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A B S T R A C T

In this paper, we present a novel hierarchical multiscale Bayesian algorithm for electromagnetic brain imaging
using magnetoencephalography (MEG) and electroencephalography (EEG). In particular, we present a solution to
the source reconstruction problem for sources that vary in spatial extent. We define sensor data measurements
using a generative probabilistic graphical model that is hierarchical across spatial scales of brain regions and
voxels. We then derive a novel Bayesian algorithm for probabilistic inference with this graphical model. This
algorithm enables robust reconstruction of sources that have different spatial extent, from spatially contiguous
clusters of dipoles to isolated dipolar sources. We compare the new algorithm with several representative
benchmarks on both simulated and real brain activities. The source locations and the correct estimation of source
time courses used for the simulated data are chosen to test the performance on challenging source configurations.
In simulations, performance of the novel algorithm shows superiority to several existing benchmark algorithms.
We also demonstrate that the new algorithm is more robust to correlated brain activity present in real MEG and
EEG data and is able to resolve distinct and functionally relevant brain areas with real MEG and EEG datasets.
1. Introduction

Mapping of the entire brain's activity in humans is an important un-
dertaking in cognitive neuroscience research that seeks to understand
neural mechanisms of complex human behaviors. It also has clinical
applications in patients with brain tumors and epilepsy, where functional
brain mapping is useful to guide neurosurgical planning, navigation, and
resection.

Two techniques currently exist for non-invasive brain mapping of
electrophysiological activity in humans: electroencephalography (EEG)
and magnetoencephalography (MEG). MEG and EEG are complementary
techniques that measure, respectively, the magnetic field outside the
head and the scalp electric potentials produced by electrical activity in
neural cell assemblies. Since they directly measure electrical brain ac-
tivity from neural ensembles, these methods have superior temporal
resolution compared to PET or fMRI, thereby enabling studies of the
dynamics of neural ensembles that occur at typical time scales on the
order of tens of milliseconds.

To estimate brain source activity from EEG or MEG data, source
reconstruction algorithms are necessary, which consists of solving a
12 July 2018; Accepted 23 July
forward problem and an inverse problem. The forward problem com-
putes the scalp potentials and external magnetic fields for a specific set of
neural current sources for a given sensor configuration, brain anatomy,
head geometries, and volume conductor properties. The inverse problem
estimates the parameters of neural sources from MEG and EEG sensor
data andmakes use of the forward problem computations. The estimation
of spatial locations and timing of brain sources is still a challenging
problem because it involves solving for unknown brain activity across
thousands of voxels from the recordings of just a few hundred sensors. In
general, there are no unique solutions to the inverse problem because
there are many source configurations that could produce sensor data that
can account for the sensor observations. This nonuniqueness is referred
to as the ill-posed nature of the inverse problem. Besides handling the ill-
posed nature of EEG or MEG imaging, the inverse algorithms have to
address the challenge of searching for true source signals while mini-
mizing the many sources of noise that interfere with the true signals.
Electrical, thermal and biological noise as well as background room
interference can be present.

To overcome these challenges, researchers have proposed many
efficient inverse problem algorithms which can broadly be classified into
2018
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Fig. 1. Graphical models for (a) BMN, (b) Champagne, (c) Tree_Champagne. Variables dependent on time are inside dotted box; Variables independent of time are
outside bottled box. Variables in circles are unknown and learned from the model, and Variables in squares are known. N is the number of voxels, si denotes the ith
voxel time course, si;j is the j-th voxel's time course in i-th region.
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two categories: model-based parametric dipole fitting and whole-brain
source imaging methods. Dipole fitting methods assume that a small
set of current dipoles can adequately represent an unknown source dis-
tribution, which is a direct way to estimate source parameters and has
properties of high resolution but low accuracy. This is because solving for
dipole parameters requires nonlinear optimization over a high-
dimensional parameter space with solutions having great sensitivity to
initialization due to the high probability of being a local minima. This is
especially a significant problem when multiple dipoles are considered.
Furthermore, estimating the number of dipoles remains an intractable
problem.

An alternative approach is whole-brain source imaging methods
which do not require prior knowledge of the number of sources and can
generally avoid the non-linear search in the high dimensional parameter
space (Sekihara and Nagarajan, 2008, 2015; Wu et al., 2016; Wipf and
Nagarajan, 2009). These methods apply voxel discretization over a whole
brain volume, and assume a source at each voxel and estimate the am-
plitudes (and orientation) of the sources by minimizing a cost function.
Imaging methods can be further classified into two classes: tomographic
reconstruction and spatial scanning techniques. Tomographic techniques
model the activity at all candidate source locations simultaneously.
Tomographic techniques include minimum-norm estimation (MNE)
(H€am€al€ainen and Ilmoniemi, 1984, 1994), dynamic statistical parametric
mapping (dSPM) (Dale et al., 2000), and standardized low -resolution
brain electromagnetic tomography (sLORETA) (Pascual-Marqui, 2002).
Some tomographic techniques promote sparseness in the solution (Mat-
suura and Okabe, 1995; Uutela et al., 1999), where the majority of the
candidate locations do not have significant activity (Wipf and Nagarajan,
2009; Zumer et al., 2007, 2008; Wipf et al., 2010a). Empirical evidence
shows that a sparse source model can improve the accuracy of the
localization in a noisy environment (Wipf et al., 2010a). In contrast,
spatial scanning techniques sequentially estimate the time course at
every candidate location while suppressing the interference from activity
at the other candidate source locations. Some examples of scanning
techniques are minimum-variance adaptive beamforming (Robinson
et al., 1992; Spencer et al., 1992; Van Veen et al., 1997; Sekihara et al.,
1996) and other variants of beamformers (Sekihara and Nagarajan,
2008).

Most of the source reconstruction algorithms from the above classes
can be viewed in Bayesian framework (Sekihara and Nagarajan, 2015).
This perspective is useful because at a high level, the prior distribution,
implicitly or explicitly imposed, can be used to differentiate and compare
the various source localization methods. Recently, we have developed
Champagne, a novel tomographic source reconstruction algorithm that is
derived in an empirical Bayesian and incorporates deep theoretical ideas
about sparse-source recovery from noisy, constrained measurements.
Champagne improves upon existing methods of source reconstruction in
terms of reconstruction accuracy, robustness, and computational effi-
ciency (Wipf et al., 2010a). Experiments with preliminary simulated and
real data, presented in (Owen et al., 2012), show that compared to other
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commonly-used source localization algorithms, Champagne is more
robust to correlated sources and noisy data. However, when faced with
more complex brain activity patterns that span multiple spatial scales,
such as clusters of dipolar sources or mixtures of clusters and isolated
dipolar sources, there are still no efficient source reconstruction
algorithms.

Here, we present a novel hierarchical multiscale generative model for
electromagnetic measurements such as MEG and EEG. This algorithm can
be considered as a hierarchical multiscale extension of the Champagne
algorithm. We first assume that brain voxels cluster into either anatom-
ically or functionally defined brain regions or parcels with region-level
specific variances. Voxel activity is then assumed to have a component
arising from regions with additional voxel -specific variances to account
for variations in voxel activity within a region. The voxel activity is then
assumed to be related to sensor data using standard lead-field kernels
that are known given the geometry of the sensor measurements and the
volume conductor model. We then derive Bayesian algorithm for esti-
mating voxel and region variances from sensor data. We present a novel
algorithm with both voxel and region variances, referred to as tree_-
Champagne. We evaluate its performance in simulations and real-data
and compare with existing benchmark algorithms.

2. Methods

This section describes the tree_Champagne algorithm including the
probabilistic generative model, estimation of the source and region ac-
tivity, learning of hyperparameters, and its relation to other Bayesian
inference algorithms.
2.1. The probabilistic generative model

We assume that MEG/EEG data have been collected for evoked or
induced source activity paradigms, with separate time-windows for
evoked or induced source activity and for background brain activity
including interference from biological, environmental sources and sensor
noise.

The generative model for the sensor data is:

yðtÞ ¼
X
i¼1

N

lisiðtÞ þ ε (1)

where, yðtÞ 2 ℝdy�1, is the output data of sensors at time t, dy is the
number of channels measured, N is the number of voxels under consid-
eration and li 2 ℝdy�dc is the lead-field matrix for the i-th voxel. The k-th
column of li represents the signal vector that would be observed at the
scalp given a unit current source/dipole at the i-th voxel with a fixed
orientation in the k-th direction. It is common to assume dc ¼ 2 (for MEG)
or dc ¼ 3 (for EEG), which allows flexible source orientations to be
estimated in 2D or 3D space. Multiple methods based on the physical



Fig. 2. Example of the localization results for simulated MEG data with 3 clusters at SNIR¼ 10. The activity power is normalized by the lead-field value at each voxel.
The ground truth is shown for comparison.
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Fig. 3. Example of the localization results for simulated MEG data with 3 regions active at 10 dB. The activity power is normalized by the lead-field value at each
voxel. The ground truth is shown for comparison.
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properties of the brain and Maxwell's equations are available for the
computation of each li (Hallez et al., 2007). And siðtÞ 2 ℝdc�1 is the i-th
voxel intensity at time t, which we assume it with dc orientations. Finally,
ε is a noise-plus-interference term where we assume, for simplicity, that
the columns are drawn independently from Nð0; ΣεÞ with known
covariance Σε. Temporal correlations can easily be incorporated if
desired using a simple transformation outlined in (Friston et al., 2008a)
or using the spatio-temporal framework introduced in (Bolstad et al.,
2009). Here, we assume that the noise covariance can be estimated from
the baseline and evoked data using a Stimulus-Evoked Factor Analysis,
SEFA (Nagarajan et al., 2007a) or variational Bayesian factor analysis
(VBFA) model (Nagarajan et al., 2007b).

In our hierarchical framework, we divide the brain into R apriori
regions (or tiles) specified either anatomically or functionally (Tzour-
io-Mazoyer et al., 2002). The j-th region contains pj voxels. As a first step,
we assume that the division of regions are assumed to be
non-overlapping, where each voxel belongs to exactly one region, but
this is not a necessity in the framework. Regional tiling may correspond
to a map of anatomical or functional areas, or be constructed by, e.g.,
dividing the voxels into regions centered at equally-spaced locations
throughout the brain (Attias, 2013). We also assume that each unknown
region's activity zjðtÞ 2 ℝdc�1 at time t is an equivalent dc-dimensional
neural current dipole, projecting from the j-th region. We then assume
that a given voxel's activity arises from the addition of the region's ac-
tivity and voxel activity that is independent of the region's, as shown
below.
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siðtÞ ¼ viðtÞ þ gjzjðtÞ (2)
In the equation above, vi expresses the component that is intrinsic to
the i-th voxel and independent from activities of other voxels or the re-
gion a voxel belongs to. gj is the gain matrix between j-th region distri-
bution and voxel si, here we assume it to be 1

pj
, where pj is the number of

voxels for j-th region. Then, the source data model in Eq. (1) is expressed
such that

yðtÞ ¼
X
i¼1

N

liviðtÞ þ
X
j¼1

R
 
1
pj

X
i2ωj

li

!
zjðtÞ þ ε ¼

X
i¼1

N

liviðtÞ þ
X
j¼1

R

ljzjðtÞ þ ε (3)

where
P
i2ωj

indicates the summation regarding the voxels that belong to

the j-th region. We then denote the mean lead field over the j-th region by
lj: lj ¼ 1

pj

P
i2ωj

li and define an extended (voxel-augmented) lead field matrix

H such that

H ¼ �l1;…; lN ; l1;…; lR
� ¼ ½h1;…; hNþR� (4)

where hi ¼ li for i ¼ 1;…;N and hi ¼ li�N for i ¼Nþ 1;…;Nþ R. We also
define an extended voxel vector, such that

xðtÞ ¼ �vT1 ðtÞ;…; vTNðtÞ; zT1 ðtÞ;…; zTRðtÞ
�T ¼ �xT

1 ðtÞ;…;xT
NþRðtÞ

�T (5)

where xiðtÞ ¼ viðtÞ for i ¼ 1;…;N and xiðtÞ ¼ zi�NðtÞ for i ¼ Nþ 1;…;



Fig. 4. Example of the Aggregate Performance metric calculation with increasing correlation in clusters from 0.1 to 1 at 10 dB for 50 simulations: (A) Averaged Hit
Rate for all algorithms; (B) Averaged False Rate for all algorithms; (C) Averaged correlations for all hit sources; (D) Averaged Aggregate Performance scores for
all algorithms.
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Nþ R. Eq. (3) can then be rewritten as

yðtÞ ¼ HxðtÞ þ ε (6)

The equation above is the data model used for the derivation of the
new algorithm.

The data vector yðtkÞ is denoted yk and the extended voxel vector
xðtkÞ is denoted xk for simplicity, tk is the time point at k. We formulate
the source reconstruction problem as the spatio-temporal reconstruction,
i.e., the voxel time series x1;x2;…;xK is reconstructed using the sensor
time series y1;y2;…;yK . We express the whole time series x1;x2;…;xK

collectively as X 2 ℝðNþRÞdc�K , and the whole time series y1; y2;…; yK as
Y 2 ℝdy�K .

We then define ϒ i as a prior variance dc � dc matrix of xi and define ϒ
as dcðN þ RÞ � dcðN þ RÞ block diagonal matrix expressed as

ϒ ¼

2664
ϒ1 0 ⋯ 0
0 ϒ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ϒNþR

3775 (7)

The prior distribution is expressed as

pðXjϒÞ ¼
Y
k¼1

K

N ðxk j0;ϒÞ (8)

Using the noise assumption that ε � N ðεj0; ΣεÞ, the conditional
probability pðYjXÞ is expressed as

pðYjXÞ ¼
Y
k¼1

K

pðyk jxkÞ ¼
Y
k¼1

K

N ðyk jHxk;ΣεÞ (9)

Here, the noise covariance Σε can be estimated using SEFA (Nagarajan
et al., 2007a) or VBFA (Nagarajan et al., 2007b) and is assumed to be
known for simplicity and subsequent considerations.

2.2. Estimation of the source and region activity

To estimate the source distribution X, we first derive the posterior
distribution pðXjYÞ, which is given by
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pðXjYÞ ¼
YK

pðxkjykÞ ¼
YK

N
�
xk

��xk;Γ
�1
�

(10)

k¼1 k¼1

where the variance and the mean are obtained as

Γ�1 ¼ ϒ�1 þHTΣ�1
ε H (11)

xk ¼ Γ�1HTΣ�1
ε yk (12)

The posterior mean can be written in an alternative way, such that

xk ¼ ϒHTðΣε þHϒHTÞ�1yk ¼ ϒHTΣ�1
y yk (13)

where

Σy ¼ Σε þHϒHT (14)

This Σy is called the model data covariance matrix. The solution in Eq.
(13) can be expressed as2664

x1ðtkÞ
x2ðtkÞ
⋮

xNþRðtkÞ

3775 ¼

2664
ϒ1 0 ⋯ 0
0 ϒ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ϒNþR

3775
2664

hT
1

hT
2
⋮

hT
NþR

3775Σ�1
y yk (15)

We can then express the source activity in terms of a spatial filter as
shown below:

xjðtkÞ ¼ ϒ jh
T
j Σ

�1
y yk (16)

2.3. Learning the hyperparameters ϒ

The Bayesian estimate of xk is given as the voxel posterior mean in Eq.
(12) or (16). In order to compute xk in Eq. (16), we need to know the
hyperparameter ϒ . The hyperparameter ϒ is obtained by maximizing
pðYjϒÞ which is called the marginal likelihood (Wipf et al., 2010b). The
marginal likelihood pðY jϒÞ is expressed as follows (details of the deri-
vation of this function can be found in Appendix A).



Fig. 5. Simulation results of Aggregate Performance with four different configurations at 10 dB and 0 dB: (A) and (B) show results for increasing dipoles time courses
correlation from the same cluster; (C) and (D) show results for increasing correlation between clusters; (E) and (F) show results for increasing the number of clusters;
(G) and (H) show results for variations in the sizes of the clusters.
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log pðY jϒÞ ¼ �1XK ðyk �HxkÞTΣ�1
ε ðyk �HxkÞ
K k¼1

"

þ
XNþR

xT
j ðtkÞϒ�1

j xjðtkÞ
#
� logjΣyj (17)
j¼1

Although the optimum value of the hyperparameter ϒ is obtained by
maximizing log pðY jϒÞ, maximizing the right-hand side of the equation
above is difficult due to the inclusion of the last term log

��Σy

��.
Since log

��Σy
�� is a concave function with respect to ϒ (Wipf and

Nagarajan, 2009), using dc � dc auxiliary-parameter matrices, Λjðj ¼ 1;
…; Nþ RÞ, the relationship (Jordan et al., 1999) (Boyd and Vanden-
berghe, 2004),

X
j¼1

NþR

tr
�
ΛT
j ϒ j

�
� Λ0 � log

�����Σy

����� (18)

holds where Λ0 is a scalar term. Accordingly, we define an auxiliary cost
function F ðϒ ;ΛÞ such that
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F ðϒ ;ΛÞ ¼ �1XK ðyk �HxkÞTΣ�1
ε ðyk �HxkÞ
K k¼1

"

þ
X
j¼1

NþR

xT
j ðtkÞϒ�1

j xjðtkÞ
#
�
X
j¼1

NþR

tr
�
ΛT
j ϒ j

�
þ Λ0

(19)

where,

log pðY jϒÞ � F ðϒ ;ΛÞ (20)

always holds, and increasing F ðϒ ;ΛÞ with respect to ϒ should result in
increasing the marginal likelihood log pðY jϒÞ. Therefore, the update
value of ϒ is derived as

bϒ ¼ argmax
ϒ

F ðϒ ;ΛÞ (21)

Update rules can then be derived using



Fig. 6. Aggregate Performance with three different configurations: (A) and (B) show results for increasing the brain's regions at 10 dB and 0 dB; (C) and (D) show the
performance of all algorithms with fixed 5 dipoles while increasing the number of clusters at 10 dB and 0 dB; (E) and (F) show results with fixed 5 clusters but
increasing the number of dipoles at 10 dB and 0 dB.
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∂
F
�
ϒ j;Λ

� ¼ �ϒ�1
j

1XK
xjðtkÞxT

j ðtkÞ ϒ�1
j þ Λj ¼ 0 (22)
∂ϒ j

"
K k¼1

#

Setting the right-hand side to zero, we get the equation,

ϒ jΛjϒ j ¼
"
1
K

X
k¼1

K

xjðtkÞxT
j ðtkÞ

#
(23)

A positive semi-definite matrix that satisfies Eq. (23), can be derived
such that

bϒj ¼ Λ�1=2
j

"
Λ1=2

j

"
1
K

XK
k¼1

xjðtkÞxT
j ðtkÞ

#
Λ1=2

j

#1=2
Λ�1=2

j (24)

Eq. (24) is the update rule for ϒ j.
The update rule for Λj is derived using a fact that the hyperplanePNþR

j¼1 trðbΛT
j ϒ jÞ � Λ0 forms a tightest upper bound of the concave function

log
��Σy
��. Such a hyperplane is found as the plane that is tangential to

log
��Σy
��. Therefore, the update equation for Λj is derived as

bΛj ¼ ∂
∂ϒ j

log
����Σy

���� ¼ hT
j Σ

�1
y hj (25)

In summary, the hyperparameter ϒ j are estimated by iterating Eq.
(16), Eq. (24) and Eq. (25). Each iteration is theoretically guaranteed to
increase (or leave unchanged) the cost function F

�
ϒj; Λ

�
. The per-

iteration cost is linear in the number of N þ R so the computational
cost is relatively modest (it is quadratic in dy , and cubic in dc, but these
quantities are relatively small). The convergence rate is orders of
magnitude faster (Wipf and Nagarajan, 2009) than Expectation
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Maximum (EM) based algorithms such as those in (Friston et al., 2008a;
Sato et al., 2004).

2.4. Algorithm summary

Tree_Champagne is a source reconstruction algorithm based on
generative model Eq. (1) and is able to combine sparsity (from voxel level
inference) and smoothness (from regional-level inference) to produce
optimally smooth and sparse solutions.

Using the updating rules above, we can calculate the variance of both
voxels and regions. We denote variance of the voxel intrinsic component
as ϒV and variance of the regions as ϒR, the relationship between ϒ and
ϒV , ϒR is

ϒ ¼
	
ϒV 0
0 ϒR



(26)

where

ϒV ¼
24ϒ1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ ϒN

35
ϒR ¼

24ϒNþ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ϒNþR

35 (27)

The variance of i-th voxel is treated as the summation of the variance
of the i-th voxel's intrinsic component and variance of the region where
the i-th voxel belongs to. The time course of tree_Champagne can be
expressed as:



Fig. 7. Example of the localization results for 2 clusters and 2 dipoles at SNIR¼ 10 dB. The activity power is normalized by the lead-field value at each voxel. The
ground truth is shown for comparison.
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Fig. 8. EEG simulation results of the A Prime Metric (left column) and Aggregate Performance (right column) with three different configurations at 10 dB: (A) and (B)
show results for increasing number of clusters; (C) and (D) show results with fixed 5 clusters and increasing the number of dipoles; (E) and (F) show results with fixed 5
dipoles while increasing the number of clusters.

Fig. 9. Averaged Radius of Clusters with EEG simulations for Champagne,
tree_Champagne. The Ground Truth is shown for comparison.
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bstreei ðtkÞ ¼ ϒ tree
i hT

i Σ
�1
y yk (28)
where i-th voxel's variance ϒ tree
i is expressed as

ϒ tree
i ¼ ϒV

i þ ϒR
j (29)

where the i-th voxel belongs to j-th region.
706
2.5. Algorithm initialization

Initialization of the parameter updates are described here. First, Σε is
learned from the pre-stimulus period using SEFA (Nagarajan et al.,
2007a) or VBFA (Nagarajan et al., 2007b) and fixed. Initialization for ϒ is
set by running Bayesian Minimum-Norm (BMN) (Sekihara and Nagar-
ajan, 2015), described below, to determine a whole-brain level variance
parameter and the variance of all voxels and regions are initialized to this
value. The precision and the mean of the posterior distribution pðxjyÞ are
computed using Eq. (11) and Eq. (16). The hyperparameter ϒ is updated
using Eq. (24) and with the values of Λ updated using Eq. (25) and x
obtained earlier. Finally, we calculate the variance of both voxels and
regions, the time course of each voxel using Eq. (28) and Eq. (29) with
both voxels and regions taken into consideration.
2.6. Relationship of tree_Champagne to BMN and to Champagne

BMN (Sekihara and Nagarajan, 2015) and Champagne are two other
Bayesian algorithms for source reconstruction which have close relation
to tree_Champagne. The difference among the three algorithms are in the
generative model, as can be seen in Fig. 1. For BMN, voxels in source
space have a scalar variance ν. Bayesian estimation of this model yields
the BMN algorithm which results in smooth widespread activity
throughout the brain. In contrast to BMN, each voxel in Champagne has a
different prior variance. Bayesian inference of the Champagne model
yields very sparse reconstructions (Wipf et al., 2010a). In contrast to both
of these algorithms, tree_Champagne uses a source space that is
segmented into different regions according to prior anatomy and func-
tion. We then assume that each region has its own region's level variance.
Additionally, tree_Champagne also includes an intrinsic variance for each



Fig. 10. Sensory Evoked Field localization results. The activity power is normalized by the lead-field value at each voxel. All six algorithms localize to somatosensory
cortical areas, where Champagne and tree_Champagne are the most focal. BMN_sLORETA also performs well on the localization. Here we set the threshold for
tree_Champagne and Champagne much lower than other benchmarks.
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voxel independent of the regional variance. This variance partitioning
enables it to produce source reconstructions with varying spatial extents,
as we will show below.

3. Performance evaluation on simulation and real data

This section describes the performance evaluation of tree_Champagne
under different specific complex configurations compared with other
four representative benchmark source reconstruction algorithms. Then
we evaluate the performance of tree_Champagne using real MEG and EEG
datasets with different tasks.
3.1. Benchmark source localization algorithms

Four representative source localization algorithms we chose to
compare with the performance of tree_Champagne are: (1) an adaptive
spatial filtering method, linearly constrained minimum variance beam-
former (referred to as Beamformer) (Robinson et al., 1992; Spencer et al.,
1992; Van Veen et al., 1997; Sekihara et al., 1996), (2) a non-adaptive
weighted minimum-norm method, standardized low-resolution tomo-
graphic analysis (referred to as sLORETA) (Dale et al., 2000; Pascual--
Marqui, 2002), and two Bayesian based algorithms - (3) Champagne
(Wipf et al., 2010a) and (4) MSP (Friston et al., 2008b). In simulations,
for sLORETA we fix the regularization to be 1e-6 times the maximum
eigenvalue of the composite lead-field. We did not find much variation in
performance when we changed the regularization by 1-2 orders of
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magnitude. For real MEG data tests, we use BMN (Sekihara and Nagar-
ajan, 2015) for learning the regularization parameter which is then used
in conjunction with sLORETA - we call this algorithm of using sLORETA
for normalization after BMN as BMN_sLORETA. We found slight im-
provements in real data using BMN_sLORETA when compared to sLOR-
ETA with a fixed regularization that we used in our simulations (see
Fig. 10). For Champagne, Beamformer and sLORETA, we use Matlab files
(nuts_Champagne.m, nuts_LCMV_Vector_Beamformer.m and nuts_sLOR-
ETA.m) from NUTMEG (Dalal et al., 2004). For MSP, we use the exact
implementation of MSP as included in standard settings in SPM12
(spm_eeg_invert.m).
3.2. Quantifying performance

In order to evaluate the performance on simulated results, two fea-
tures are quantified: localization accuracy and time course estimation
accuracy. We first examine whether sources are correctly localized, then
measure if the source time courses are accurately reconstructed for those
source locations. The occurrence of both hits rate and false positives are
taken into account for the evaluation. The free-response ROC (FROC)
curve is used as it allows for multiple hits and false positives in a single
image (Darvas et al., 2004). The A

0
metric (Snodgrass and Corwin, 1988)

estimates the area under the FROC curve for one hit rate (HR) and false
positive rate (FR) pair, or in our case, for each simulation. If the area
under the FROC curve is large, then the hit rate is higher compared to the
false positive rate.



Fig. 11. Auditory Evoked Field results for three subjects. The activity power is normalized by the lead-field value at each voxel. The results from both Champagne and
tree_Champagne are shown in the last two columns, which outperform the other benchmark algorithms shown in the first to three columns.

Fig. 12. Audio-Visual data localization results from tree_Champagne. The activity power is normalized by the lead-field value at each voxel. Tree_Champagne is able
to localize a bilateral auditory response at 100ms after the simultaneous presentation of tones and a visual stimulus. For bilateral auditory activity, the results of
locations and time courses are shown in (A), (B). Tree_Champagne can localize an early visual response at 150ms after the simultaneous presentation of tones and
visual stimulus shown in (C) and (D).
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A
0 ¼ HR � FR

2
þ 1
2

(30)
where HR is calculated by dividing the number of hits by the true number
of seeded sources and FR is calculated by dividing the number of false
positive by the maximum number of false positives for each algorithm.
Eq. (30) is a simple way to compute A

0
metric in our prior paper (Seki-

hara, 2016). The correlation coefficient between the seed and estimated
source time courses for each hit is used to determine the accuracy of the
time courses. We then average the correlation coefficients for all the hits
for each simulation run, which is denoted as R. Finally, we combine these
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two metrics that capture both the accuracy of the location and time
courses of the algorithms into a single metric called the Aggregate Per-
formance (AP) (Owen et al., 2012). It combines the A

0
, R, and HR using

the following equation:

AP ¼ 1
2

�
A

0 þ HRR
�

(31)

TheHR is used as a weight for R since we only compute the correlation
coefficient for the sources that are correctly localized. AP ranges from
0 to 1, with higher numbers reflecting better performance.



Fig. 13. Face-processing task (MEG) localization results for tree_Champagne. The activity power is normalized by the lead-field value at each voxel. Tree_Champagne
can localize an early visual response around 100ms after the presentation of a face stimulus, results with time courses shown in subplot (A). A later visual response
around 200ms after the presentation of a face stimulus are shown in subplot (B). The novel algorithm can localize the bilateral activation in fusiform gyrus that is
thought to be in FFA, shown in (C) and (D). The peak for the brain activity is around 170ms after the presentation of a face stimulus, and the time courses are shown
next to brain activity figures in subplots (C) and (D).
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3.3. MEG simulations

In this paper, we generate data by simulating dipole sources with
fixed orientation. Damped sinusoidal time courses are created as voxel
source time activity and we then project the voxel activity to the sensors
using the forward model generated lead field matrix. The lead field is
constructed within the brain volume assuming a single-shell spherical
model (Hallez et al., 2007) as implemented in SPM12 (http://www.fil.
ion.ucl.ac.uk/spm) at the default spatial resolution of 8196 voxels at
approximately 5 mm spacing. The time course is then partitioned into
pre- and post-stimulus periods. In the pre-stimulus period (180 sam-
ples) there is only noise plus interfering brain activity, while in the
post-stimulus period (300 samples) there is also source activities of
interest on top of statistical similarity distributed noise plus interfering
brain activity. The noise plus interfering activity consists of actual
resting-state sensor recordings collected from a human subject pre-
sumed to have only spontaneous brain activity and sensor noise. The
voxel level activity is then projected to the sensors through the lead
field and the noise/interference is then added to achieve a desired
signal to noise ratio. The simulated data has 271 sensor recordings. The
locations for the active sources are chosen so that there is some mini-
mum distance between sources (at least 15 mm) and a minimum dis-
tance from the center of the head (at least 35 mm) (Julia P Owen et al.,
2012).

We could adjust both the signal-to-noise-plus-interference ratio
(SNIR) and the correlations between the different voxel time courses
(inter-dipole αinter) to examine the algorithm performance on unknown
correlated sources and fixed orientation. In this paper, SNIR and corre-
lation between sources are defined in the same way as is shown in our
prior work (Julia P Owen et al., 2012).

Similar to our prior work, we picked difficult configurations that we
have tested for Champagne (Julia P Owen et al., 2012). Additionally, in
this paper, we extend our tests to sources with extended spatial extent,
i.e. source clusters and regions with more complex configurations
(Edwards et al., 2010). A voxel source is a point dipolar source and a
cluster source is defined as sources with several closely located dipolar
sources. A region is set a priori using atlases by dividing the whole brain
into regions defined either anatomically or functionally, such as the
Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al., 2002).
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We expand configurations with correlations between clusters (in-
ter-clusters, βinter) which define the voxel time courses correlation from
different cluster and correlations in clusters (intra-cluster, βintra) which
define the voxel time courses correlation among the same cluster. We
also tested the effect of activity with both clusters and point sources. In
summary, the configurations we tested are as follows:

1 Correlation within cluster - We examine the ability to reconstruct
clusters with increasing correlation of sources from the same cluster.
We seed 5 clusters with 20 sources for each cluster. The correlation of
sources from the same cluster is set as 0.1, 0.3, 0.5, 0.7 and 0.9 - in this
situation, we set the correlation between clusters as 0.25.

2 Correlation between clusters - We examine the influence of correla-
tion between clusters for the novel algorithm. We seeded 5 clusters
with 20 sources per cluster. We set the correlation between clusters as
0.1, 0.3, 0.5, 0.7 and 0.9 - the source time courses within each cluster
is set to have an intra-cluster correlation coefficient of 0.5.

3 Number of clusters - We test the ability to localize distributed clusters
by simulating different numbers of clusters. We seed 1, 4, 7, 10, 13, 16
clusters with 20 sources for each cluster. These clusters correspond to
20, 80, 140, 200, 260 and 320 voxels having nonzero activity. The
placement of the cluster center is seeded randomly and cluster con-
sists of sources seeded within the 19 nearest neighboring voxels.

4 Effect of clusters' size - We assess the robustness to localize distributed
sources with different cluster sizes. We seed 5 clusters with 10, 16, 22,
28, 34 and 40 active dipoles per cluster, which correspond to 50, 80,
110, 140, 170 and 200 active voxels.

5 Number of regions - Since our novel algorithm is based on the dis-
tribution of voxels into regions, we also test the influence of different
sizes of the region divisions. Here, we set the number of regions as 8,
9, 32, 95, 108, 116, 285 and 291 to evaluate performance of the
tree_Champagne algorithm. For these simulations, we fix the activity
as arising from 5 clusters with 20 sources for each cluster.

6 Mixed conditions (clusters and sources) - We extend the previous
cluster analysis experiments to investigate the effect of having both
cluster and dipole activity. We choose to set the number of clusters
from 1, 4, 7, 11, 14 to 17 with additional activity from 5 dipoles.
Subsequently, we set the number of clusters as 5 and vary the number
of dipoles from 1, 4, 7, 10, 13, 16 to 19.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


Fig. 14. Results for face processing (EEG) from novel algorithm and benchmarks. The first row is the average power mapping from 0ms to 400ms, the second and
third rows are for peak power activity at 100ms and 170ms separately. Thresholds are 1% of the maximum activation of the image for tree_Chamapgne and 10% of
the maximum activation of the image for benchmarks. The activity power is normalized by the lead-field value at each voxel.
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If not indicated otherwise, each of the experiments is conducted
with the following settings: the source time courses within each cluster
have an intra-cluster correlation coefficient of βintra ¼ 0:5 and an inter-
dipole correlation coefficient of βinter ¼ 0:25. We make the correlations
within the clusters higher than between clusters because nearby voxels
are more plausibly correlated than voxels at a distance. For clusters,
we are both interested in whether a cluster is localized and whether
the extent of a cluster is accurately reconstructed. To assess the
localization of clusters, we use the A

0
metric. The A

0
metric is calcu-

lated for clusters by testing if there is a local peak within the known
extent of the cluster. To assess the accuracy of the extent of clusters,
we calculate the fraction of seeded voxels with power in or above 10th
percentile of all voxels. At the same time, the power of localized peaks
should be at least 0.1 percentile of the maximum power.

The results obtained using simulated data are averaged over 50
simulations for each of six configurations with SNIR¼ 0 or 10 dB and we
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plot these averaged results with standard error bars. We show the plots of
mean AP, our Aggregate Performance metric. We also show examples of
localization results from single simulations, which complement our
aggregate results.

3.4. EEG simulations

We also test the novel algorithm on simulated EEG data using a scalar
lead-field computed for a three-shell spherical model in SPM12 (http://
www.fil.ion.ucl.ac.uk/spm) at the default resolution resulting in 8196
voxels at approximately 5mm spacing. The simulated EEG data has 120
sensor recordings. With this lead-field, EEG data is simulated in the same
way as the MEG data, as described above. We repeat the detection of
multiple clusters and mixed conditions (clusters and sources) experi-
ments for EEG simulations.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


Fig. 15. Epilepsy Spikes results for 7 subjects. The results of best time point dipole fitting are shown in the left-most column, the results of benchmarks are shown from
second to forth columns, the novel algorithm's results are shown in the last column. The activity power is normalized by the lead-field value at each voxel.

C. Cai et al. NeuroImage 183 (2018) 698–715
3.5. Real datasets

All the MEG data here was acquired in the Biomagnetic Imaging
Laboratory at University of California, San Francisco (UCSF) with a CTF
Omega 2000 whole-head MEG system from VSM MedTech (Coquitlam,
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BC, Canada) with 1200 Hz sampling rate. The lead field for each subject
is calculated in NUTMEG (Dalal et al., 2004) using a single-sphere head
model (two spherical orientation lead fields) and an 8mm voxel grid.
Each column is normalized to have a norm of unity. The data is digitally
filtered from 1 to 160Hz to remove artifacts and the DC offset is



C. Cai et al. NeuroImage 183 (2018) 698–715
removed.
We ran tree_Champagne and all of the benchmark algorithms on five

real MEG data sets: 1. Somatosensory Evoked Fields (SEF); 2. Auditory
Evoked Fields (AEF); 3. Audio-Visual Evoked fields; 4. Face-processing
task; 5. Interictal spike data from patients with epilepsy spikes. The
first four datasets have been reported in our prior publications using the
Champagne algorithm, and details about these datasets can be found in
(Wipf et al., 2010a; Owen et al., 2012). Novel data included in this paper
are interictal spikes from seven patients with epilepsy. These spikes were
identified by trained MEG technologists in the Biomagnetic Imaging
Laboratory, and the peak time-point was localized using dipole fitting
method. For Champagne and tree_Champagne, we choose a pre-spike
window from �350ms to �250ms as a baseline control period and the
post-spikes window is from �50ms to 50ms where the spikes time is at
0 ms time point.

The EEG data (128-channel ActiveTwo system) was downloaded from
the SPM website (http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces) and
the lead field was calculated in SPM8 using a three-shell spherical model
at the coarse resolution. The EEG data paradigm involves randomized
presentation of at least 86 faces and 86 scrambled faces, here we subtract
the averaged scrambled-faces data to the averaged faces data to study the
differential response to faces versus scrambled faces (Henson et al.,
2010), and the power is plotted on a 3-D brain. The EEG data has been
reported in our prior publication using the Champagne algorithm, and
details about our analyses of this dataset can be found in (Owen et al.,
2012).

4. Results

4.1. MEG simulations

Fig. 2 shows a representative example of localization results for a
MEG simulation with 3 clusters at SNIR¼ 10 dB, compared with the
ground truth. Champagne can find all three clusters but it estimates ac-
tivity that is more focal than the true spatial extent of the sources.
Tree_Champagne is also able to localize three clusters with estimates that
are more spatially distributed than Champagne. Beamformer is unable to
find the three clusters correctly. sLORETA can find all three clusters
correctly but produces blurred and diffuse solutions. In contrast, MSP can
find all three clusters but reconstructions are smoother than ground truth
and also estimates additional sources that are not present in the
simulations.

The performance for a second special case where 3 regions of the
model are specified to be active is shown in Fig. 3. Only tree_Champagne
is able to reconstruct the correct active region, showing the extended
activity corresponding to each region. Champagne localizes the active
region but treats the regions' activity as if they are arising from several
point sources. In contrast, sLORETA, Beamformer and MSP do not
accurately estimate the regions' active and show blurred and inaccurate
reconstructions.

Fig. 4 shows an example of the steps that go into the aggregate per-
formance metric calculation. With the increase of correlation in clusters,
we first calculate Hit Rate (subplot A) and False Rate (subplot B) using
the method from our prior work (Owen et al., 2012). Then, the correla-
tion between hit sources and seeded time series is obtained as shown in
subplot C. At last, we calculate the A

0
matric and Aggregate performance

using Eq. (30) and (31). Aggregate performance across 50 simulations for
each of 6 configurations is reported. For subsequent performance eval-
uation figures we only show the AP metric.

4.1.1. Influence of the correlation within each cluster
The sensitivity to performance as a result of increasing the correlation

within each cluster on both 10 dB and 0 dB is presented in the first row of
Fig. 5. From the AP plot, for both SNIR¼ 10 dB and SNIR¼ 0 dB, tree_-
Champagne outperforms all benchmarks. Champagne is not as good as
tree_Champagne but is much better than other benchmarks. The
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benchmark algorithms perform somewhat similarly for these simula-
tions, but their performance is not as good as tree_Chamagne and
Champagne. Nevertheless, increasing the correlation in each cluster also
improves the performance of all algorithms.

4.1.2. Influence of the correlation between clusters
The second row of Fig. 5 shows the influence of increasing the cor-

relation between clusters on algorithm performances. Increasing the
correlation between clusters has little influence on the performance of all
algorithms at both 10 dB and 0 dB. Based on the APmetric, it is clear that
tree_Champagne outperforms all benchmarks. Although Champagne is
not as good as tree_Champagne, it is the best among all benchmarks when
compared to Beamformer, sLORETA and MSP.

4.1.3. Influence of the number of clusters
In the third row of Fig. 5, we plot the number of clusters versus AP

metric at SNIR levels of 10 dB and 0 dB. All algorithms have the same
trend at both 10 dB and 0 dB, with the increasing number of clusters, the
AP score decreases. Again, tree_Champagne outperforms all benchmark
algorithms. Champagne is not as good as tree_Champagne but better than
others. For benchmarks, at 10 dB, sLORETA shows higher AP score than
Beamformer and MSP. While at 0 dB, all benchmarks perform at a similar
level when the number of clusters is more than 4.

4.1.4. Effect of clusters' size
The results of all methods at both 10 dB and 0 dB in response to

increasing clusters' size are presented in the last row of Fig. 5. Perfor-
mances of all algorithms do not show much change when the clusters'
size increases. From the AP plot, tree_Champagne outperforms all
benchmarks. Again, Champagne is very close to tree_Champagne with
superior performance when compared to Beamformer, sLORETA and
MSP.

4.1.5. Effects of increasing the number of regions in the generative model
The first row of Fig. 6 shows the influence on localization methods by

increasing the number of regions. The whole source space is segmented
into different size regions and tested at 10 dB and 0 dB. Although this
should only influence the performance of tree_Champagne algorithm, we
also show performance for the benchmarks for these specific simulation
data instantiations using the same performance metrics. The intra-cluster
correlation is at 0.5 and the inter-clusters correlation is 0.25. The results
are averaged over 50 simulations each with 5 clusters seeded with 20
sources for each cluster, and the error bars show the standard error. As
we can see in the AP metric, when increasing the number of the regions,
despite some changes in the performance of tree_Champagne, it is su-
perior to the benchmark algorithms.

4.1.6. Performance for mixed source configurations
A single representative simulation experiment with 2 clusters and 2

dipoles at 10 dB is presented in Fig. 7, where the ground truth is shown
on the first row for comparison. Champagne and tree_Champagne can
localize all clusters and the dipoles. Beamformer, sLORETA and MSP can
localize almost all activities but with very diffuse reconstructions and
some false positive activity estimates.

In order to evaluate the performance of source localization algorithms
for configuration with both clusters and dipoles, we first fix the number
of dipoles as 5 and increase the number of clusters, then we fix the
number of clusters as 5 and increase the number of dipoles. The final
results are plotted in the second and third rows of Fig. 6. As we can see in
the AP value with fixed number of dipoles and increase number of
clusters, the performance of all algorithms decreases. Tree_Champagne
outperforms the benchmarks at both 10 dB and 0 dB. Champagne shows
better performance than other benchmarks at 10 dB but is close to others
at 0 dB. We then fix the number of clusters and increase the number of
dipoles, and the performance of all algorithms decline as the number of
dipoles increases. Tree_Champagne still produces the highest scores

http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces
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among all source localization algorithms both at 10 dB and 0 dB.

4.2. EEG simulations

In Fig. 8 we show EEG simulation results at 10 dB. According to our
tests, the performance of all algorithms have a similar trend with SNIR
equals to 10 dB or 0 dB. The left column shows the results of A Prime
Metric and the right column is the Aggregate Performance score. Across
both the A Prime and Aggregate Performance metrics, tree_Champagne
outperforms all benchmarks for all three different configurations.

In simulations, according to the evaluation function used in the paper,
the performance of tree_Champagne is much better than Champagne,
especially for clusters localization. Tree_Champagne is also more accu-
rate than Champagne at estimating the spatial extent of cluster sources.
As is shown in Fig. 9, when we compare the radius of estimated size of
clusters for Champagne and tree_Champagne, the latter is better at esti-
mating the spatial extent of the cluster.

4.3. Summary for simulations

As we can see from the simulation results and analysis above, both at
10 dB or 0 dB, tree_Champagne outperforms all the benchmark source
reconstruction algorithms. Next, we extend the evaluation of the per-
formance using real MEG and EEG data.

4.4. Results of real data

This section shows the evaluation for our algorithms using real MEG
and EEG data, which contains five different MEG datasets and one EEG
dataset: Somatosensory Evoked Field Paradigm, Auditory Evoked Field,
Audio-Visual task, Face-processing task for MEG, Epileptic spikes data for
MEG and Face-Processing task for EEG.

4.4.1. Somatosensory Evoked Field Paradigm
Fig. 10 shows the results of the somatosensory evoked field response

due to somatosensory stimuli presented to a subject's right index finger,
average derived from a total of 240 trials. A peak is typically seen�50ms
after stimulation in the contralateral (in this case, the left) somatosensory
cortical area for the hand, i.e., dorsal region of the postcentral gyrus.
MSP, Champagne and tree_Champagne can localize this activation to the
correct area of somatosensory cortex with focal reconstructions. Here, we
show performance in three benchmarks - Beamformer, sLORETA with a
fixed regularization, and BMN_sLORETA.While benchmarks are also able
to localize somatosensory cortex, these reconstructions are more diffuse
especially for sLORETA with a fixed regularization.

4.4.2. Auditory Evoked Fields
The localization results for AEF data from three subjects are shown in

Fig. 11. The power of at each voxel in a 50–75ms window around M100
peak is plotted for every algorithm. Both Champagne and tree_Cham-
pagne are able to consistently localize bilateral auditory activity for all
subjects (shown in the last two columns in Fig. 11). The activity is in
Heschl's gyrus, which is the location of primary auditory cortex. Cham-
pagne and tree_Champagne perform similarly for all subjects. Beam-
former can find the two auditory cortices only in one subject, whereas for
the rest of the subjects the activations are mostly biased towards the
centra of the head; This suggests that the correlation of bilateral auditory
cortical activity really impacts the performance of Beamformer.
BMN_sLORETA is able to find the auditory activity for almost every
subject, but the results are diffuse and with additional spurious activities
(not seen on the slices shown). MSP can localize bilateral auditory ac-
tivity but with some location bias and more diffuse activation.

4.4.3. Audio-visual evoked fields
Fig. 12 shows results of the audio-visual evoked fields for tree_-

Champagne. In subplot (A) and (B) we show the brain activations
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associated with the auditory stimulus. Tree_Champagne is able to localize
bilateral auditory activity in Heschl's gyrus in the window around the
M100 peak, shown in the first row of Fig. 12. The two auditory sources
have the maximum power in the window around the M100 peak. We
show the early visual response in the second row of Fig. 12. Tree_-
Champagne is able to localize a source in the medial, occipital gyrus with
a peak around 150ms.We plot the power in the window around this peak
and the time course of the source marked with the cross hairs. Our novel
algorithm can localize a later visual response with a time course that has
power extending past 150ms, which is similar to the results that we have
obtained with Champagne (Owen et al., 2012).

4.4.4. Face-processing task: MEG
Localization of Face-processing task (MEG) in response to faces are

shown in Fig. 13. We see an early visual cortical response to the pre-
sentation of the face visual stimulus in medial occipital cortex and later
visual cortical response more lateral to the early response shown in the
first row of Fig. 13. Subsequently, tree_Champagne is able to localize the
bilateral activation in the fusiform gyrus with peaks around 170ms
(Henson et al., 2010; Kanwisher et al., 1997). Performance of bench-
marks algorithms on this dataset can be found in (Julia P Owen et al.,
2012).

4.4.5. Face-processing task: EEG
In Fig. 14, we present the results from using novel algorithm and

benchmarks on the face-processing task EEG data set. Fig. 14 shows the
average power, M100 peak power and M170 peak power at different
rows separately. We see that tree_Champagne is able to localize the brain
activity with sparse peaks at visual areas and fusiform gyrus. However,
the benchmarks produce the brain activity with either wrong location or
blurred solutions. Even though the threshold we use is 1% of the
maximum activation of the image for tree_Chamapgne and 10% of the
maximum activation of the image for benchmarks, our novel algorithm
gives us more sparse and accurate results.

4.4.6. Epilepsy spikes
The localization results for epilepsy spikes data from seven patients

are shown in Fig. 15. The best time point dipole fitting for each spike is
shown in the left-most column for reference. As we can see, both
Champagne and tree_Champagne are able to localize almost all spikes for
all subjects (shown in the forth to fifth columns in Fig. 15). Champagne
and tree_Champagne perform similarly for all subjects. For other
benchmark algorithms, Beamformer can localize the spike for each sub-
ject, but localization results are only reasonable for subject 5 since the
rest are either diffuse or have many spurious activations which are
stronger than the true location of the spikes. BMN_sLORETA performs
better than Beamformer, but shows more diffuse results when compared
to Champagne and tree_Champagne. Since default MSP settings were
optimized for scalar lead-fields but these data included vector lead-fields,
we did not run MSP on these data.

5. Discussion

This paper derives a novel hierarchical multiple spatial scale Bayesian
algorithm, tree_Champagne, for electromagnetic brain imaging using
magnetoencephalography (MEG) and electroencephalography (EEG)
with comparisons to existing benchmark algorithms. The novel algorithm
is based on a principled cost function that maximizes the marginal like-
lihood of the data with fast, convergent update rules. The multiscale
formulation enables tree_Champagne to optimally combine smoothness
(from regional-level inference) and sparsity (from voxel level inference).
Results show significant theoretical and empirical advantages over many
existing methods. The algorithm readily handles multiple correlated
sources and is appropriate for sources that have variable spatial extent
ranging from isolated dipoles and extended clusters of dipoles, situations
that commonly arise even with simple cognitive neuroscience tasks.
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The experiments with simulated data exemplify that tree_Champagne
provides robust localization and time course estimation with complex
source configurations and noisy data for both MEG and EEG simulations
with correlated sensor data. Tree_Champagne outperforms existing
benchmarks with highly correlated sources even at high levels of inter-
ference at 0 dB. We also found that with increasing of the number of
clusters and the size of clusters, tree_Champagne performs much better
than the benchmark algorithms. Notably, tree_Champagne performance
better than Champagne since tree_Champagne shows more extended
activity for clusters. For more complex configurations with simultaneous
clusters and dipoles activity for both MEG and EEG, tree_Champagne is
also able to accurately localize the simulated activity and significantly
outperforms benchmark algorithms.

Experiments with real data highlight the source localization abilities
of the novel algorithm. It is difficult to evaluate localization accuracy
with real data since the ground truth is not known. For this reason, we
have chosen real data sets that have well-established patterns of brain
activity; AEF, audio-visual, and face-processing data. For all these real
data, the tree_Champagne algorithm performs superiorly compared to
benchmarks and improves upon our prior work on Champagne. Addi-
tionally, here we examine a novel dataset of interictal spikes from pa-
tients with intractable epilepsy. For these data, tree_Champagne is able to
successfully localize all spikes for all subjects.

In this paper, the novel algorithmmainly models and addresses issues
related to incorporating priors for spatial-smoothness of sources activity.
We extend our prior framework of Champagne to include this spatial
smoothness using regional variances. Other researchers have taken
different approaches for incorporating priors on spatial-smoothness for
sources reconstruction. Kn€osche (Kn€osche et al., 2013) has proposed a
functional similarity as priors for the reconstruction of distributed source
current densities from EEG: patchLORETA1, which uses both topological
neighborhood and prior information to define smoothness and pat-
chLORETA2, which neglects topological neighborhood (Fukushima et al.,
2015). Alternatively, fMRI-Informed Regional Estimation (FIRE) (Ou
et al., 2010) utilizes information from fMRI in EEG/MEG source recon-
struction which takes advantage of the spatial alignment between the
neural and vascular activities, while allowing for substantial differences
in their dynamics.

The region-based variance model in tree_Champagne is different from
other multiscale or hierarchical approaches in several ways (Ou et al.,
2010; Friston et al., 2008c; Jean et al., 2006; Babadi et al., 2014). First,
algorithms like the Multiple Sparse Priors (MSP) also evaluated here
(Friston et al., 2008a) impose spatial kernel smoothness across voxels
based on the adjacency matrix and only include regional level variances
with no voxel-level variances. Second, in contrast to these algorithms, we
do not use variational approximations to factorize the posterior variances
at the region-level and voxel-levels, which allows for the posterior voxel
and regional variances to be correlated. Finally, we do not use greedy
algorithms like those proposed in Babadi et al. and Friston et al. (Friston
et al., 2008c; Babadi et al., 2014), which are highly sensitive to initiali-
zation and have the possibility of sub-optimal solutions. In contrast to
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using these update rules that are based on approximate likelihood
maximization using restricted maximum likelihood based, cost functions
that have slower convergence rates, tree_Champagne uses faster update
rules based on convex-bounds on true marginal likelihood of the data
(Wipf and Nagarajan, 2009). Given the similarities between the proposed
generative model, MSP and related hierarchical algorithms, inclusion of
proposed implementation ideas into these frameworks may minimize
observed differences in results.

Notably, however, the algorithms described in this paper do not
incorporate temporal smoothness constraints and this represents the
future directions for our work. Various forms of temporal prior infor-
mation or constraints can be unified within the framework of covari-
ance component estimation. We are currently investigating the use of
temporal-smoothness priors in the form of basis functions (Zumer
et al., 2008) and in the form of autoregressive smoothness priors, which
also model spatiotemporal correlations in the background noise and can
potentially improve performance. The best example of such an effort is
the Bayesian Electromagnetic Spatio-Temporal Imaging of Extended
Sources (BESTIES) (Liu et al., 2016) algorithm, which is built upon a
Bayesian framework that determines the spatio-temporal smoothness of
source activities in a fully data-driven fashion is based on a Markov
Random Field (MRF), which can precisely capture local cortical in-
teractions, employed to characterize the spatial smoothness of source
activities, and importantly the temporal dynamics of which are
modeled by a set of temporal basis functions (TBFs). Jean Daunizeau
et al. (Jean et al., 2006) also introduced a Bayesian framework to
incorporate distinct temporal and spatial constraints on the solution
and to estimate both parameters and hyperparameters of the model. A
full multivariate autoregressive (MAR) model formulates directed in-
teractions (i.e., effective connectivity) between sources. The observa-
tion process of MEG data, the source dynamics, and a series of the priors
are combined into a Bayesian framework using a state-space repre-
sentation. By formulating the source dynamics in the context of MEG
source reconstruction, and unifying the estimations of source ampli-
tudes and interactions, the effective connectivity without requiring the
selection of regions of interest can be identified (Fukushima et al.,
2015). We derive inspiration for our future work from these ap-
proaches. Our next steps will focus on incorporating
temporal-smoothness and effective connectivity prior on our novel al-
gorithms, which hold promise for improving upon an already robust
source localization algorithm.
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Appendix A. Derivation of the marginal likelihood function

Here, we derive the expression for the marginal likelihood function shown in Eq. (17). We make the use of the form (Sekihara and Nagarajan, 2015)
(pp.244)

log pðY jϒÞ ¼ EpðXjYÞ

	
log pðY;XjϒÞ

pðXjYÞ


¼
Z

dXpðXjYÞlog
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¼ EpðXjYÞ½log pðYjXÞ� þ EpðXjYÞ½log pðXjϒÞ� þ H ðpðXjYÞÞ

(A.1)

Substitution of equations Eq. (8), Eq. (9) and Eq. (10) into Eq. (A.1) results in the relationship
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(A.2)

using equation (4.28) from book (Sekihara and Nagarajan, 2015) (pp.55), we get equation Eq. (17).
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