We assume that those quantities remain constant
through the post-stimulus period and are independent of source
location. We assume Gaussian prior distributions on the source
factors and interference factors. We further make the assumption
that both of these factors are i.i.d. across time.

The source factors have prior precision given by the q×q matrix
Φ, which relates to the strength of the dipole in each of q directions.
We have used the superscript r here as a reminder that s is for only
one voxel at a time, although in general we will leave off this
superscript.

pðsrÞ ¼ j
n
pðsrnÞ; pðsrnÞ ¼ N ðsrnj0; UrÞ ð11Þ

The interference and background factors are assumed to have
identity precision (uninformed prior).

pðxÞ ¼ j
n
pðxnÞ; pðxnÞ ¼ N ðxnj0; IÞ;

pðuÞ ¼ j
n
pðunÞ; pðunÞ ¼ N ðunj0; IÞ

ð12Þ
We also use a conjugate prior for the interference mixing matrix A,
where α=diag(α1,… ,αL) is a hyperparameter, similar to the
expression for the background mixing matrix, which helps in model
order selection for determining the size of A from the data.

pðAÞ ¼ j
kl
pðAklÞ; pðAklÞ ¼ N ðAklj0; kkalÞ ð13Þ

We now specify the full model:

pðyjs; x; u; A; B; kÞ ¼ j
n
pðynjsn; xn; un; A; B; kÞ;

pðynjsn; xn; un; A; B; kÞ ¼ NðynjFsn þ Axn þ Bun; kÞ
ð14Þ

Exact inference on this model is intractable using the joint posterior
over the evoked non-localized factors x and mixing matrix A; thus a
variational Bayesian approximation for the posteriors is again used.

pðs; x; u; AjyÞcqðs; x; u; AjyÞ ¼ qðs; x; ujyÞqðAjyÞ ð15Þ
All variables, parameters and hyperparameters are unknown and are
learned from the data. We learn the hidden variables and parameters
from the post-stimulus data, iterating through each voxel across the
brain, using the VB-EM algorithm. Since maximizing the log p(y|
Θ), for Θ={α, Φ} would be mathematically intractable, we
maximize a lower bound to log p(y|Θ) defined by the free energy
F in the following equation.

Fðq; HÞ ¼
Z

dudx ds dA qðs; x; u; Ajy;HÞ½log pðy; s; x; u; AjHÞ
� log qðs; x; u; Ajy; HÞ�

¼ log pðyjHÞ
� KL½qðs; x; u; Ajy; HÞjjpðs; x; u; Ajy; HÞ�

ð16Þ
In the E-step, the posterior distribution of the factors given the

data is computed:

qðxnVjynÞ ¼ NðxnVjx̄ nV;CÞ; x̄ n ¼ C�1Ā VTkyn;

C ¼ Ā VTk Ā Vþ KWþ I V ð17Þ
where we define:
x̄ nV¼
s̄ n
x̄ n
ūn

0
B@

1
CA; Ā V¼ F Ā B̄ð Þ;

I V¼
U 0 0

0 I 0

0 0 I

0
B@

1
CA; W ¼

0 0 0

0 WAA 0

0 0 0

0
B@

1
CA
ð18Þ
In the M-step, we update the posterior distribution of the
interference mixing matrix A including its precision ΨAA. Note that
the lead field F is fixed and known based on the geometry of the
sensors relative to the head (same quantity assumed known by
beamforming and other approaches) and B̄ was learned and fixed
from the pre-stimulus data. The sensor noise precision λ is also kept
fixed from the pre-stimulus period. The MAP values of the
hyperparameter α and source factor precision Φ are learned here
from the post-stimulus data.

Ā ¼ ðRyx � FRsx � B̄RuxÞWAA;

WAA ¼ ðRxx þ aÞ�1; U�1 ¼ 1

N
Rss;

a�1 ¼ diag
1
K
Ā

TkĀ þWAA

� � ð19Þ
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Explicit definitions for all combinations of posterior covariances are
omitted, but some are shown here for example:

Rss ¼
XN
n¼1

s̄ ns̄
T
n þ N

X
ss; Rsx ¼

XN
n¼1

s̄ nx̄
T
n þ N

X
sx ð20Þ

where ∑=Γ
− 1

is specified as:

X
¼

P
ss

P
sx

P
su

XT
sx

P
xx

P
xu

XT
su

XT
xu

P
uu

0
BBBB@

1
CCCCA ð21Þ

In each iteration of VB-EM, the marginal likelihood is
increased. The variational likelihood function (the lower bound
on the exact marginal likelihood) is given as follows:

Lr ¼ N
2
log

jkjjUrj
jCrj � 1

2

XN
n¼1

yTn kyn � x̄ nVrTCrx̄ nVr
� �

þ K
2
logjarjjWrj ð22Þ

This likelihood function is dependent on the source voxel r, since
we update the variables for each voxel, and thus a map of the
likelihood across the brain can be displayed. Furthermore, an
image of the source power estimates and the time course of activity
at each voxel could be plotted.

We note that the computational complexity of the proposed
algorithm is on the order O(KLNS), roughly equivalent to a single
dipole scan, which is on the order O(N(K2+S)). These are much
smaller than the complexity of a multi-dipole scan which is on the
order O(NSP) where P is the number of dipoles, and if S represents
roughly several thousand voxels.

We further note that the number of hidden variables to be
estimated is less than the number of data points observed, thus not
posing problems for estimation accuracy. See Fig. 7 for performance
as a function of data points.

Relationship of SAKETINI to minimum variance adaptive
beamforming

Minimum variance adaptive beamforming (MVAB) is one of
the best performing source localization techniques (Sekihara et al.,
2001, 2002, 2005; Küçükaltun-Yildirim et al., 2006). MVAB
estimates the dipole source time series by ŝn=WMVAByn, where

WMVAB ¼ ðFTR�1
yy FÞ�1FTR�1

yy ð23Þ

Thus, MVAB also has computational complexity equivalent to a
single-dipole scan, on the order O(N (K2+S)). MVAB is known to
fail for two sources that are highly correlated in time (Sekihara et
al., 2002), although methods exist to correct this issue (Dalal et al.,
2006; Brookes et al., 2007). In this section, we derive that MVAB
is an approximation to SAKETINI.

We start by rewriting Eq. (1) as yn=Fsn+ zn, where zn is termed
the total noise and is given by zn=Axn+Bun+vn. It has mean zero
and precision matrix ϒ=(AAT+BBT+λ−1)−1. Assuming we have
estimated the model parameters A, B, and λ, the MAP estimate of
the dipole source time series is s̄ n=Wyn, where

W ¼ X�1FT
Y ; X ¼ FT

YF þ U ð24Þ
The Φ term exists from the prior distribution of sn. It can be shown
that Eq. (24) is equivalent to Eq. (23).

In the infinite data limit, the data covariance satisfies Ryy=
FΦ−1FT+ϒ−1. Its inverse is found, using the matrix inversion
lemma, to be Ryy

−1=ϒ−ϒFΩ−1FTϒ. Hence, we obtain

FTR�1
yy ¼ ðI � FT

YFX�1ÞFT
Y ¼ UX�1FT

Y ð25Þ
where the last step used the expression for Ω. Next, we
approximate Ω≈FTϒF, which is equivalent to the prior term on
sn having zero precision. We then obtain

WcðFT
YFÞ�1FT

Y ¼ ðFT
YFÞ�1XU�1d UX�1FT

Y

¼ ðFTR�1
yy FÞ�1FTR�1

yy ¼ WMVAB ð26Þ
where the last step uses Eq. (25).

Simulations: generation and analysis

SAKETINI was tested in a variety of scenarios, including many
simulations with real brain noise and real MEG datasets.
Performance of the method is compared to the MVAB and
sLORETA (Pascual-Marqui, 2002). Simulations and real data were
analyzed using NUTMEG (Neurodynamic Utility Toolbox for
MEG) (Dalal et al., 2004), a toolbox developed using MATLAB
(MathWorks, Natick, MA, USA), obtainable from http://bil.ucsf.
edu. NUTMEG is useful for coregistration of fiducial points to a
structural MRI, selection of volume-of-interest, computation of
forward field, filtering and other denoising preprocessing methods,
as well as a variety of source reconstruction methods, including
MVAB, sLORETA and now SAKETINI.

Simulations were created using a variety of realistic source
configurations reconstructed on a 5-mm voxel grid. A single-shell
spherical volume conductor model was used to calculate the
forward lead field (Sarvas, 1987). Simulated datasets were
constructed by placing Gaussian-damped sinusoidal time courses
at specific locations inside a voxel grid based on realistic head
geometry. Sources were set to be active only during a post-stimulus
period, which always comprised 62.5% of the total data available,
while the remaining 37.5% was pre-stimulus data. Typically 700
total data points were used, unless specified otherwise.

In one set of simulations, termed “simulated interference” cases,
we created background activity drawn from the statistical distribu-
tions assumed by themodel. The simulated sourcesmentioned above
were projected to the sensors using the computed forward field.
Noise drawn from a Gaussian distribution was added to each sensor
across all time points. Furthermore, to simulate “ongoing brain
activity,” time courseswere drawn from aGaussian noise distribution
and were placed in 30 random locations throughout the brain voxel
grid, occurring in both pre- and post-stimulus periods. Their activity
was projected onto the sensors and added to both Gaussian sensor
noise and source activity. These simulated background brain sources
add noise to the sensors in a spatially correlated manner.

In order to test simulation performance using data with more
realistic (and unknown) statistical distributions, we created a second
set of simulations termed “real brain noise.” Real MEG sensor data
were collected from a CTF MEG System with 275 axial gradio-

http://www.bil.ucsf.edu
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meters while a human subject was alert but not performing tasks or
receiving stimuli. This real background data thus include real sensor
noise plus real ongoing brain activity that could interfere with
evoked sources and adds spatial correlation to the sensor data. Since
throughout this paper we work with averaged data, these real data
were binned into 100 trials of 700 data points each and averaged. We
varied the signal to noise ratio (SNR) and the corresponding signal to
noise-plus-interference ratio (SNIR). SNIR is calculated from the
ratio of the sensor data resulting from sources only to the sensor data
from noise plus interference.

Simulation methods: average performance

In addition to some illustrative examples, we examine average
results over many realizations of simulations in which certain
source parameters were varied. Two different source configura-
tions were used: one with sources more near the surface as
depicted in Fig. 3 and the other configuration with deeper
sources. The orientation of the source was fixed in half the
simulations and allowed to rotate over time in the other half. The
correlation of two of the three sources with each other was set to
be 0%, 95%, or 100%; the third source was always uncorrelated
with the other two sources. Either simulated interference or real
brain noise was used as background noise. SNIR was set at 5 dB,
0 dB, or −5 dB. Each combination of parameters was tested for
10 different randomly generated source time courses and source
orientations. Thus, a total of 720 simulations were run using all
combinations of simulation parameters.

Performance was measured in two ways: localization ability
and estimation of time course. To assess localization ability, it is
important to take into account source strength, source localization
error, and presence of false positives. Thus we used the ROC
(receiver-operator characteristic) method modified for brain
imaging results as suggested by Darvas et al. (2004), which is a
measure of hit rate versus false positive rate. The free-response
ROC (FROC) curve in particular allows for multiple “hits” per
image (Bunch et al., 1978).

We define a “local peak” as a voxel that is greater in value than
its 26 three-dimensional neighbors. We define a “hit” as a local
peak that is within a specified distance of the true location and
above a certain threshold. A “miss” is defined as a true source
location that has no “hit” within the specified distance. A “false
positive” is a local peak above a certain threshold but further than
the specified distance from a true source location. A “true
negative” is any voxel that is none of the above.

FROC curves are generated by varying the threshold and
allowable distance error, thus varying the tradeoff of sensitivity and
specificity. We used 5 *
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mm, 10 *
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3

p
mm, or 15 *
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mm for the

allowable localization error from a true source. We varied the
threshold to be 30%, 50%, 70% or 90% of the maximum value in
the whole image. We thus recorded a hit rate (HR) and false
positive rate (FR) for each of 12 combinations of threshold/error
for each of the 720 simulations.

Since these HR versus FR points do not increase monotonically,
as they would if the threshold was the only criterion varied, we
chose to use the measure of A′. A′ is a way to approximate the area
under the ROC curve for one HR/FR point (Snodgrass and Corwin,
1988). The larger the area under the ROC, the better the method is
performing, since this means a higher HR relative to FR for
specified thresholds/localization errors. For each simulation, the
twelve computed A′ values were averaged to give one A′ value per
simulation. The SAKETINI likelihood map was used as the spatial
map to test localization. For MVAB and sLORETA, the power map
(sum of squares of post-stimulus time points) was used.

Simulation methods: effects of amount of data

Previous studies have shown advantage of sensor arrays with
larger number of channels (Hamalainen et al., 1993). We sought to
determine how many sensors were required to prevent performance
degradation. Likewise, increased amount of data points usually
leads to improved estimation of unknown quantities and therefore
we tested performance with less data available.

To test the effect of the number of sensors, simulations were
created similarly to those discussed above with three uncorrelated
sources. Two values of SNIR were created using real brain noise:
0 dB and −10 dB. Ten different realizations of source time course
and orientation were tested for each case. All simulations discussed
previously were created using the full 275 channel array from the
CTF system. We tested the method's performance when only a
random subset of sensors were selected, using 150, 74, 37, 25 or 15
sensors.

To test the effect of the number of data points, the full set of 275
channels were used but reduced the available amount of data
points. All previous simulations have used 700 total data points,
where 62.5% were in the post-stimulus period. We kept the ratio of
data points in the post-stimulus period the same but reduced the
total number to 300, 200, 150, 100, or 50 points.

Collection of real data

Several real datasets were analyzed with the proposed method
and compared to existing methods. For all data, the 275-channel
CTF MEG System in a magnetically shielded room was used to
collect data. All healthy subjects and one patient with epilepsy
gave written, informed consent to participate in each study,
according to UCSF institutional review board approval.

Auditory

The first dataset was obtained by presenting 120 repetitions of a
1-kHz tone binaurally to a healthy subject, at an intertrial interval
of 1.4 s. The trials were averaged locked to stimulus onset. This
auditory stimulus is known to invoke bilateral auditory cortex to be
active simultaneously, causing problems for the MVAB's ability to
localize the auditory sources.

Somatosensory

We next examine a somatosensory dataset in which the local-
ization of primary somatosensory cortex is relatively easy for all
methods when many trials are available to average. A small
diaphragm was placed on the subject's right index finger and was
driven by compressed air. The stimulus was given 256 times every
500 ms. However, if we limit the available data to only a small
subset of trials, the lower SNR can become limiting for all
methods. We first applied SAKETINI, MVAB and sLORETA to
the average of all 256 trials to assess performance for the standard
(high) SNR case. We then applied all three methods to the average
of only the first 5 trials. To further test if the performance was
consistent across other sets of just 5-trial averages, we applied the
three methods to the 5-trial average of trials 6–10, 11–15, and 16–
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20. We then averaged the results of these four different results. Any
location found consistently will show up in the average.

Epileptiform spikes

We next tested the proposed method on its ability to localize
interictal spikes obtained from a patient with epilepsy. No sensory
stimuli were presented to this patient in this dataset, which was
collected in the same MEG device described above. A Registered
EEG/Evoked Potential Technologist marked segments of the
continuously collected dataset which contained spontaneous
spikes, as well as segments that clearly contained no spikes. One
segment of data with a spike marked at 400 ms, as well as three
additional spikes in the 800 ms segment, was used here as the
“post-stimulus” period and a separate, spike-free, segment of equal
length was used as the “pre-stimulus” period.

Results

We first report results from an example simulation. Then we
describe performance for the averages of the simulations discussed
above, including varying the amount of sensors or time points
available. We finish by demonstrating performance in the real
datasets discussed above.

Simulation results

Individual example simulation results
We first examine localization error for a single active source

placed randomly within the voxel grid space. Fig. 2 shows
localization error of SAKETINI relative to the MVAB. The largest
peak in the SAKETINI likelihood map was found and the distance
from this point to the true source was recorded. Each data point is
an average of 20 realizations of the source configuration, with error
bars showing standard error. This simulation was performed for a
variety of SNIR's and for both cases of simulated and real brain
Fig. 2. Localization error of SAKETINI compared to MVAB. A single
source was placed randomly in a realistic brain volume and its SNIR was
varied. Error was measured as the three-dimensional distance from the
maximal peak in the reconstruction to the true location.
noise. This figure clearly shows that the error in localization is
smaller for SAKETINI (black) than for MVAB (green).

We next examine the performance of the proposed model when
three active sources are present. Fig. 3 shows performance in one
example with three uncorrelated sources. On the left is the
likelihood map and on the right are the estimated time courses
(green) of the three sources compared to the true time courses
(blue). The likelihood map correctly locates all three sources and
the time courses are estimated well.

We further test performance when two of the three sources are
highly correlated in time. In one example simulation, Fig. 4 shows
the SAKETINI likelihood map on the left compared to the MVAB
power map on the right. The likelihood map detects the presence of
all three sources, whereas the MVAB fails to find the left source
and instead finds a false source in the middle between the two
correlated sources.

Simulation results: average performance
We now show performance of the proposed methods according

to the metrics of A′ (area under ROC curve) and time course
estimation, as defined in the Methods. Fig. 5(a) plots A′ for each
method, for each value of source correlation and SNIR, and for
both types of interference (simulated and real). SAKETINI (black
lines) has a larger average A′ than MVAB (green) and sLORETA
(red) for nearly all values of SNIR and source correlation,
indicating overall better localization ability.

The other main test of performance was the ability to estimate
the source time course. The estimated time courses for all three
methods were obtained from the true source locations, regardless
of whether their respective localization maps found that source as a
“hit.” The correlation of the true time course with the estimated
time course was computed for each simulation and the averages are
plotted in Fig. 5(b). SAKETINI estimates the time course better
than MVAB for all simulation types and better than sLORETA in
nearly all simulation types.

Simulation results: effects of amount of data
Fig. 6 shows simulation performance resulting from reduced

number of sensors. Fig. 6(a) shows the A′ metric for localization
performance for SAKETINI relative to MVAB and sLORETA,
where Fig. 6(b) shows estimation accuracy of the source time
course. The top row in both (a) and (b) is for SNIR=0 dB and the
bottom row is for SNIR=−10 dB. SAKETINI's performance is
not degraded for as few as 74 sensors for both values of SNIR
and can even perform well using as few as 25 sensors for SNIR=
0 dB.

Fig. 7 tests the proposed method against the other methods with
decreased number of time points available. Fig. 7(a) shows that
SAKETINI has a larger A′ value relative to MVAB and sLORETA
for all amounts of data tested and for both SNIRs. However,
SAKETINI's ability to estimate the source time course (Fig. 7(b))
decreases with less than roughly 150 data points total, even though
MVAB and sLORETA do not show this sensitivity. Like other
minimum-norm techniques, sLORETA is not data-dependent, and
thus is not expected to show sensitivity to number of data points.
The MVAB is dependent on the data to provide an estimate of the
data covariance matrix. Since the simulations in both top and
bottom rows are with relatively high noise (SNIR=0 dB and
−10 dB, respectively), the data covariance estimate might not
change much with decreased data, since it is already noisy (note
the time course correlation does not reach above 0.5 for any



Fig. 3. SAKETINI's performance in simulated example with three uncorrelated sources. (Left) Blue circles and squares indicate location of true sources. Intensity
of map corresponds to normalized likelihood map. (Right) Blue lines indicate simulated time series for each of the three source locations. Green lines indicate
proposed method's estimates of the source time series at those three locations.
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number of data points tested at SNIR=−10 dB). However,
SAKETINI relies on an initial estimate of interference sources from
the pre-stimulus data; perhaps this estimate is not as robust when
only 30 or less pre-stimulus data points are present to estimate the 30
interference sources projected to 275 sensors, allowing for some
cross-talk of interference with “evoked” time estimates.

Results from real data

Auditory
The well-characterized auditory-evoked M100 peak was ob-

served and the sensor map for this latency is shown in Fig. 8(a).
Bilateral auditory cortex is clearly activated. As mentioned above,
MVAB performance deteriorates when neural sources are highly
correlated in time and, in general, bilateral auditory cortex is
known to be correlated (Dalal et al., 2006). Fig. 8(b) shows the
MVAB performance on this dataset: the MVAB fails to find either
left or right auditory cortex and instead finds a false source in the
center. However, both SAKETINI and sLORETA are able to find
bilateral auditory cortex (Figs. 8(c) and (d)). Additionally shown
in Fig. 8(d) are the time courses of the SAKETINI source
estimates extracted from the peak voxel on each side. The
correlation of the left with the right source estimates was found to
be 0.93.
Fig. 4. Example of SAKETINI and MVAB for correlated source simulation. Blue
circle indicates simulated source location that was not correlated with the other tw
Somatosensory
The left panel of Fig. 9(a) shows typical somatosensory-evoked

MEG data with the largest peak at 50 ms, expected to be coming
from primary somatosensory cortex in the posterior wall of the
central sulcus. The next three panels of Fig. 9(a) show localization
performance of SAKETINI, MVAB and sLORETA. All three
methods accurately localize activity to the contralateral primary
somatosensory cortex. However, performance changes when only 5
trials are used in the average. The left panel of Fig. 9(b) shows the
sensor data averaged over trials 1–5 of the same somatosensory
dataset. The next three panels of Fig. 9(b) show errors in localization
in all methods. SAKETINI shows the least error, relative to the peak
location found using all 256 trials. We note that other averages of 5
trials showed varied performance, but that, when averaging four
different sets of 5-trial averages together, SAKETINI showed
localization closest to primary somatosensory cortex, as shown in
Fig. 9(c), whereas MVAB and sLORETA mislocalize this source.

Epileptiform spikes
Fig. 10 shows the proposed method's performance on estimating

single spikes relative to a spike-free “pre-stim” period. Fig. 10(a)
shows the raw sensor data for the segment containing the marked
spike. Fig. 10(b) shows the location of the equivalent-current dipole
(ECD) fit to 20 spikes from this patient; the centroid of this cluster of
squares indicate source locations that are highly temporally correlated. Blue
o sources. (Left) SAKETINI likelihood map. (Right) MVAB power map.



Fig. 5. Performance of SAKETINI relative to MVAB and sLORETA for variety of simulated datasets. Each data point is an average of 40 simulations, consisting
of two different source locations and either a fixed or rotating source orientation. Standard errors were less than 0.05 for all points (not shown). (a) A measure of
area under ROC curve A′ is plotted for the three methods as a function of SNIR for both simulated and real brain interference. See text for discussion of the A′
metric. (b) The correlation of the estimated with the true time course is plotted for each method.
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ECD fits would normally be used clinically. Fig. 10(d) shows the
SAKETINI likelihood map based on the data in Fig. 10(a); the peak
is in clear agreement with the standard ECD localization. The
maximum voxel of the SAKETINI likelihood map is 6.3 mm from
the ECD fit of that particular spike and is 3.2 mm from the ECD
cluster centroid. Fig. 10(c) shows the time course estimated for the
likelihood spatial peak. The spike at 400 ms is clearly seen; this
cleaned waveform could be of use to the clinician in analyzing peak
shape (information usually not available from the ECD). Finally,
Figs. 10(e) and (f) show a source time course from a randomly
selected location far from the epileptic spike source (shown with
cross-hairs on bottom right plot), in order to show the low noise level
Fig. 6. (a) A′ and (b) time course estimation as a function of the number of MEG
SNIR=0 dB and bottom row shows SNIR=−10 dB using real brain noise. Error
and to show lack of cross-talk onto source estimates elsewhere. In
addition to this single spike analysis with SAKETINI, the sensor
data of all 20 spikes were first averaged, then examined by both
ECD and SAKETINI.

Typically this average is only used clinically if the ECD of single
spikes gives large parameter fit errors. The difference between the
ECD and SAKETINI localizations based on this average spike data
was only 3.1 mm. Both of these also corresponded well to the 20-
spike ECD cluster centroid mentioned above, with differences of
only 4.7 mm (ECD) and 3.1 mm (SAKETINI).

Furthermore, the cluster of 20 ECD localizations corresponded
well to the electrocorticography mapping performed in this patient.
sensors for simulated data with 3 uncorrelated sources. The top row shows
bars represent standard error.



Fig. 7. (a) A′ and (b) time course estimation as a function of the number of total data points for simulated data with 3 uncorrelated sources. The top row of each
shows SNIR=0 dB and bottom row shows SNIR=−10 dB using real brain noise. Error bars represent standard error.
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Intraoperative electrodes were spaced 1 cm apart and the cluster
resided within this 1 cm error. This brain region was chosen for
resection and this patient was seizure-free after the operation. This
indicates that the brain region localized pre-surgically and
noninvasively by the ECD cluster (and consistent with the
SAKETINI localization) correctly specified the epileptogenic zone.
Fig. 8. Performance of methods using a real auditory-evoked MEG dataset. (a) Sens
showing failure to localize sources to auditory cortex. (c) sLORETA power map
activity in bilateral auditory cortex. Time series from left and right peaks are also sh
time points.
Discussion

We have described the proposed method in a graphical model
framework, which is a powerful and flexible technique for
describing probabilistic dependencies between observed and
unobserved quantities. We have chosen a scanning-based method
or map showing bilateral activation at M100 latency. (b) MVAB power map,
localizes bilateral auditory cortex. (d) SAKETINI likelihood map localizes
own, where intensity is normalized to maximum value across all voxels and



Fig. 9. Performance of methods using real somatosensory data as a function of the number of trials. Left column shows sensor data averaged over varied number
of trials, while remaining columns show localization performance of SAKETINI, MVAB and sLORETA. Row (a) shows performance of the three methods
applied to the average of all 256 trials. Row (b) shows the localization performance to the average of only the first 5 trials. In order to show performance over
other subsets of 5-trial averages, the spatial maps in row (c) are spatial averages of the localization of 4 different 5-trial averages. See Methods for details.
Crosshairs in localization maps show peak location within “active” voxels at the slice of peak location, where the threshold for “active”was defined at 90% of the
maximum for all maps.
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to formulate the problem, rather than to solve the full tomographic
problem which is very ill parameterized. The variational Bayesian
Expectation Maximization algorithm is used to solve for the values
of the unknown quantities that maximize the marginal log
likelihood. A map of the maximized likelihood is used to depict
localized sources and estimates of their time course are extracted
from those spatial peaks.

We have shown that the proposed model is not as sensitive to
temporally correlated sources as the standard formulation of
MVAB. However, it is possible to reduce the MVAB's dependence
on correlated sources through a modified weight matrix computed
subject to additional constraints, if a rough idea of the location of
sources is known (Dalal et al., 2006).

Model order and initialization

As the number of MEG and EEG channels has increased in
recent years, the ability to accurately localize sources throughout
the brain has increased (Vrba et al., 2004). However, performing
calculations of high-dimensional data, such as inverting a data
covariance matrix, becomes more difficult and can lead to errors.
Meanwhile, the dimensionality of the underlying neural activity
remains the same. Thus, many variations of PCA and ICA have
been used on MEG/EEG data for removal of noise/artefactual
components as well as for data dimension reduction (Jung et al.,
2000; Ikeda and Toyama, 2000). Factor analysis also aims to
reduce the dimensionality of the data to a linear mixture of factors
that best account for the data while accounting for noise at the
sensor level. We have used an extended version of factor analysis
to partition which factors are event-related activity and which
factors are background interference.

All methods which perform dimension reduction need a
criterion for choosing the reduction number. Using PCA, a plot
of eigenvalues can often give a reasonable intuition for the
dimension of “signal” in the data. ICA has no ordering of
components. In the method proposed here, there are two variables
affecting model dimension: number of background interference
factors (u) and number of non-localized evoked factors (x).

The model itself has two built-in ways of assisting in the
dimension choice. First, the hyperparameters over the columns of



Fig. 10. SAKETINI applied to interictal spike data from a patient with epilepsy. (a) Segment of data contains several spikes marked by a technician. No stimulus
was presented to the patient in this data. (b) Cluster of Equivalent Current Dipole (ECD) localizations to 20 spikes are shown from this patient. The middle
column shows SAKETINI time course estimation (c) and likelihood map (d) for this segment of data, showing spatial agreement with ECD. The right column
shows SAKETINI time course (e) from a voxel (f) randomly selected far away from the location of the spike localization, indicating lack of crosstalk of the spikes
into normal tissue. The time course intensities in panels c and e are normalized to maximum value across all voxels and time points.
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the mixing matrices A and B are updated in the M-step; thus their
final values can be plotted and used as indication of which columns
(and therefore which factors) contribute more, similar to a plot of
eigenvalues for PCA. As long as the number of dimensions chosen
is larger than the true dimension, the extra dimensions can be
“zeroed out” by the model as those corresponding hyperparameters
decrease.

A second way to examine model order is by learning the model
for several values of model order and then comparing the final
maximized likelihood value. In general, the greater the model
order, the easier to explain the data, thus the likelihood will
increase for greater model order. However, there is usually an
inflection point in the plot of likelihood versus model order, again
similar to a plot of eigenvalues for PCA, around which the ideal
model order resides.

All methods which do not have a closed form solution require
initialization of the values to be iteratively updated. We have
found that choice of initialization can change the final results
somewhat but not largely, and so we did not extensively examine
these effects. After finding one method of initialization that
worked well in a few test simulations, that set was used for all
results shown. We note that in testing data with only sensor noise
(no simulated or real brain interference at all), we do see a greater
dependence on initialization values. This is worth mentioning
since many source reconstruction algorithms are only tested on
simulated sources plus sensor noise, thus comparison of this
method with other methods on sensor-noise-only data should only
be done with this in mind. However, since this type of data does
not follow the assumptions of the model that the pre-stimulus
data has spatially covarying noise, and is therefore not realistic,
we chose not to focus the results of this paper on this type of
data.

A consideration of algorithms that iteratively update values is
the longer computation time. SAKETINI infers the model values
for each voxel and convergence typically occurs after about 10–20
VB-EM iterations, which takes roughly one second per voxel on a
standard Linux personal computer with 2.0-GHz processor.
Changing the number of channels or time points also affects
computation time.

Extensions of model

The graphical model proposed here is one variation of a class of
models that could be used to perform source reconstruction for
MEG and EEG data. Certainly many aspects of this model can be
modified in order to relax assumptions made here. One assumption
is that the background interference sources are stationary across the
pre-stimulus and post-stimulus periods. If background is non-
stationary, the model could be modified to include a term similar to
Φ which would influence the posterior update for ū. This would
occur, for instance, if ongoing brain activity decreased as a result of
the stimulus/event onset.

If the background is stationary, but the source activations vary
drastically over the post-stimulus period, it might help to break up
the post-stimulus data into partitions of relatively similar activity.
Specifically, the data could be decomposed into time–frequency
windows where inference of this model on each window would
result in a separate likelihood map.
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In all results shown, we used a single-shell spherical conductor
model for generation of the forward field F. Certainly more
sophisticated forward fields could be computed using multisphere
methods or BEM models, which could further improve perfor-
mance for all methods. Distributed sources could be modeled
explicitly using a forward field computed from patch bases
(Limpiti et al., 2006). However, errors in coregistration of MEG
or EEG data to the structural MRI can affect any computation of
forward field. If one wishes to restrict the source activity to one
orientation based on cortical surface, errors in this segmentation
can lead to errors in orientation estimation. Localization of EEG
data has larger errors since tissue conductance values cause
uncertainty in the forward field calculation. Thus, we can take
advantage of the probabilistic framework of the proposed model
by including a hyperparameter over the forward field F that
would enable the algorithm to make small changes to the
computed F, using the data to “learn” an improved estimate of the
forward field.

One could further relax assumptions about the source and
interference factors. They could be modeled by non-Gaussian
distributions, although care should be taken in choice of distribution
so that they could still be solved for analytically. The temporal
progression of the factors could be explicitly modeled, such as using
an auto-regressive model or Kalman filter.

The scanning framework of solving for one voxel's activity at a
time can be relaxed. Spatial smoothness or spatial priors from other
modalities, such as structural or functional MRI, could be
incorporated. Furthermore, one is not limited to sn in a single
voxel; the above formulation holds for any P arbitrarily chosen
dipole components, no matter which voxels they belong to, and for
any value of P. Of course, as P increases the inferred value of Φ
becomes less accurate, and one might choose to restrict it to a
diagonal or block-diagonal form.

Related methods for MEG and EEG source reconstruction

Source localization algorithms can be broadly classified as
parametric or tomographic, making different assumptions to
overcome the ill-posed inverse problem. Parametric methods,
including equivalent current dipole (ECD) fitting techniques,
assume knowledge about the number of sources and their
approximate locations. A single dipolar source can be localized
well, but ECD techniques poorly describe multiple sources or
sources with large spatial extent. Parametric methods could also
involve multipole, line source and/or patch reconstructions
(Schmidt et al., 1999; Yetik et al., 2005; Jerbi et al., 2002). Many
parametric methods involve computation of noise and or signal
covariances from data where several Bayesian approaches have
been reported (Mosher and Leahy, 1998; Jun et al., 2005, 2006;
Huizenga et al., 2002; Waldorp et al., 2002; de Munck et al., 2004;
Bijma et al., 2005).

Tomographic methods reconstruct an estimate of source activity
at grid points across the whole brain, either simultaneously or
through scanning. Tomographic methods could also be classified
as adaptive or non-adaptive. Of many tomographic algorithms, the
adaptive beamformer has been shown to have the best spatial
resolution and zero localization bias (Sekihara et al., 2002, 2005;
Küçükaltun-Yildirim et al., 2006); however, it is sensitive to
temporally correlated sources. Several tomographic algorithms use
a Bayesian framework to explicitly incorporate prior assumptions
about source configuration in the model (Sato et al., 2004; Phillips
et al., 2005; Mattout et al., 2006). Wipf et al. (2007) provide a
unifying framework relating methods through their choice in
specification of a neural source prior, whether fixed or learned
from the data.

In contrast to many of these methods which reconstruct whole-
brain source activity as MAP estimates, SAKETINI is a scanning
based method that reconstructs a full posterior distribution of the
source activity at each scanning voxel. The closest algorithm
related to this approach is Dogandzic and Nehorai (2000),
however, their algorithm does not make use of latent variable
modeling and assumes that the temporal basis functions of the
source activity at a scan location are known. SAKETINI does not
make this assumption. Furthermore, instead of estimating a full-
rank noise covariance, SAKETINI uses variational Bayesian factor
analysis to estimate a dimension-reducing mixing matrix with
number of columns much less than number of rows. Thus, more
robust estimates of noise covariances can be made with fewer
parameters to estimate.

Jun et al. (2005) create a multi-dipole model that explicitly
computes the posterior for number of dipoles, location and
orientation. They use prior terms for the temporal correlations of
the sources, chosen based on the data. A prior on location or
orientation can include information from fMRI or structural MRI,
although they just use a uniform prior. The prior on number of
dipoles roughly scales with the inverse of the number. They
acknowledge the problem that the noise covariance has many
parameters to estimate, so they use a Wishart prior distribution and
estimate the noise posterior. They also integrate over the time
courses to obtain the posterior for location, orientation and number
of dipoles.

In this paper, we have not included any specific spatial prior
information, although it certainly can be incorporated. SAKETINI
only estimates one dipole at a time, by scanning through the voxel
grid, thus estimation of the number of dipoles is not explicitly
performed. Thresholding of the likelihood map can be viewed as a
posterior probability map thresholding procedure.

Conclusion

We have described a novel probabilistic algorithm which per-
forms source localization while robust to interference and
demonstrated its superior performance over standard methods in
a variety of simulations and real datasets. The model takes
advantage of knowledge of when sources of interest are not
occurring (such as in the pre-stimulus period of a evoked response
paradigm). It learns the statistical structure of the interference
sources from the pre-stimulus period and then can suppress these
signals in the post-stimulus period. Set in a probabilistic frame-
work, the use of prior probabilities and hyperparameters assists in
the computation of unknown quantities. The flexibility of the
model allows for many possible extensions.
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