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Time–Frequency MEG-MUSIC Algorithm

Kensuke Sekihara,* Srikantan Nagarajan,
David Poeppel, and Yasushi Miyashita

Abstract—We propose a method that incorporates the time–frequency
characteristics of neural sources into magnetoencephalographic (MEG)
source estimation. The method is based on the multiple-signal-
classification (MUSIC) algorithm and it calculates a time–frequency
matrix in which diagonal and off-diagonal terms are the auto and
crosstime–frequency distributions of multichannel MEG recordings,
respectively. The method averages this time–frequency matrix over
the time–frequency region of interest. The locations of neural sources
are then estimated by checking the orthogonality between the noise
subspace of this averaged matrix and the sensor lead field. Accordingly,
the method allows us to estimate the locations of neural sources from
each time–frequency component. A computer simulation was performed
to test the validity of the proposed method, and the results demonstrate
its effectiveness.

Index Terms—Biomagnetism, biomedical signal processing, inverse
problems, time–frequency analysis.

I. INTRODUCTION

THE noninvasive measurement of magnetic fields generated
from human cortical neural activities, referred to as magne-

toencephalography (MEG) [1], has been found to be a powerful
tool in studies of human neurophysiology and neural information
processing. One major problem here is the MEG inverse problem [1],
a problem of estimating neural current distributions from the magnetic
field measured outside a human head. Because the neural current
distribution is inherently three-dimensional (3-D), the estimation
problem is generally ill posed. To reduce this ill posedness, the
estimation needs to incorporate some prior knowledge regarding
the source characteristics. Such characteristics can include possible
source locations, the source spatial extent, the total number of sources,
or the source-frequency characteristics. In this paper, we propose a
novel method that incorporates source time–frequency characteristics
into the source estimation. The method combines time–frequency
analysis [2] with the MEG multiple-signal-classification (MUSIC)
algorithm [3] and allows estimation of neural sources from each
time–frequency component. Throughout this paper, plain italics
indicate scalars, lower case boldface italics indicate vectors, and
upper case boldface italics indicate matrices. The superscriptT
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Fig. 1. Schematic view of the sensor-source configuration used in the
computer simulation.

indicates the matrix transpose andIII indicates the unit matrix. The
eigenvalues are numbered in decreasing order.

II. M ETHOD

Let us define the magnetic field measured by themth detector coil
at time t as bm(t) and a vectorbbb(t) = (b1(t); b2(t); . . . ; bM(t))T

as a set of measured data whereM is the total number of detector
coils. A total ofP current-dipole sources is assumed to generate the
biomagnetic field, and the locations of these sources are denoted as
(xxx1; xxx2; . . . ; xxxP ): The magnitude of thepth dipole-source moment is
defined assp(t): The source magnitude vector is defined assss(t) =
(s1(t); s2(t); . . . ; sP (t))

T : A spherical homogeneous conductor [4]
is assumed and two tangential components, the� and� components,
of the dipole-source moment are considered. The dipole orientation
is defined as its normal vector���p(t) = (��p (t); �

�
p(t))

T where
k���p(t)k = 1: We also define a2P � P matrix that expresses the
orientations of allP dipole sources as			(t) such that

			(t) =

���
1
(t) 0 � � � 0

0 ���
2
(t) �

...
... �

. . . 0
0 � � � 0 ���P (t)

: (1)

The lead field vectors for the� and � components of the source
atxxx are defined aslll�(xxx) = (l�

1
(xxx); l�

2
(xxx); . . . ; l�M(xxx))T andlll�(xxx) =

(l�1(xxx); l
�
2(xxx); . . . ; l

�
M(xxx))T : Here,l�m(xxx) andl�m(xxx) express themth

sensor output induced by the unit-magnitude source moment directed
in the� and� directions, respectively. We define the lead field matrix
for the source atxxx asLLL(xxx) = [lll�(xxx); lll�(xxx)], which represents the
sensitivity of the sensor array at locationxxx: The composite lead
field matrix for the entire set ofP dipole sources is defined as
LLLc = [LLL(xxx1); LLL(xxx2); . . . ; LLL(xxxP )]: Then, the relationship between
bbb(t) and sss(t) is expressed as

bbb(t) = [LLLc			(t)]sss(t) + nnn(t) (2)

wherennn(t) is the additive noise.
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Fig. 2. Generated waveforms of� components of: (a) first source; (b) second source; and (c) third source.

To formulate the time–frequency MUSIC algorithm, we assume
that all dipole sources do not change their orientations during the time
period of interest and we use time-independent			 to express the dipole
source orientations. The time–frequency distribution matrices forbbb(t)
andsss(t) are defined asCCCb(t; f) andCCCs(t; f), which can be obtained
by using any of the Cohen-class time–frequency distributions [2],
[5], i.e.,

CCCb(t; f) =

1

�1

�(� � t; � � f)

�

1

�1

bbb(� + �=2)bbbT (� � �=2)e�2�i�� d� d� d�

(3)

and

CCCs(t; f) =

1

�1

�(� � t; � � f)

�

1

�1

sss(� + �=2)sssT (� � �=2)e�2�i�� d� d� d�:

(4)

Here,�(t; f) is the convolution kernel, which determines the char-
acteristics of the resultant Cohen-class time–frequency distributions.
The matrixCCCb(t; f) is anM �M matrix. Its diagonal elements are
the autotime–frequency distributions of the channel recordings and

TABLE I
SOURCE PARAMETER VALUES ASSUMED FOR THECOMPUTER SIMULATION

its off-diagonal elements are the crosstime–frequency distributions
between different channel recordings. The matrixCCCs(t; f) is a
P � P matrix. Its diagonal elements are the autotime–frequency
distributions of the source activities and its off-diagonal elements
are the crosstime–frequency distributions between different source
activities.

Using (2)–(4), we can derive

CCCb(t; f) = (LLLc			)CCCs(t; f)(			
TLLLT

c )

+CCCsn(t; f) +CCCns(t; f) +CCCn(t; f) (5)

where

CCCsn(t; f) =

1

�1

�(� � t; � � f)

�

1

�1

(LLLc			)sss(�+ �=2)

� nnnT (� � �=2)e�2�i�� d� d� d� (6)
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(a)

(b)

Fig. 3. (a) Waveform of the generated magnetic field from one representative channel located above the left hemisphere. (b) Power spectrum of the
generated magnetic field obtained by averaging the spectra from all channels.

CCCns(t; f) =

1

�1

�(� � t; � � f)

�
1

�1

nnn(� + �=2)

� sssT (� � �=2)(			TLLLT
c )e

�2�i�� d� d� d� (7)

and

CCCn(t; f) =

1

�1

�(� � t; � � f)

�
1

�1

nnn(� + �=2)nnnT (� � �=2)e2�i�� d� d� d�:

(8)

Let us define the region of interest in the time–frequency domain as

: This region contains the signal of interest and we localize sources
by using time–frequency components in this region. The matrices��� b

and��� s are obtained by averagingCCCb(t; f) andCCCs(t; f) over this
target time–frequency region
, i.e.,

��� b =




CCCb(t; f) dt df and ��� s =




CCCs(t; f) dt df (9)

where s s



indicates the integral over this target time–frequency
region. We denote the number of sources whose activities have
time–frequency components in the target region asP
: Note that
the matrix��� s is a P
 � P
 matrix.

Fig. 4. Smoothed pseudo-Wigner–Ville time–frequency distribution of com-
puter generated neuromagnetic data. The time–frequency maps were calcu-
lated from all channel recordings, and the results obtained by averaging all
these maps are shown. The frequency is normalized such that the Nyquist
frequency is equal to 0.5. The three quadrangular areas denoted by
1;
2;

and
3 are the target regions used for the source-estimation experiments.

We assume that the noise and signal are uncorrelated in the
target region. This assumption leads tos s



CCCns(t; f) dt df =

s s



CCCsn(t; f) dt df = 0: We also assume that the noise is white
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Fig. 5. MUSIC-localizing function on the planex = 1 cm. The time–frequency MUSIC algorithm [(13)] was used with the target region set at (a)
1;

(b) 
2; and (c)
3: (d) The conventional MUSIC algorithm [(17)] was used.

Gaussian, so the expected value ofCCCn(t; f); hCCCn(t; f)i is equal to
�2DIII whereh�i indicates the ensemble average and�2D is the noise
power density. Accordingly, if the target region is sufficiently large,
replacing the ensemble average by the integration over the target
region we haves s
 CCCn(t; f) dt df = �2III where�2 is the total
noise power in the target region. Therefore, we finally derive the
relationship

��� b = (LLLc			)��� s(			
TLLLTc ) + �2III: (10)

Denoting the noise-level eigenvectors of��� b as uuuj ; where j =
P
 + 1; . . . ;M , (10) becomes

(��� b � �2III)uuuj =(LLLc			)��� s(			
TLLLTc )uuuj = 0;

j = P
 + 1; . . . ;M: (11)

The matrixLLLc is a full-column-rank matrix. Thus, when the matrix
��� s is a full-rank matrix, we get

(			TLLLTc )uuuj = 0; for j = P
 + 1; . . . ;M: (12)

The above equation indicates that source locations can be obtained
by checking the orthogonality between the sensor lead field with
an optimum orientationLLL(xxx)���opt where���opt represents the normal
vector in the optimum orientation, and the noise-level eigenvectors
uuuj (j = P
 + 1; . . . ;M):

This orthogonality can be evaluated by calculating the following
function:

J(xxx) = 1=�min(LLL
T (xxx)ZZZNZZZ

T
NLLL(xxx); LLL

T (xxx)LLL(xxx)) (13)

where �min(�; �) indicates the minimum generalized eigenvalue of
the matrix pair in parenthesis and the matrixZZZN is defined as
ZZZN = [uuuP +1; . . . ; uuuM ]: This J(xxx), referred to as the localizing
function, is calculated point-by-point in a volume where sources can
exist. Each location whereJ(xxx) forms a peak is chosen as the location
of one dipole source.

Equation (13) was obtained under the assumption that dipole
sources do not change their orientations during the time period of
interest. It is worth noting that when this assumption does not hold
and the source orientations change, this localizing function can still
be used to detect source locations. In such cases, instead of (10) we
have the relationship

��� b = LLLc ~��� sLLL
T
c + �2III (14)

where ~��� s = s s

~CCCs(t; f) dt df; and ~CCCs(t; f) is obtained from

~CCCs(t; f) =

1

�1

�(� � t; � � f)

�
1

�1

			(� + �=2)sss(� + �=2)

� sssT (� � �=2)			T (� � �=2)e�2�i�� d� d� d�:

(15)

Therefore, assuming that the matrix~��� s is a full-rank matrix, we also
obtain the relationship

LLLTc uuuj = 0; for j = P
 + 1; . . . ;M: (16)
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Fig. 6. Smoothed pseudo-Wigner–Ville time–frequency distribution of the neuromagnetic data used for the time jitter experiments. The time–frequency maps
were calculated from all channel recordings, and the results obtained by averaging all these maps are shown. (a) Time–frequency map obtained from the
waveform averaged across all epochs. (b) Time–frequency map obtained by averaging maps from all raw epochs. (c) Time–frequency MUSIC localizing
function on the planex = 1 cm. The target region was set at
1 shown in Fig. 4 and the matrix��� b was calculated using��� b = hs s
 CCCb(t; f) dt dfiepoch:

Since the source locations that satisfy (16) also satisfy (12), the local-
izing function in (13) is effective even when the source orientations
are not time independent and change during the period of interest.

It is informative to compare (13) with the localizing function used
in the conventional time-domain MUSIC algorithm. This conven-
tional localizing function is expressed as [3]

J(xxx) = 1=�min(LLL
T (xxx)EEENEEE

T
NLLL(xxx); LLL

T (xxx)LLL(xxx)) (17)

whereEEEN = [eeeP+1; . . . ; eeeM ] andeeej (j = P + 1; . . . ;M) indicates
the noise-level eigenvectors of the measured-data covariance matrix.
This measured-data covariance matrix is obtained by averaging
bbb(t)bbbT (t) during the time period of interest. The only difference
between the proposed and the conventional MUSIC algorithms is that
the proposed algorithm usesZZZN instead ofEEEN in the conventional
algorithm.

III. COMPUTER SIMULATION

We performed a computer simulation to test the validity of the
proposed method. We used the coil configuration of a 148-channel
whole-head Magnes 2500WHTM biomagnetic measurement system

(Biomagnetic Technologies Inc., San Diego, CA). The coordinate
origin was defined at the center of the coil array. Thez direction was
defined as the direction perpendicular to the plane of the detector coil
located at this center. Thex direction was defined as that from the
posterior to the anterior, and they direction was defined as that from
the left to the right hemisphere.

Three signal dipole sources were assumed to exist on the same
plane(x = 1:0 cm). The configuration of this computer simulation is
shown schematically in Fig. 1. The simulated magnetic field was cal-
culated at 351 time points. To generate the simulated neuromagnetic
field, the � components of the three sourceswj�(t); (j = 1; 2; 3)

were all Gaussian amplitude modulated and frequency modulated,
i.e.,wj�(t) = exp[�(t� tj)

2=(2�2j )] cos[2�(ajt+ bj)(t� tj)]: The
� components of the three sources were set to zero. The values for
tj ; �j ; aj ; bj and the assumed source locations are listed in Table I,
and the generated waveforms for the� components of the three
sources are shown in Fig. 2.

Uncorrelated Gaussian noise was added to make the final signal-
to-noise ratio (SNR) equal to two. The SNR was defined as the ratio
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of the Frobenius norm of the signal-magnetic-field data matrix to that
of the noise matrix. The waveform of the generated magnetic field
from one representative channel located above the left hemisphere is
shown in Fig. 3(a) and the power spectrum obtained by averaging
the spectra from all channels is shown in Fig. 3(b). These figures
indicate that the signals from the three sources cannot be separated
in either the time domain or in the frequency domain.

The smoothed pseudo-Wigner–Ville transform was calculated in
order to obtain the time–frequency distribution of the computer
generated data. The convolution kernel in (3) and (4) was chosen
such that it was equal to a multiplication of a function oft and
that off each derived by Fourier transforming the hamming window
with a window size of 39 data points. The time–frequency maps were
calculated from all channel recordings, and the results obtained by
averaging all these maps are shown in Fig. 4. Three time–frequency
components are clearly resolved.

The time–frequency MUSIC algorithm was then applied by setting
the target time–frequency region as the regions indicated by
1;
2;

and 
3 in Fig. 4. The results are shown in Fig. 5. The contours
in Fig. 5(a)–(c) show the relative value of the MUSIC localizing
function in (13) on the planex = 1 cm and each area where the
localizing function reaches a peak is considered to be the location
of one dipole source. The(y; z) coordinates of the peak locations in
Fig. 5(a), (b), and (c) are (3.9,�6.5), (4.8,�8.1), and (5.4,�9.5),
respectively. Comparison with the original source locations listed in
Table I shows that the time–frequency MUSIC algorithm accurately
localized the three sources, and these results verify the validity of
the proposed algorithm. The conventional MUSIC algorithm [3] was
applied to the same computer-generated data [Fig. 5(d)], but the
conventional localizing function in (17) was not able to resolve the
three sources. The results in Fig. 5 demonstrate the effectiveness of
the proposed method.

It is sometimes possible that a transient event-related signal is not
time locked to the stimulus and has a time jitter among multiple-
epoch recordings [6]. We next show that a minor modification of the
proposed algorithm allows source locations to be estimated from such
a nontime-locked event-related signal. The simulated magnetic field
data was calculated assuming that the first source has a time jittertz,
i.e., its� component has a formw1

�(t�tz): Here,tz was generated by
using a uniform random number ranging from -50 to 50 time points,
and a total of 64 raw-epoch data was generated. The SNR of each
raw-epoch data was set at 0.25. Two kinds of time–frequency maps
were obtained; one was obtained by using the simulated magnetic-
field waveforms averaged across all raw epochs and the other was
obtained by averaging time–frequency maps across all raw epochs.
The results are shown in Fig. 6.

In the time–frequency distribution in Fig. 6(a), the time–frequency
component generated from the first source has almost disappeared
because of the time jitter. Conversely, this component is clearly
observable (although it is significantly blurred compared to that
in Fig. 4) in the time–frequency distribution in Fig. 6(b), which
is obtained by averaging a time–frequency map from each set of
raw-epoch data. This observation suggests that if we calculate the
matrix ��� b such that��� b = hs s
 CCCb(t; f) dt dfiepoch where
h�iepoch indicates the average over epochs we can localize sources
for nontime-locked activities. The localization function in (13) was
calculated with��� b obtained in the above-mentioned manner and with
the same target region
1 shown in Fig. 4. The results are shown
in Fig. 6(c). Here, the first source is clearly detected. The(x; y)

coordinates of the peak in this figure are (4.1,�6.5), which are very
close to the assumed location of the first source. The results obtained

here show that the proposed algorithm is, in principle, effective for
localizing an evoked source whose activation is not time-locked to
the stimulus.

IV. DISCUSSION

Although the quadratic Cohen-class distributions can provide high-
resolution time–frequency maps, they are known to contain significant
amount of spurious crossterms when the distribution contains multiple
components. The convolution kernel�(t; f) in (3) or (4) should
therefore be chosen so as to reduce the amount of such spurious
cross terms at the minimum sacrifice of the resolution. As a result,
the kernel determines the tradeoff between the resolution and the
amount of such spurious crossterms. The relationship between several
specific choices of the kernel and the properties of the resultant
time–frequency distributions has been well studied in the field of
time–frequency analysis. A detailed discussion on the choices of the
kernel and properties of the resultant time–frequency distributions
are found in [2] and [5].

In our computer simulation, we used the smoothed pseudo-
Wigner–Ville representation, which uses the kernel separable in
terms of time and frequency. This choice, however, is somewhat
arbitrary and any other Cohen-class representation can be used for
our computer generated data. For actual spontaneous or event-related
MEG, the choice of the kernel must be made by taking several
properties of the MEG data to be analyzed into consideration. Such
properties include the number of time–frequency components, how
close they are, and how localized or diffused they are. The optimum
kernel for analyzing various types of transient MEG data needs to
be investigated.

The proposed algorithm is suited to localizing sources for transient
and nonstationary MEG signals. There are several situations in
MEG measurements in which a transient signal is observed but its
origin is not adequately established. A well-known example of such
signals is visual or auditory gamma-band activity, which may have a
relationship with feature binding in a cognitive process or even with
consciousness [6], [7]. Other examples of such signals include human-
spontaneous MEG [8]. We plan to apply the proposed algorithm to
such nonstationary signals and we will report these results in the
near future.
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