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Spatial filter
1

1
1

( )

(̂ , ) ( ) ( ) [ ( ), , ( )] ( ) ( )

( )

MT
M m m

m

M

b t

s t t w w w r b t

b t
=

⎡ ⎤
⎢ ⎥

= = =⎢ ⎥ ∑
⎢ ⎥
⎢ ⎥⎣ ⎦

r w r b r r… #

weight  vector
⇑

   
1

1

( )( )
( ) ( )

T
T

T

−

−⇒ =
l r Rw r
l r R l r

Minimum-variance spatial filter 

   subject to ( ) 1min T =T

w
w Rw w l r subject to   ( ) 1min T =T

w
w Rw w l r



) )
≠

= + ∑2 2min ( ) ( ( , ) ( , ) ( ) (T
p p p q

q

T

p
p qs t s tw w r lRw r r rr r

  for 

  for 

( ) ( ) 1

0

T
p q p q

p q

= =

= ≠

w r l r

Therefore, this minimization gives the weight satisfying

(with ( ) ( ) 1)p p =Tw r l rOutputs of spatial filter pointing at

Assume  sources are located at    1 2, , , QQ r r r…

pr

⇓
zero=( , ) ( , ) 0p qs t s tr r

⇑

⇓

Vital assumption:  for = ≠( , ) ( , ) 0p qs t s t p qr r



Consider a simplest case where we know locations and orientations 
of all Q sources

Low-rank signal assumption

weight can be obtained 
by solving

(containing  unknow
 a set of  linear
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Fundamental assumptions for adaptive beamformer
source reconstruction:

•Sources are uncorrelated.

•Signals are low rank.



The  minimum-variance beamformer should incorporate 
the vector nature of sources.

The electromagnetic sources are three dimensional vectors.

Two-types of formulations have been proposed: 
(1) Scalar formulation
(2) Vector formulation

⇓

Vector source detection



                                              
                  2

(̂ , ) ( , ) ( ) ( , ) ( )

ˆargmax ( , ) argmax ( , ) ( , )

T T
opt

T
opt

s t t t

s t

= ≈
⇑

= =
η η

r w r η b w r η b

η r w r η Rw r η

Scalar formulation

  
1

1

( )( , )
( ) ( )

T T
T min

T T
min min

−

−=
u L r Rw r η

u L r R L r u

Scalar MV beamformer 

argmax
1

12ˆ argm ( ) ( )in( , ) ( )TT
op mit ns t

−
−⎡ ⎤= = =⎢ ⎥⎣ ⎦η η

η r η ηL r R L r u

eigenvector corresponding to the minimum eigenvalue of 1[ ( ) ( )]T −L r R L r
⇑

Robinson and Vrba, 1998, Sekihara et al., 1996



ˆ ˆ ˆ[ ( ), ( ), ( )] [ ( ), ( ), ( )] ( )T
x y z x y zs s s t=r r r w r w r w r b

Vector formulation

  subject to min

  subject to min

  sub

  

  

  ject to min

− − −

= = =

= = =

= = =

⇓

= 1 1 1

1, 0, 0

0, 1, 0

0, 0,

[ ( ), ( ), ( )] [ ( ) (

1

)] ( )

x

y

z

T
x x

T
y y

T
z z

T T T
x y

T T T
x x x y x z

T

z

T T
y x y y y z

T T T
z x z y z z

w

w

w

w l w l w l

w l w l w l

w l w

w Rw

w Rw

w Rw

w r w r w r L r R L r

l

r

w

R

l

L

Vector MV beamformer formulation

uses three weight vectors which detect , , and  source components. x y z

Spencer et al. 1992,  Van Veen, et al. 1996
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Vector formulation:

Two formulations give the same output power
if the beamformer is set at the optimum orientation.

Equivalence between the two formulations -output power



Equivalence between the two formulations -output SNR
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Two formulations give the same asymptotic output SNR
if the beamformer is set at the optimum orientation.

Poster F174: K. Sekihara et al., “Asymptotic SNR of Scalar…”



Bias of estimated source locations

Remarkable property of the adaptive beamformer is that 
the methods do not have a source location bias
even in the presence of noise.

This is in contrast to the minimum-norm-based 
reconstruction methods where the source location bias more 
or less exists.
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Condition for no location bias

Minimum variance with normalized lead field 
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Minimum-variance
(normalized lead field)
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2 (296)Mα =

Weight-normalized
minimum-variance

Effect of noise on location bias

Input SNR



Spatial resolution comparison

Reconstruction profile of a single source: φ = 1( ) ( ) / ( )T Tr w r f w r f
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sLORETA

Point spread function

Signal-space projection

Minimum variance( =   )4 , 2 ,M M Mα

Weight-normalized MV( =   )4 , 2 ,M M Mα



What happens if the assumptions that

• sources are uncorrelated,

• signals are low rank,

are not sartisfied.



Source correlation influence for adaptive spatial filters
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Sekihara et al., IEEE Biomedical Engineering, 2002



Signal cancellation
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Reconstruction experiments 
when correlated sources exist
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If locations of coherent interferences are approximately known, its 
influence can be suppressed.

Coherent source suppression:

Correlation coefficient: 0.92

Impose the null sensitivity

Recover the 
signal source of
interest

The detail of this method is described in poster A153:
Sarang et al. “Modified Beamformers for Coherent Source Region Suppression”



Effects of large number of noise sources
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Effect of background brain activity

Reconstruction from brain-noise added data is more blurred.

Correltion
coefficient



Implications of these numerical experiment results:

The background brain activity contains many
incoherent activities.

Large background brain activity (brain noise) may invalidate 
the low-rank assumption, and may cause blurred source 
reconstruction

⇓



Other causes of unsatisfactory reconstruction

(1) Forward modeling error
Diagonal loading (Tikhonov regularization))
(Cox. 1974)

(2) Sample covariance error

Eigenspace projection (Project weight vector onto 
the signal-subspace of the measurement covariance 
matrix  (Sekihara et al. 2002)

Beam space processing (Van Veen)



Summary

•Reviews principles of adaptive beamformer source reconstruction.

•Discusses the equivalence between scalar and vector formulations.

•Describes two underlying assumptions:
1) Sources are uncorrelated,
2) Signals are low rank.

•Discusses the influences caused when these assumptions are not 
satisfied.

•Points out that the forward modeling error and the sample 
covariance error are also causes of unsatisfactory reconstruction.
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