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Thistalk:

formulates the neuromagnetic source reconstruction
problem using spatial filters.

eI ntroduces non-adaptive and adaptive spatial filter
techniques.

focuses on the adaptive spatial filter technique (adaptive
beamformer).



Magnetoencephal ography
(Neuromagnetic measurements)

ecan provide a high temporal resolution.

ecannot provide (adeguate) information
on the source spatial configuration.

U

Efficient numerical algorithms for estimating source
configuration are need to be devel oped.
(Source localization problems)



Source localization problem

*Dipole modeling approach

| mage reconstruction approach

Tomographic reconstruction
Spatial filter



Tomographic reconstruction

*Assume pixel gridsin theregion of interest.

«Assume a source at each grid.

*Estimate the moment of each source by
|east-squares fitting to the measured data.




Spatial filter technique

*Form spatial filter weight w(r) that focusesthe
sensitivity of the sensor array at asmall area at r.

«Scan this focused area over the region of interest
to obtain source reconstruction.

Focused region




Right posterior tibial nerve stimulation

measured by a 37-channel sensor array

Hashimoto et a., NeuroReport 2001






Right median nerve stimulation

measured by a 160-channel whole-head sensor array

latency=16 ms

Hashimoto et a., J. Clinical Neurophysiology submitted for publication



18 ms




Definitions

()"

b, (t)
e datavector: b(t) = :

b,, (¥)

e data covariance matrix: R = (b(t)b" (t))

e source magnitude: s(r,t)

e source orientation: n(r,t) = [ny (r,t), 7y (r,t), 7, (r,t)]'
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Lead field vector for the source orientation 7(r)

L(r) =

IHORHONAGE
HOMHONHG

1) ) 1)

I(r) = L(r)

7.(r)
1, (r)

7,(r) |



Basic relationship

b. (t) = jlj (r)s(r,t)dr
or

b(t) = [L(r)s(r,t)dr

Problem of source localization:

Estimate s(r,t) from the measurement b(t)




S(r,t) =w' (rb(t) =[w,(r),....w,, ()]

fl
estimate of s(r,t)

Spatial filter
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weight vector
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How to evaluate an appropriateness of the weight ?

b=[L(r)s(r)dr

syt (rp | S = IWLOLI) s ydre

R(r,r")
f

Resolution kernel

S(r) = [R(r, r)s(r )r

(neglecting the explicit time notation)



Non-adaptive weight
w(r) Is data independent

Adaptive weight
w(r) is data dependent



Data-1ndependent (non-adaptive) weight
minimum-norm estimate (Hamalainen and [Imoniemi)

The weight w(r) is obtained by

min [[R(r,r") - &(r - r')]zdr’
U
w'(r)=L" (r)G™, whereG;; = [I,(r)l (r)dr

Gram matrix

Inverse solution: S(r)=L" (r)G b
li

ThisIs erroneous



Gram matrixG Is usualy calculated by introducing pixel grid r;

b = [L(r)s(r)dr = > L(r))s(r)

s(r,)
=|L(r), - L] =L,

.

v

C |s(r)

N

%r_/

Sy

Therefore G = L LL and

w'(r) =L (r)(L )"
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Resolution kernel for non-adaptive (minimum-norm) method




One example

«Auditory-evoked field were measured using 148-channel
whole-head sensor array (Magnes 2500).

Stimulus: 1-kHz pure tone applied to subject’ s left ear

field intensity (fT)
o
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slice number; 65 slice number: 75 slice number; 85

slice number: 95 slice number:; 105 slice number: 115

The number of pixels: 12940 points
The condition number of G: ~ 10°
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Property of the gram matrix G
GLj = jli(r)lj(r)dr

Biomagnetic instruments X-ray computed tomography

Overlaps of sensor lead fieldsislarge
G ispoorly conditioned

G ~ unit matrix



G ispoorly conditioned

*Apply regularization when calculating G-

Baysian-type approach
minF :F =|p — LS| + |HS|’
)

§ = HL" (L HL] +#1)™b
modified G

Do not use G

— Adaptive beamforming technique



Adaptive spatial filter

Minimum-variance beamformer

b(t)

S(r,t) = w' (Nb() =[w,(),...,w, (1] :
f by ()

weight vector

Il
Il MZ

W (N0 (1)

I'(NR™
I'(r)RI(r)

min w' Rw subjecttow™l(r) =1 = w' (r)=

1

S t) = 7 (IR ()




Assumption that source activities are uncorrelated

With constraint: w' (r,)I(r,) = 1,

w' (1, )Rw(r,) = (1, 1)) + Ep (s, 1)) [w" (i)
l
(s(r,, t)s(x, 1)) = 0 when p =q

min[wT (I’p)Rw(l’p)] = (r)I(r,)=0,q = p

Therefore, this minimization gives the weight satisfying
w' (r)I(r,) =1 forp =g
=0 forp #q




Spatial filter technique

*Form spatial filter weight w(r) that focuses the
sengitivity of the sensor array at asmall areaat r.

Focused region




Adaptive beamformer sensitivity pattern: plot of w(r,)I(r)

The density of the colorsis propotional to w(r,)I(r).

® e & 3dipoles

1 target voxel

pointing location r,

Information about

the nulls - in the
covariance matrix

2338-J.V. Dec 99

The weight sets null-sensitivity at regions where sources exist.




L ow-rank signal assumption

Consider a easiest case where we know |locations and orientations
of all Q sources
weight w(r,) (containing M unknowns) can be obtained
by solving aset of Q linear equations:

w' (E)Ir)=w, @) ) +...+w () (r)=1

w' (rI(r)=w, (k. (1) +...+w, ()l (,)=0

w' () )=w, (Pl () + ...+ w,, ()], (7,)=0

when Q > M, thereisno solution for w' (r,)



Low-rank signal

Number of sensors M > Number of sources Q

A, 0 .. . 0
0 . 0 _ _
\ T A 0
R =U U =U
: s O AN
0 .0 - -
0 S I

U=le,....eq | ey,1,...,ey ] = E5 | Ey]

Eq E,

I';) =E,AJE, and I'y =E\AJE, > R =15 + I'y




Orthogonality principle

E\I(r,) = T';'I(r,) = 0 a any source location r,

Minimum-variance spatial filter output:

N L
<S(l’) > i lT (r)R_ll(l") lT (F)Fs_ll(l") + lT (I’)F&ll(l’)

(StY')

source location

small « I' ()L, I(r) — large
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Non-adaptive spatial filter Adaptive spatial filter

y (cm)




assumed source waveform
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148-channel sensor array




Minimum-norm
reconstruction

Minimum-variance
gpatia filter reconstruction

MUSIC reconstruction

0
¥ (cm)



Adaptive-beamformer techniques were originally developed in

thefields of array signal processing, including radar, sonar, and
seismic exploration.

Two major problems arise when applying minimum-
variance beamformer to MEG source localization.

(1) Vector source detection.

(2) Output SNR degradation.




V ector source detection

The neuromagnetic sources are three dimensional vectors.

U

The minimum-variance beamformer formulation
should be extended to incorporate the vector nature of
SOUrCes.

Two-types of extensions has been proposed: scalar and
vector formulations.




Scalar MV beamformer formulation

I'(r,)) R 'L (R

we ) = " (r,m)RI(r,y) u' L (")RL(r)y

The weight depends not only on » but also on #.

Vector MV beamformer formulation

[w, (1), w, (1), w,(")] =[L' (RL()]" L' (R

The three weight vectors detect x, y, and z components.
Calculation of the weight does not require .



Scalar MV beamformer formulation

I'(r,)) R 'L (NR™

we ) = " (r,m)RI(r,y) u' L (")RL(r)y

The weight depends not only on » but also on #.

Vector MV beamformer formulation

[w, (1), w, (1), w,(")] =[L' (RL()]" L' (R

The three weight vectors detect x, y, and z components.
Calculation of the weight does not require .



How to derive the optimum 7 in scalar formulation?

U

Choose » that gives the maximum power output

o 1 T T o B
(S, - minGr” £ OR *L0n)|

Eigendecomposition: [ (MRL()] = 3. 7w . (>7,>7)
j=1
U
min(y' L' (r)R™L(r)y) = 7,
n e

. . 7 :
minimum eigenvalue

max (§(r,t)’) =1/ y; = S,




V ector beamformer formulation

Each wel ght vector, w,(r),w, (r), or w, (r) 1sobtained by usng
the following multiple constraints.
minw, Rw, subjecttow, I(r,e,) =1, w, I(r, e,) =0, wy I(r,e,) = 0
mi nw;Rwy subject to w;l(r, e,) =0, w;l(r, e) =1, w;l(r, e,)=0
minw, Rw, subjecttow, I(r,e,) =0, w. I(r, e,) =0, w) I(r,e,) =1
«» €y, €, 1 unitvectorsinthex,y,z directions.

U
[w, (), w, (r), w, ("] =[L (NRL)]"L (R

e

(The weight is not equal to the scaar weight withn = ¢, ¢, ,0r ¢, )

vanVeenet a., 1996 Spencer et a., 1992



In vector formulation, » that gives the maximum power output

can be obtained using

max (8(r, 1)) = max

5.8, (1), 8, (| = max " (£ ()R LT
U
max (§(r,t)*) =1/, =S,

Either types of formulations attain S__. when the beamformer

pointing direction is optimized.
U

Two types of formulations are mathematically equivalent.

opt
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Output SNR degradation.

Minimum-variance beamformer is very sensitive to errorsin
forward modeling or errors in sample covariance matrix.

U

Because such errors are amost inevitable in neuromagnetic
measurements, minimum-variance beamformer generally
provides noisy spatio-temporal reconstruction results.

U

| ntroducing eigenspace projection




assumed source waveform
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Spatio-tempotal reconstruction

relative value

relative value

latency (ms)




Recall some definitions:

RO G
0 0
: A; 0
R=U A Uu'=uU 30 U', and U =[e,,....e; |€p,,....8y]
0 0 " = E,
DREPREEEE O

Also, T'y' = ELAJEL, Ty = EyANE,,

overal error in estimating | (r)

__ Tord iy
Output SNR 1T (OT2A@) +57 e 4/

Even when gissmall, &' I'{ ¢ may not be small,

because ¢' I'y/¢ ~ llel? / A:.; < noiselevel eigenvalue




Eigenspace projection

The error term &' "¢ arises from the noise subspace component of w(r).

Extension to eigenspace projection beamformer

J— e T .
w,=EE. w, whereu =X,y orz

HOISIO)]
(DTS +e" e ]

U

T -1 2
Output SNR o ") I's 1) (elgenspace projected)

[ (NILSI(r)]

Output SNR oC (non-eigenspace projected)
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somatosensory recording
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Application to 37-




Application to 37-channel auditory-somatosensory recording
Non-eigenspace projected results

field intensity (fT)
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Application to 37-channel auditory-somatosensory recording
el genspace-projection results

latency=40.3187 ms
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Summary

*Thistak reviews the application of adaptive beamformer to
reconstruction of brain activities, with some reference to the non-
adaptive methods.

*Two types of extensions, scalar and vector extensions to incorporate
the vector nature of the sources, are shown to be mathematically
equivalent.

*Eigenspace projection is shown to overcome the SNR degradation
problem.

*The implicit assumptions for the adaptive beamformer are that
sources are uncorrelated and that the signal islow rank. The cases
where these assumptions are invalidated will be discussed in Part I1.
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Summary

*Thistak reviews the application of adaptive beamformer to
reconstruction of brain activities, with some reference to the non-
adaptive methods.

*Two types of extensions, scalar and vector extensions to incorporate
the vector nature of the sources, are shown to be mathematically
equivalent.

*Eigenspace projection is shown to overcome the SNR degradation
problem.

*The implicit assumptions for the adaptive beamformer are that
sources are uncorrelated and that the signal islow rank. The cases
where these assumptions are invalidated will be discussed in Part I1.
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