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Average-Intensity Reconstruction and Wiener
Reconstruction of Bioelectric Current Distribution
Based on Its Estimated Covariance Matrix

Kensuke Sekihara, Member, IEEE, and Bernhard Scholz

Abstract—This paper proposes two methods for reconstructing
current distributions from biomagnetic measurements. Both of
these methods are based on estimating the source-current co-
variance matrix from the measured-data covariance matrix. One
method is the reconstruction of average current intensity distribu-
tions. This method first estimates the source-current covariance
matrix and, using its diagonal terms, it reconstructs current
intensity distributions averaged over a certain time. Although
the method does not reconstruct the orientation of each current
element at each time instant, it can retrieve information regarding
the current time-averaged intensity at each voxel location using
extremely low SNR data. The second method is Wiener recon-
struction using the estimated source-current covariance matrix.
Unlike the first method, this Wiener reconstruction can provide
a current distribution with its orientation at each time instant.
Computer simulation shows that the Wiener method is less
affected by the choice of the regularization parameter, resulting in
a method that is more effective than the conventional minimum-
norm method when the SNR of the measurement is low.

I. INTRODUCTION

ECONSTRUCTING bioelectric current distributions in

a human brain from the biomagnetic field measured
on the brain surface is expected to provide functional brain
images and thus has attracted a great deal of interest. A well-
known algorithm to reconstruct current distributions [1], {2],
[3] is based on the pseudoinversion of the lead field matrix,
which represents each detector’s sensitivity pattern over the
reconstruction region. In this reconstruction, one should first
calculate the lead field matrix. Then, the Moore-Penrose pseu-
doinversion of the lead field matrix should be calculated and
multiplied with the measured magnetic field data to obtain the
minimum norm estimates of the primary current distributions.
Thus, this reconstruction method is often called the minimum-
norm reconstruction. In this reconstruction, to calculate the
Moore-Penrose pseudoinverse, the matrix regularization is
usually used and the values of the regularization parameter
must be empirically determined.

One serious drawback of the minimum-norm reconstruction
is that the results are significantly affected by the values
of the regularization parameter. This is especially true when
the signal-to-noise ratio (SNR) of the measurements is low.
Unfortunately, the biomagnetic field from a human brain is
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so weak that such low SNR situations are very common.
For measurements of evoked neuromagnetic fields, the SNR
can be improved to some extent by averaging signals that
are measured synchronized with the stimulus. This, however,
inevitably causes prolonged measurement time. Therefore, the
amount of averaging is limited to 100-200 times. For the
measurements of spontaneous brain signals, it is generally
difficult to achieve SNR improvements by signal averaging.
Such spontaneous signals are believed to have a strong rela-
tionship with many functions in the human brain [4], as well
as brain malfunctions such as epilepsy [5]. Accordingly, a
reconstruction method that is not very sensitive to the SNR is
highly desirable for developing brain functional imaging.

This paper proposes two methods for reconstructing current
distributions that are more effective than the conventional
minimum-norm reconstruction method in low SNR situations.
Both methods utilize time information by calculating the
measured-data covariance matrix. One method is reconstruc-
tion of average-current-intensity distributions. This method
can reconstruct current intensity distributions averaged over a
certain time period. Although this method does not reconstruct
the orientation of each current element at each time instant,
the method can retrieve the information regarding the average
intensity of the primary current at each voxel location using
extremely low SNR data.

The second method is the Wiener reconstruction based on
the estimated signal-source covariance matrix. Unlike the first
method, the Wiener reconstruction method can provide the
current distribution with its orientation at each time instant.
Our computer simulation shows that the Wiener method is
less affected by the choice of the regularization parameter, and
more effective than the conventional minimum-norm method
when the SNR of the measurement is low.

II. METHOD

A. General Description

Let us define the component of the magnetic field mea-
sured by the mth detector coil as B,,, and a vector B =
(Bi, Ba,...,Ba)7 is defined as a set of measured data. Here,
M is the total number of detector coils and the superscript T
indicates the matrix transpose. Let us also define the primary
current distribution, which is the source of the magnetic
field, as a vector f = (f1,f2,..., fan)T. Here, N is the
total number of voxels and the z, ¥, and z components of
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the primary current located at the kth voxel are assigned to
Jak-1)+1> fa(k—1)+2, and fak_1)43, respectively. Represent-
ing the additive noise contained in the measured data as a
vector n, the relationship between B and f can be expressed
as

B =Lf+ n )

Here, L is an M x (3N) matrix and its elements, L, 3(x—1)+1,
Ly, 3(k—1)+2> and L, 3(k—_1)4+3, represent the sensitivity of
the mth detector to the z, y, and 2 components of the primary
current at the kth voxel. This matrix L is called the lead field
matrix.

B. Conventional Minimum-Norm Reconstruction

In conventional reconstruction, current estimates } are ob-
tained by minimizing the cost function E = ||B — B)||2, where
B= L}. This minimization has a well-known solution using
the Moore-Penrose generalized inverse [6] L~. Namely,

f=1LB Q)

Here, for the underdetermined cases, M < 3N, L™ is given
by L~ = LT(LLT)~!. This conventional method using (2) is
sometimes called the least-squares minimum-norm estimation
method.

In practice, to avoid the numerical instability associated with
the matrix inversion, matrix regularization is often used, and
the generalized inverse L™ is calculated from [7}]

L™ = LY(LLY + D)7 )

where [ is the unit matrix and -y is the predetermined reg-
ularization parameter. It should be noted that the estimates
obtained using (2) and (3) minimize the cost function ex-
pressed as [8]

E=||B-B|? + ~lIf|%, )

instead of E = ||B — BJ|%. Consequently, these estimates
provide a trade-off between the minimization of the current
norm ||f||2 and the norm of the squared error term || B — B]|2.
Here, the parameter - controls the degree of this trade-off.

The problem with the conventional minimum-norm method
is that, when the SNR of the measured data is low, the recon-
struction results are affected by the choice of this regularization
parameter, as will be demonstrated in the next section. That
is, a small value of < tends to give severely distorted and
almost meaningless results because the small eigenvalues of
LLT amplify the inaccuracy due to the noise in measured
data. Conversely, a large v tends to introduce spatial blur
in reconstructed results. Thus, it is necessary to choose an
appropriate value of « that does not cause distortion with a
minimum spatial blur.

Several methods have been investigated to determine the
optimum value of v on a certain mathematical basis. Such
methods include those based on the Bayesian estimation theory
[9], [10], and that using the criterion from x2 statistics [11],
[12]. The x2 based method generally chooses ~ larger than
its optimum value, resulting in blurred reconstructions. The
Bayesian methods tend to choose a value of +y smaller than that

chosen by the x2-based method. The success of these Bayesian
methods, however, depends on the measured data, and they are
not very reliable in many cases. Thus, we often need to rely
on a subjective criterion and determine the optimum < in an
empirical manner [12]. Since no method for determining the
optimum <y value has been established and the allowance of
this - is not large when the SNR of the measured data is low,
the conventional minimum-norm reconstruction is not very
effective in such cases. The following subsections propose
two methods that are more effective than the minimum-norm
method in low SNR cases.

C. Estimation of Source Current Covariance Matrix
and Average-Intensity Reconstruction

The covariance matrix of the measured data denoted by D is

(B}) (31?2> (B1Bu)
D= (BBT) = (32:31) (Bzz)
(BIV;BI> (B2,)

(5)
Here, ( ) indicates the time average. Let us assume that the
source current distribution f and the noise n are not correlated.
Thus, substituting (1) into (5), we can obtain

D ={((LHELHT) + (mT) = LFFHLT + (mT), (6)

where (ffT) is the covariance matrix of a source-current
distribution. Let us denote this covariance matrix as S. Then,

(D (f1.£2) (frfsn)
§ = (ffT) = <f2:f1> (f:2) -
(fan f1) (F3n)

Denoting the noise covariance matrix as C' (= (mT)), we
can get the relationship between S and D,

D=LSLT +C. 8)

Thus, the estimates of the covariance matrix of a source
distribution, S, can be obtained from the noise and measured-
data covariance matrices, i.e.,

S=L"(D-C)L)T, )

where L~ is the Moore-Penrose generalized inverse of L,
which is defined in (3). Here, the noise covariance C should
be estimated before the reconstruction.

The average squared intensity of the source current distri-
bution, (f?) where i = 1,2,...,3N, can be derived from the
diagonal terms of its covariance matrix S, as shown in (7).
This reconstruction can be especially effective when applied
to the source current estimation of spontaneous brain activities.
Such activities, for example, human o rhythms, often generate
quasi-periodic magnetic signals, suggesting that the current
sources fluctuate between positive and negative directions.
Thus, simple summation of the measured field maps causes
a cancellation of positive and negative signals and never
achieves SNR improvement. On the other hand, our average-
intensity reconstruction can achieve SNR improvement even
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when the current sources fluctuate between positive and neg-
ative directions, because this method reconstructs the squared
intensity of magnetic sources averaged over a certain time
period. However, it loses the information about the current
source moment at each time instant. Therefore, when this
information is needed, Wiener reconstruction should be used
as proposed in the next subsection.

D. Wiener Reconstruction Based on Estimated
Source Covariance Matrix

The Wiener reconstruction is known to obtain the estimates
that minimize the cost function [13],

E=(|If - JIP). (10)
The optimum estimates are known to be [13],
J=(B")BB")"'B. an

From (1), (8), and (9), we have (fBT) =SLT = L~ (D-0),
assuming that (fnT) = 0. Thus, recalling (BB™) = D, (11)
can be changed to
f=L"(D-C)D'B. (12)
The above equation is used in our computer simulation in
the next section. It is clear in this equation that, when the
SNR is so high that the noise covariance C is negligible
compared with D, the Wiener reconstruction becomes equal
to the conventional minimum-norm reconstruction, ]’ =L™B.
This Wiener reconstruction incorporates the information
on the noise and the signal-source covariance matrices. It
is known, in the field of image restoration [8], [13], that
the Wiener method gives better results than the conventional
minimum-norm method when the SNR of the measured data is
low. The computer simulations described in the next section
show that this Wiener reconstruction is also more effective
than the conventional minimum-norm method in the biomag-
netic inverse problem.

III. COMPUTER SIMULATIONS

A. General Description

A magnetometer with 37 channels, each having a first order
gradiometer coil with a 7.1 cm baseline, was assumed in this
computer simulation. The gradiometer coils are hexagonally
aligned on a plane defined as the =z — y plane with its
origin equal to the center of this hexagon. The detector coil
alignment is shown in Fig. 1. This alignment simulates the
KRENIKON ™ biomagnetic measurement system [14]. The
z-direction is defined as the direction perpendicular to this
detector-aligned-plane. The values of the spatial coordinates
(z,y, z) are expressed in centimeters.

In this computer simulation, except in Section III-E, the
horizontally layered infinite half-space conductor model [2] is
assumed due to the ease of the calculation, and the boundary
of the conductor is assumed to be perpendicular to the z-axis.
Thus, only the z and y components of primary current vectors
are considered, and their z components are assumed to be zero.
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Fig. 2. Results of conventional minimum-norm reconstruction of the
noiseless data. The current sources are located 4 cm below the detec-
tor-aligned-plane. The relative regularization parameter ¢ is set at 1075,

Two-dimensional reconstruction of current sources is per-
formed. The reconstruction area covers —8 < z < 8 and —8
< y < 8 and consists of 10 x 10 pixels. It is assumed that
the plane to be reconstructed has already been determined.
This paper is not concerned with the determination of the
plane containing biocurrent sources. Discussions regarding this
determination can be found in [3], [15], [16].

B. Simulation for Low SNR Data

Two time-varying magnetic-field sources both of which are
located 4 cm below the detector plane are assumed. One is a
dipole rotated in the z and y plane with its moment intensity
equal to 40 nA/mm. This is located at (—4.5, —1, —4). The
other is a fixed-orientation dipole located at (4.5, 1, —4). The
y component of its moment is sinusoidally modulated with its
maximum intensity equal to 56 nA/mm, and the z component
is fixed at zero. Let us choose the time instant at which the
z and y components of the rotating-dipole moment happen to
be (0, —40) nA/mm, and those of the fixed-orientation dipole
moment happen to be (0, 40) nA/mm. The field distribution
is calculated at each detector coil location at this time instant.
The magnetic field data is obtained by subtracting the field
strength at the gradiometer’s upper-coil position from that at
the lower-coil position.

The conventional minimum-norm reconstruction of the
plane z = —4 cm is performed using this noiseless field data.
The results are shown in Fig. 2. In this reconstruction, (2) and
(3) were used with the relative regularization parameter € equal
to 1075, The relative regularization parameter ¢ indicates the
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Results of conventional minimum-norm reconstruction of noisy data (SNR = 2.4). The noisy data is generated by adding the uncorrelated

Gaussian noise to the noiseless data whose reconstruction is shown in Fig. 2. The relative regularization parameter ¢ is equal to (a) 1071, (b) 1072,

(c) 1073, and (d) 101

ratio of the regularization parameter ~ to the largest eigenvalue
of the matrix LLT, ie., € = v/Xo, where )g is the largest
eigenvalue of LLT.

Then, uncorrelated Gaussian noise with standard deviation
equal to 27 fT is added to this noiseless data. The resultant
SNR of the magnetic field data is equal to 2.4. The SNR is
defined by the ratio of the root mean square of the signal
magnetic field to the standard deviation of the Gaussian noise.
The mean value is calculated over all 37 channels. The
conventional minimum-norm reconstruction using (2) and (3)
is performed on this noisy data with four values of the relative
regularization parameter: ¢ = 10—, 10~2, 1073, and 10~
The results are shown in Fig. 3. Compared with Fig. 2, one
can see that although the results obtained with e = 10~ and
102 can, in some way, reconstruct the two current sources,
the results with e = 10~! contain severe blur, and those with
€ = 1072 are considerably inaccurate. Compared again with
Fig. 2, the results obtained with ¢ = 1073, and ¢ = 10™*
contain severe distortion, so they are almost meaningless.

The covariance matrix of the measured data is estimated
from 1000 data generations; each generated data contain
Gaussian noise with the same standard deviation as described
above. That is, the (4,7) element of the covariance matrix,
D;;, is calculated using

K
| K
D;; = Kkz_lBi(tk)Bj(tk)- (13)

Here, B;(tx) is the magnetic field measurement from the ith
channel at the kth data generation, and K. is equal to 1000.
This simulates the data acquisition for 1 s, with a typical signal
sampling interval of 1 ms. The Wiener reconstruction was
performed using (3) and (12) with four values of the relative
regularization parameter: ¢ = 10~%, & = 1072, ¢ = 1073, and
€ = 1074, The results are shown in Fig. 4. In this figure, the
two current sources can be reconstructed with any of the €
values. These results indicate that the Wiener reconstruction
is much more tolerant to the choice of the regularization
parameters than the minimum-norm method. Moreover, as
a result of this tolerance, we can use smaller regularization
parameters, and thus obtain less blurred reconstruction. This
is shown by the comparison between Fig. 3(a) and Fig. 4(b),
(c), or (d), and this comparison clearly demonstrates the
effectiveness of the Wiener method.

The average-intensity distribution, (f?) (i = 1,2,...,2N),
is reconstructed from this covariance matrix using (3) and
(9). The results with the same four values of the relative
regularization parameter are shown in Fig. 5. Here, two current
sources are clearly reconstructed, and the results are also
tolerant of the choice of the regularization parameter. Note
that the reconstructed rotating dipole located at (—4.5, —1,
—4) has its moment directed at 45° to the +z-axis, because
the average intensities of the z and ¥ moment components are
equal in this rotating dipole.

Next, we investigated the effect of the accuracy in es-
timating the measured-data covariance matrix on’ the final
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Fig. 4. Results of Wiener reconstruction of the noisy data with (a)
=101, (b)c =102, (c) c = 103, and (d) = = 10~ 1.

reconstructed results. The covariance matrices were estimated
from 500, 250, and 125 data generations, i.e., the matrices
were calculated with K. in (13) equal to 500, 250, and
125. Naturally, the larger the K., the more accurate is the
estimation. The results of the Wiener reconstruction with
€ = 1072 using these covariance matrices are shown in Fig. 6.
The results using the covariance matrix calculated with K, =
500 are shown in Fig. 6(a), the results when K, = 250 are
shown in Fig. 6(b), and the results when K. = 125 are shown
in Fig. 6(c). Note that the results when K, = 1000 are shown
in Fig. 4(b).

Comparing Fig. 6 with Fig. 4(b), we see that the covariance
matrix calculated with K, = 500 gives almost the same
quality of results as those shown in Fig. 4(b). The results
obtained using the covariance matrix calculated with K, =
250, however, contain a slight inaccuracy, and those obtained
using the covariance matrix calculated with K. = 125 contain
severe distortion. Obviously, the accuracy in estimating the
covariance matrix affects the tolerance of the value of the
regularization parameter. This point will be discussed in
Section IV.

C. Simulation for High SNR Data

In this simulation, the moments of the two current sources
are set at ten times greater values than those assumed in
Section III-B. That is, the moment intensity of the rotating
dipole located at (—4.5, —1, —4) was 400 nA/mm and the
maximum moment of the fixed-orientation dipole located at
(4.5, 1, —4) is 560 nA/mm. The magnetic field data were
calculated assuming that the rotating and the fixed-orientation
dipole moments are (0, 400) nA/mm and (0, —400) nA/mm,
respectively. Since noise with standard deviation equal to 27 fT
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Fig. 5. Results of average-intensity reconstruction of the noisy data with (a)

e=10"1,(b) e =1072,(c) e = 1073, and (d) ¢ = 10~*,

was added to the calculated magnetic field data, the resultant
signal-to-noise ratio was 24.

The results obtained using the minimum-norm, the Wiener,
and the average-intensity methods are shown in Fig. 7(a),
(b), and (c), respectively. All of these results were obtained
using ¢ = 10™%. The results show that the minimum-norm
method can obtain results with the same quality as the Wiener
method. Thus, for such high SNR data, the Wiener and the
average-intensity methods do not have clear advantages.

D. Simulation of Reconstructing Deeply Located Sources

Next, the two sources were located 8 cm below the detector
plane. That is, the coordinates of the rotating dipole were
(—4.5, —1, —8) and those of the fixed dipole were (4.5,
1, —8). The moment intensity of the rotating dipole was
set at 120 nA/mm and the maximum moment of the fixed-
orientation dipole at 170 nA/mm. The magnetic field data were
calculated assuming that the rotating and the fixed-orientation
dipole moments are (0, 120) nA/mm and (0, —120) nA/mm,
respectively. The uncorrelated noise with the same standard
deviation as was used in the preceding sections was added to
the calculated magnetic field data. The resulting SNR is 2.1.

Fig. 8 shows that the results obtained by the minimum-norm
method with ¢ equal to 1071, 102 and 10~3. The minimum-
norm method could reconstruct the two current sources only
when & = 10~1, and failed to reconstruct them with ¢ > 10~2.
The reconstructed results obtained using the Wiener method
with ¢ = 1071, ¢ = 10~2 and ¢ = 1073 are shown in
Fig. 9. The Wiener method can still reconstruct the two current
sources, although the reconstructed results with ¢ = 10~! and
with € = 1072 contain significant blur, and the positions of
the two sources reconstructed with ¢ = 1073 are somewhat
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Fig. 6. Results of Wiener reconstruction of the noisy data with ¢ equal to 10~2. Here, covariance matrices calculated from (a) 500 data generation,
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Fig. 8. Results of reconstructing deeply located sources obtained using minimum-norm reconstruction with (a) ¢ = 101, (b) 2 = 10~2, and (¢) ¢ = 10~ 3,
The current sources are located 8 cm below the detector-aligned-plane, and the SNR of the magnetic field data is equal to 2.1.

inaccurate. Comparison between Figs. 8 and 9 shows that
the Wiener method also can give better results in this case.
The results obtained by the average-intensity reconstruction
are shown in Fig. 10. The figure shows that the two current
sources. are clearly reconstructed at the correct position, and
this method can provide less blurred reconstruction for the
same three values of €, compared with the results obtained
using the Wiener method.

Next, the case of an extremely low signal-to-noise ratio was
sirnulated. The moment intensities of the current sources were
set at the same values as used in Section III-B. The resultant
SNR was 0.7 in this case, and the reconstructed results
obtained using the minimum-norm and the Wiener methods
with & = 10! are shown in Fig. 11(a) and (b). Not only the
minimum-norm method, but also the Wiener method failed
to reconstruct the twe current sources. The resuits obtained
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Fig. 9. Results of reconstructing deeply located sources obtained using Wiener reconstruction with (a) = = 10~1, (b) ¢ = 10~2, and (c) ¢ = 1073,
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Fig. 10. Results of reconstructing deeply located sources obtained using average-intensity reconstruction with (a) ¢ = 10~!,(b) = 102, and (c) c = 1073,
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Fig. 11.  Results of experiments for extremely low SNR data. The current sources are located 8 cm below the detector-aligned-plane, and the SNR of
the magnetic field data is equal to 0.7. The results obtained using (a) minimum-norm reconstruction with ¢ = 10~!, (b) Wiener reconstruction with
z = 107!, and (c) average-intensity reconstruction with = = 10~2.

using the average-intensity method with £ = 10~ are shown
in Fig. 11(c). The average-intensity method can reconstruct the
current sources at the correct position, and this demonstrates
the advantage of the average-intensity reconstruction over the
Wiener method in the case of extremely low SNR.

E. Simulation Using Spherical Homogeneous Conductor

This section describes a computer simulation identical to
that in Section III-B, except that the spherical homogeneous
conductor model with its center located at (0, 0, —12) was

used. This spherical homogeneous conductor is often used
for solving the neuromagnetic inverse problem. The lead field
was calculated using the equation reported by Sarvas {2]. The
signal-to-noise ratio of the magnetic field data was 3.0.

First, the minimum-norm method was applied to this data
withe =1071, e = 1072, e = 1073, and € = 10™%, and only
the case with ¢ = 10~! was found to be able to reconstruct
the two current sources. The results are shown in Fig. 12(a).
The Wiener method and the average-intensity method could
reconstruct the two sources with any of the above four values
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Fig. 12. Results of experiments using the spherical homogeneous conductor model. The current sources are located 4 cm below the detector-aligned-plane,
and the SNR of the magnetic field data is equal to 3.0. The results obtained using (a) minimum-norm reconstruction with ¢ = 10~ 1, (b) Wiener reconstruction

with ¢ = 10~%, and (c) average-intensity reconstruction with ¢ = 1074

of €, and the least blurred reconstruction was obtained with
the smallest ¢, i.e., ¢ = 10~%. The results in this case are
shown in Fig. 12(b) and (c). These results are very similar to
those obtained in Section III-B. The results shown in Fig. 12
demonstrate that the Wiener and the average-intensity methods
are also effective for the spherical homogeneous conductor
model.

IV. DISCUSSIONS

One problem with the proposed methods is that they require
prior information regarding the noise covariance matrix. If the
noise can be assumed as uncorrelated Gaussian noise, the noise
covariance matrix becomes a diagonal matrix, and a diagonal
term is equal to a channel’s noise variance. In such cases, it
is not difficult to obtain the information regarding the noise
covariance matrix because each channel’s noise variance can
be easily measured in advance of the reconstruction.

It has been pointed out, however, that the noise due to
external sources is spatially correlated in the data measured
by a multichannel magnetometer [17]. In such cases, the
estimation of the noise covariance needs to find the portion
of the data which contains only noise information, and not
signal information [17]. In many cases of neuromagnetic
measurements, it is not difficult to find such data portions.
For example, the data before the application of stimuli can
be used to calculate the covariance matrix in measurements
of evoked neuromagnetic fields [18]. In measurements of
epileptic signals, the data anywhere except at epileptic spikes
can be used [19].

This paper is not the first one that proposes applying
the Wiener reconstruction method to solve the biomagnetic
inverse problem. Smith ef al. introduced the Wiener method
to reconstruct biocurrent distributions [20]. In [20], however,
no method of estimating the source-distribution covariance
S is described. Instead, they proposed introducing ad hoc
assumptions regarding noise and source covariance matrices. It
is, however, difficult to prove the validity of these assumptions
[21}]. Thus, in applying their method to actually measured data
[22}, they simply used minimum-norm reconstruction derived
from the Wiener method by assuming that the noise and signal-

source covariance matrices are equal to diagonal matrices.
In the method proposed here, the Wiener reconstruction is
reformulated using the measured data covariance matrix D and
the lead field matrix L. This reformulation makes it possible
to utilize the time information regarding the time-varying
magnetic source distributions in this method.

In the computer simulation described in the preceding
section, it was shown that the proposed Wiener and average-
intensity reconstruction methods are considerably less sensi-
tive to the choice of the value of the regularization parameter,
but it was also shown that the tolerance of this value is affected
by the accuracy in estimating the measured-data covariance
matrix, i.e., by the number of data used to calculate the
covariance matrix.

It is, however, not easy to determine the number needed
to give accurate estimation of the covariance matrix, because
this number depends on the various conditions in the data
acquisition, such as the amplitude of the noise in the measured
data or the distances between the current sources and detector
coils. Thus, the effectiveness of the proposed methods must
finally be evaluated by applying them to various kinds of actual
source localization problems. Some biomagnetic fields are gen-
erated by rapidly decaying sources, and the proposed methods
may not be effective in such cases, because a sufficient number
of data to give accurate covariance matrix estimation may not
be obtained in such cases.

Finally, it should be pointed out that the Wiener method
requires approximately twice the computation time needed for
the minimum-norm method, because it requires inversion of
an M x M matrix twice. Typical numbers of channels M
for currently available magnetometers range from 37 to 62,
and an additional inversion of a 62 X 62 matrix causes no
serious problem, considering the computational power of a
commercially available small computer. This, however, may
cause some problems if the number of channels increases in
the future and if quasi-real time processing is required.

V. CONCLUSION

This paper proposes two methods suitable for reconstruct-
ing bioelectric current distributions from low SNR biomag-
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netic measurements. One method is reconstruction of average-
current-intensity distributions in which current intensity distri-
butions averaged over the period of calculating the measured-
data covariance matrix are reconstructed. This method is
effective for extremely low SNR cases, although it cannot
reconstruct the orientation of each current element at each time
instant. The second method is the Wiener reconstruction based
on the estimated source covariance matrix. This method can
reconstruct the biocurrent distribution with its orientation at
each time instant. Compared with the conventional minimum-
norm reconstruction, the Wiener method is much less sensitive
to the choice of the value of the regularization parameter,
resulting in a method that is effective in low SNR cases.
Results of computer simulation demonstrate the effectiveness
of both methods.
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