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Abstract—We propose a method that incorporates the time—frequency .
characteristics of neural sources into magnetoencephalographic (MEG) .
source estimation. The method is based on the multiple-signal- \0 R
classification (MUSIC) algorithm and it calculates a time—frequency
matrix in which diagonal and off-diagonal terms are the auto and
crosstime—frequency distributions of multichannel MEG recordings, J
respectively. The method averages this time—frequency matrix over
the time—frequency region of interest. The locations of neural sources
are then estimated by checking the orthogonality between the noise '\
subspace of this averaged matrix and the sensor lead field. Accordingly,
the method allows us to estimate the locations of neural sources from whole-head sensor array
each time—frequency component. A computer simulation was performed
to test the validity of the proposed method, and the results demonstrate
its effectiveness.

Index Terms—Biomagnetism, biomedical signal processing, inverse

problems, time—frequency analysis Fig. 1. Schematic view of the sensor-source configuration used in the

computer simulation.

indicates the matrix transpose afidndicates the unit matrix. The

_ ) o eigenvalues are numbered in decreasing order.
HE noninvasive measurement of magnetic fields generated

from human cortical neural activities, referred to as magne- 1.
toencephalography (MEG) [1], has been found to be a powerful . L .
tool in studies of human neurophysiology and neural information L&t US define the magnetic field measured bysitte detector C?"
processing. One major problem here is the MEG inverse problem [&f, ime? @S bm(f) and a vectom(t) = (b (1), ba(f),.... bar (1))

a problem of estimating neural current distributions from the magnefic 2 Sét of measured data wheteis the total number of detector
field measured outside a human head. Because the neural curfQif§- A total of P current-dipole sources is assumed to generate the
distribution is inherently three-dimensional (3-D), the estimatiofiomagnetic field, and the locations of these sources are denoted as
problem is generally ill posed. To reduce this ill posedness, th&!:%2:---.¥r). The magnitude of theth dipole-source moment is
estimation needs to incorporate some prior knowledge regardifigfined ass»(t). The source magpnitude vector is definedsas) =

the source characteristics. Such characteristics can include possﬁﬁlét)*”(f)““""’P(t)) - A spherical homogeneous conductor [4]
source locations, the source spatial extent, the total number of sourée@Ssumed and two tangential components gtiz@dé components,
or the source-frequency characteristics. In this paper, we proposgféhe_dlpole-so_urce moment are conS|dere(j. The(9 dpoTIe orientation
novel method that incorporates source time—frequency characterisficdefined as its normal vectay,(f) = (1,(*).1,())" where

into the source estimation. The method combines time—frequerléyy ()l = 1. We also define 2P x I matrix that expresses the
analysis [2] with the MEG multiple-signal-classification (MUSIc)eientations of allP dipole sources ag(t) such that

. INTRODUCTION

M ETHOD

algorithm [3] and allows estimation of neural sources from each 7, (t) 0 0

time—frequency component. Throughout this paper, plain italics 0 . :

indicate scalars, lower case boldface italics indicate vectors, and ¥(t) = () ' . Q)

upper case boldface italics indicate matrices. The supersgript : . 0
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Fig. 2. Generated waveforms af components of: (a) first source; (b) second source; and (c) third source.
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To formulate the time—frequency MUSIC algorithm, we assume

TABLE |

that all dipole sources do not change their orientations during the timeSourRCE PARAMETER VALUES ASSUMED FOR THECOMPUTER SIMULATION

period of interest and we use time-independemd express the dipole
source orientations. The time—frequency distribution matrices(for
ands(t) are defined a€'s (¢, f) andC,(¢, f), which can be obtained
by using any of the Cohen-class time—frequency distributions [2],

source number  location (cm)  t; @y b; aj

j=1 (1.0, 4.0, —6.3) 230 100 0 4x10¢

j=2 (1.0, 5.0, =8.0) 170 100 0.05 4x107*

[5], i.e.,
Cy(t. f) :/7 S(v—t,&— f)

. Um b(v+7/2)b" (v — 7/2)e” ™" dr| dv d¢

(3)
and
i o=
) {/w s(v+71/2)s" (v — 7/2)e 7T dr | dv dE.
(4)

Here, ®(t, f) is the convolution kernel, which determines the char-
acteristics of the resultant Cohen-class time—frequency distributions.

The matrixCy (¢, ) is anM x M matrix. Its diagonal elements are
the autotime—frequency distributions of the channel recordings and

=3 (1.0, 5.5, ~95) 100 100 01 4x 10

its off-diagonal elements are the crosstime—frequency distributions
between different channel recordings. The maté%(¢, f) is a
P x P matrix. Its diagonal elements are the autotime—frequency
distributions of the source activities and its off-diagonal elements
are the crosstime—frequency distributions between different source
activities.

Using (2)-(4), we can derive

Cu(t. f) =(L¥)C.(t, f)(F" L)
+ Cun(t, )+ Cos(t. f) + Cult. f) (5)

where
Csn(tﬂf) :// (I)(V_t7£_f)

| st

—o0

cn" (v =1/2)e ™ dr | dv dé (6)
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Fig. 3. (a) Waveform of the generated magnetic field from one representative channel located above the left hemisphere. (b) Power spectrum of the
generated magnetic field obtained by averaging the spectra from all channels.

o

Cit.n= [[ow-re-p) T
. U n(v+7/2) 0.2
,’x | -
s (v —1/2)@ L )e ™" (IT:| dv d¢ (7) S
2015
and £
=}
o [
[ N
cut.f)= [[ o0 -te-p) g o
" 5
oo c
. P A _ 2wiET
|:/_x n(v+7/2)n" (v—1/2)e dT:| dv d¢. 0.05
®
Let us define the region of interest in the time—frequency domain as 0 ' ; ; ; ; :
2. This region contains the signal of interest and we localize sources 50 100 150 200 250 300
by using time—frequency components in this region. The matiiges time points

andY, are obtained by averaging, (¢, f) and Cs(t, f) over this
target time—frequency regiof, i.e., Fig. 4. Smoothed pseudo-Wigner—\ﬁIle timej—frequency distribution of com-
puter generated neuromagnetic data. The time—frequency maps were calcu-
[ . . [ . . lated from all channel recordings, and the results obtained by averaging all
T, = // Cy(t,f)dtdf and T, = // Cs(t, f)dtdf (9)  inese maps are shown. The frequency is normalized such that the Nyquist
Q Q frequency is equal to 0.5. The three quadrangular areas denot@d,i§y-,
. . . . and(2; are the target regions used for the source-estimation experiments.
where [ [, indicates the integral over this target time—frequency
region. We denote the number of sources whose activities havelMe assume that the noise and signal are uncorrelated in the
time—frequency components in the target regionFas Note that target region. This assumption leads fd, Cn.(t,f) dt df =

the matrixY, is a P, x P, matrix. I fo Csn(t, f) dt df = 0. We also assume that the noise is white
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Fig. 5. MUSIC-localizing function on the plane = 1 cm. The time—frequency MUSIC algorithm [(13)] was used with the target region set &,(a)
(b) Q2, and (c) 3. (d) The conventional MUSIC algorithm [(17)] was used.

Gaussian, so the expected value®f(t, f),(C.(t, f)) is equal to where A\.in(+,-) indicates the minimum generalized eigenvalue of
o5 I where () indicates the ensemble average aifgl is the noise the matrix pair in parenthesis and the matdky is defined as
power density. Accordingly, if the target region is sufficiently largeZx = [wrg+1,...,un]. This J(x), referred to as the localizing

replacing the ensemble average by the integration over the tarfieiction, is calculated point-by-point in a volume where sources can
region we havel [, C.(t,f) dt df = ¢°T whereo” is the total exist. Each location wher#(x) forms a peak is chosen as the location
noise power in the target region. Therefore, we finally derive thef one dipole source.
relationship Equation (13) was obtained under the assumption that dipole
o 5 sources do not change their orientations during the time period of
Ty = (LA)Y(¥ L) +o°L (10) interest. It is worth noting that when this assumption does not hold
and the source orientations change, this localizing function can still
be used to detect source locations. In such cases, instead of (10) we
have the relationship

(Ty = 0" Du; = (L&Y (P L Ju; =0, T, = LT.L{ +0°I (14)
j=Pa+1,...,M. (11)

Denoting the noise-level eigenvectors ¥%, as u;, wherej =
Py +1,...,M, (10) becomes

whereT, = [ [, Cs(t.f) dt df, andC.(t, f) is obtained from

The matrix L. is a full-column-rank matrix. Thus, when the matrix oo
T, is a full-rank matrix, we get C.(t.f)= // (v —-t,6—f)
W LDyu; =0, forj=Po+1,...,M. (12) —oo
The above equation indicates that source locations can be obtained : {Lm (v +7/2)s(v+7/2)
by checking the orthogonality between the sensor lead field with L
an optimum orientatiorl.(z)n,,,, wheren,, represents the normal s (v =12 (v —1/2)e”* ™ dr| dv dE.

vector in the optimum orientation, and the noise-level eigenvectors
w; (j = Po+1,....M). (19)

This orthogonality can be evaluated by calculating the followingherefore, assuming that the matifix is a full-rank matrix, we also
function: obtain the relationship

J(x) = 1/ Auin(L" (£)ZNZNL(x), L' (x)L(x))  (13) Liu; =0, forj=Po+1,...,M. (16)
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Fig. 6. Smoothed pseudo-Wigner-Ville time—frequency distribution of the neuromagnetic data used for the time jitter experiments. The timcg-+Hrapse

were calculated from all channel recordings, and the results obtained by averaging all these maps are shown. (a) Time—frequency map obtained from the
waveform averaged across all epochs. (b) Time—frequency map obtained by averaging maps from all raw epochs. (c) Time—frequency MUSIC localizing
function on the plane: = 1 cm. The target region was set@i shown in Fig. 4 and the matriX,, was calculated usin®, = (/ fq Cu(t, f) dt df )epoch-

Since the source locations that satisfy (16) also satisfy (12), the loc@iomagnetic Technologies Inc., San Diego, CA). The coordinate
izing function in (13) is effective even when the source orientatiorggigin was defined at the center of the coil array. Erdirection was
are not time independent and change during the period of interestiefined as the direction perpendicular to the plane of the detector coil

It is informative to compare (13) with the localizing function usedocated at this center. The direction was defined as that from the
in the conventional time-domain MUSIC algorithm. This convenposterior to the anterior, and thedirection was defined as that from
tional localizing function is expressed as [3] the left to the right hemisphere.

J(x) = 1/Amin(L" (z) ExEx L(z), L' (z)L(z)) (17) Three signal dipole sources were assumed to exist on the same

s plane(x = 1.0 cm). The configuration of this computer simulation is

whereEn = ey €N ande; (j =P +1,..., M) indicate . e X o
v =lers ew] e; (J ) ) B(own schematically in Fig. 1. The simulated magnetic field was cal-

the noise-level eigenvectors of the measured-data covariance mathg . : X )
This measured-data covariance matrix is obtained by averagffigated at 351 time points. To generate the simulated neuromagnetic
b()b" (t) during the time period of interest. The only differencdi€!d; the ¢ components of the three sourceg (?).(j = 1.2,3)
between the proposed and the conventional MUSIC algorithms is th#re all Gaussian amplitude modulated and frequency modulated,
the proposed algorithm uséy instead ofEy in the conventional i-€.,w} () = exp[—(t —;)*/(207)] cos[2m(a;t +b;)(t — #;)]. The
algorithm. # components of the three sources were set to zero. The values for
t;,0;5, aj,b; and the assumed source locations are listed in Table I,
ll. COMPUTER SIMULATION and the generated waveforms for thecomponents of the three
We performed a computer simulation to test the validity of theources are shown in Fig. 2.
proposed method. We used the coil configuration of a 148-channeUncorrelated Gaussian noise was added to make the final signal-
whole-head Magnes 2500WM biomagnetic measurement systerto-noise ratio (SNR) equal to two. The SNR was defined as the ratio
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of the Frobenius norm of the signal-magnetic-field data matrix to thaére show that the proposed algorithm is, in principle, effective for
of the noise matrix. The waveform of the generated magnetic fidiacalizing an evoked source whose activation is not time-locked to
from one representative channel located above the left hemispherthis stimulus.

shown in Fig. 3(a) and the power spectrum obtained by averaging

the spectra from all channels is shown in Fig. 3(b). These figures IV. DISCUSSION

indicate that the signals from the three sources cannot be separat

in either the time domain or in the frequency domain. resolution time—frequency maps, they are known to contain significant

The smooth_ed pseqdo-ngner—Vllle _trar.lsfo.rm was calculated Iount of spurious crossterms when the distribution contains multiple
order to obtain the tlme—frequency dlst.rlbutlon of the comput%romponems_ The convolution kern@i(#, f) in (3) or (4) should
generated 'data. The convolution _kgrne_l in (3) and (A_') was Cho%@refcre be chosen so as to reduce the amount of such spurious
such that it was_equal toa _rnult|p||cat|oq of a functlor_1 ’Ohr_]d cross terms at the minimum sacrifice of the resolution. As a result,
th.at off.each dgrlved by Fourlerltransform.lng the hamming W'ndo%e kernel determines the tradeoff between the resolution and the
with a window size of 39 data points. The time—frequency maps Weg, ¢ of such spurious crossterms. The relationship between several
calculated from all channel recordings, and the results obtained fyoific choices of the kernel and the properties of the resultant
averaging all these maps are shown in Fig. 4. Three time—frequeRfe frequency distributions has been well studied in the field of
components are clearly resolved. _ _time—frequency analysis. A detailed discussion on the choices of the

The time—frequency MUSIC algorithm was then applied by settingne| and properties of the resultant time—frequency distributions
the target time-frequency region as the regions indicate@ b¥2>, 46 found in [2] and [5].
and Qs in Fig. 4. The results are shown in Fig. 5. The contours |4 gur computer simulation, we used the smoothed pseudo-
in Fig. 5(a)—(c) show the relative value of the MUSIC localizingyigner—ville representation, which uses the kernel separable in
function in (13) on the plane = 1 cm and each area where theierms of time and frequency. This choice, however, is somewhat
localizing function reaches a peak is considered to be the Iocatigfbitrary and any other Cohen-class representation can be used for
of one dipole source. Thgy, z) coordinates of the peak locations inoyr computer generated data. For actual spontaneous or event-related
Fig. 5(a), (b), and (c) are (3.9;6.5), (4.8,-8.1), and (5.4-9.5), MEG, the choice of the kernel must be made by taking several
respectively. Comparison with the original source locations listed ftoperties of the MEG data to be analyzed into consideration. Such
Table I shows that the time—frequency MUSIC algorithm accurateptoperties include the number of time—frequency components, how
localized the three sources, and these results verify the validity @bse they are, and how localized or diffused they are. The optimum
the proposed algorithm. The conventional MUSIC algorithm [3] wagernel for analyzing various types of transient MEG data needs to
applied to the same computer-generated data [Fig. 5(d)], but the investigated.
conventional localizing function in (17) was not able to resolve the The proposed algorithm is suited to localizing sources for transient
three sources. The results in Fig. 5 demonstrate the effectivenesaugd nonstationary MEG signals. There are several situations in
the proposed method. MEG measurements in which a transient signal is observed but its

It is sometimes possible that a transient event-related signal is o@igin is not adequately established. A well-known example of such
time locked to the stimulus and has a time jitter among multipl&ignals is visual or auditory gamma-band activity, which may have a
epoch recordings [6]. We next show that a minor modification of thelationship with feature binding in a cognitive process or even with
proposed algorithm allows source locations to be estimated from swansciousness [6], [7]. Other examples of such signals include human-
a nontime-locked event-related signal. The simulated magnetic fispontaneous MEG [8]. We plan to apply the proposed algorithm to
data was calculated assuming that the first source has a time jittersuch nonstationary signals and we will report these results in the
i.e., itsg component has a form; (t—t. ). Here,t. was generated by near future.
using a uniform random number ranging from -50 to 50 time points,
and a total of 64 raw-epoch data was generated. The SNR of each REFERENCES
raw-epoch data was set at 0.25. Two kinds of time—frequency maps o . o )
were obtained; one was obtained by using the simulated magneti[:l-] 'flau':;";?gr’]?l\r}l’a;]'egiﬁéei'hilbglrr;]gﬁf&to&’ m?rttr':qaéng;%n’oén\é' ap-
field waveforms averaged across all raw epochs and the other was piications to noninvasive studies of the working human braRev.
obtained by averaging time—frequency maps across all raw epochs. Mod. Phys. vol. 65, pp. 413-497, 1993.

The results are shown in Fig. 6. [2] L. Coher_],Time—Frequgncy Analysis: Theory and Applicationgngle-

In the time-frequency distributio_n in Fig. 6(a), the time—fr.equenC)'/ph EYO(?.dM(i)hsmsér,'\llgi gr«la_rét\lNcgl-;?]l(lj Il?n.cl\'/’l.ngegaLlHy, “Multiple dipole modeling
component generated from the first source has almost disappeared ang Iocalization from spatio-temporal MEG datiZEE Trans. Biomed.
because of the time jitter. Conversely, this component is clearly Eng, vol. 39, pp. 541-557, 1992.
observable (although it is significantly blurred compared to that4] J. Sarvas, “Basic mathematical and electromagnetic concepts of the

in Fig. 4) in the time—frequency distribution in Fig. 6(b), which liigsrgagnetic inverse problemphys. Med. Biol. vol. 32, pp. 11-22,

is obtained by aver_aging a time—frequency map.from each set @6 F. Hlawatsch and G. F. Boudreaux-bartels, “Linear and quadratic
raw-epoch data. This observation suggests that if we calculate the time—frequency signal representationlgEE Signal Processing Mag.
matrix % such that?y, = ([ fo Cu(t, f) dt df)epocn Where vol. 9, pp. 2167, Apr. 1992. o
(epoen indicates the average over epochs we can localize sourcéd C- Tallon-Baudry, O. Bertrand, C. Delpuech, and J. Pernier, *Oscillatory
f . locked e he | lization f L ~-band (30-70 Hz) activity induced by a visual search task in humans,
or nontime-locked activities. The local ization function in (13) Was 3 Neurosci. vol. 17, pp. 722733, 1997.

calculated witHI, obtained in the above-mentioned manner and with[7] R. Llinas and U. Ribary, “Coherent 40-Hz oscillation characterizes
the same target regioft; shown in Fig. 4. The results are shown dream state in humansProc. Nat. Acad. Scivol. 90, pp. 2078-2081,

in Fig. 6(c). Here, the first source is clearly detected. Th 1993.
c?' E ) f th ' K in this fi 4_y 5 hich They) [8] R. Hari and R. Salmelin, “Human cortical oscillations: a neuromagnetic
coordinates of the peak in this figure are (4-8.5), which are very view through the skull,"Trends Neurosci.vol. 20, pp. 44-49, 1997.

close to the assumed location of the first source. The results obtained

e,&jlthough the quadratic Cohen-class distributions can provide high-



