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This talk: 

•formulates the neuromagnetic source reconstruction 
problem using spatial filters. 

•introduces non-adaptive and adaptive spatial filter 
techniques.

•focuses on the adaptive spatial filter technique (adaptive 
beamformer).



Magnetoencephalography
(Neuromagnetic measurements)

•can provide a high temporal resolution. 

•cannot provide (adequate) information
on the source spatial configuration.

⇓

Efficient numerical algorithms for estimating source 
configuration are need to be developed.

(Source localization problems)



Source  localization problem

•Dipole modeling approach

•Image reconstruction approach 

Tomographic reconstruction
Spatial filter



Tomographic reconstruction

•Assume pixel grids in the region of interest.

•Assume a source at each grid.

•Estimate the moment of each source by
least-squares fitting to the measured data.  



Spatial filter technique

•Form spatial filter weight            that focuses the  
sensitivity of the sensor array at a small area at r.

•Scan this focused area over the region of interest
to obtain source reconstruction.
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Right posterior tibial nerve stimulation

measured by a 37-channel sensor array

Hashimoto et al., NeuroReport 2001



7 mm



Right median nerve stimulation

measured by a 160-channel whole-head sensor array

Hashimoto et al., J. Clinical Neurophysiology submitted for publication 
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Basic relationship
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Spatial filter
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How to evaluate an appropriateness of the weight ?
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Non-adaptive weight
is data independent( )w r

Adaptive weight
is data dependent( )w r



Data-independent (non-adaptive) weight

minimum-norm estimate (Hamalainen and Ilmoniemi)

The weight ( ) is obtained by w r
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This is erroneous



Gram matrix  is usually calculated by introducing pixel grid G rj
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Resolution kernel for non-adaptive (minimum-norm) method



One example
•Auditory-evoked field were measured using 148-channel  
whole-head sensor array (Magnes 2500).

Stimulus: 1-kHz pure tone applied to subject’s left ear 



slice number: 85slice number: 75slice number: 65

slice number: 95 slice number: 115slice number: 105

The number of pixels: 12940 points 
9The condition number of : 10G ∼







Property of the gram matrix G

( ) ( )i,j i jG d= ∫ l r l r r

X-ray computed tomographyBiomagnetic instruments

Overlaps of sensor lead fields is large unit matrix≈G
 is poorly conditionedG



is poorly conditionedG

•Apply regularization when calculating G-1

Baysian-type approach

•Do not use G
modified 
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Adaptive beamforming technique



Adaptive spatial filter

Minimum-variance beamformer 
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Assumption that source activities are uncorrelated

With constraint: ( ) ( ) 1,p p =Tw r l r
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Spatial filter technique

•Form spatial filter weight            that focuses the  
sensitivity of the sensor array at a small area at r.

( )w r

r

Focused region



Adaptive beamformer sensitivity pattern: plot of 0( ) ( )w r l r

The density of the colors is propotional to 0( ) ( ).w r l r

0( ) ( ) 0>w r l r

0( ) ( ) 0=w r l r

pointing location 0r
0( ) ( ) 0<w r l r0( ) ( ) 1<w r l r

The weight sets null-sensitivity at regions where sources exist. 



Low-rank signal assumption

Consider a easiest case where we know locations and orientations
of all Q sources

weight can be obtained 
by solving
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Low-rank signal

Number of sensors M > Number of sources Q
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Orthogonality principle

at any source location 1( ) ( ) 0T
N q N q q

−= =l r l r rΕ Γ

Minimum-variance spatial filter output: 
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Non-adaptive spatial filter Adaptive spatial filter 



assumed source waveform
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Minimum-norm 
reconstruction

Minimum-variance
spatial filter reconstruction

MUSIC reconstruction



Adaptive-beamformer techniques were originally developed in 
the fields of  array signal processing, including radar, sonar, and 
seismic exploration.

Two major problems arise when applying minimum-
variance beamformer to MEG source localization.

(1) Vector source detection.

(2) Output SNR degradation.



Vector source detection

The neuromagnetic sources are three dimensional vectors.

⇓

The  minimum-variance beamformer formulation 
should be extended to incorporate the vector nature of 
sources.

Two-types of extensions has been proposed: scalar and 
vector formulations.



Scalar MV beamformer formulation
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Scalar MV beamformer formulation
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How to derive the optimum in scalar formulation?η  

⇓
Choose  that gives the maximum power outputη
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Vector beamformer formulation

Each weight vector,  or  is obtained by using 
the following multiple constraints.
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In vector formulation,  that gives the maximum power output

can be obtained using

η
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pointing direction is optimized.
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Two types of formulations are mathematically equivalent.
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Output SNR degradation.

Minimum-variance beamformer is very sensitive to errors in 
forward modeling or errors in sample covariance matrix.

⇓

Because such errors are almost inevitable in neuromagnetic 
measurements, minimum-variance beamformer generally 
provides noisy spatio-temporal reconstruction results.

⇓

Introducing eigenspace projection



assumed source waveform
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Spatio-tempotal reconstruction



Recall some definitions:
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Eigenspace projection

The error term  arises from the noise subspace component of 2 ( ).− w rε Γ εT
N

Extension to  eigenspace projection beamformer
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Spatio-tempotal reconstruction with eigen-space projection



Application to 37-channel auditory-somatosensory recording
eigenspace-projection results



Application to 37-channel auditory-somatosensory recording
Non-eigenspace projected results



Application to 37-channel auditory-somatosensory recording
eigenspace-projection results



Summary

•This talk reviews the application of adaptive beamformer to 
reconstruction of brain activities, with some reference to the non-
adaptive methods.

•Two types of extensions, scalar and vector extensions to incorporate 
the vector nature of the sources, are shown to be mathematically
equivalent.

•Eigenspace projection is shown to overcome the SNR degradation 
problem.

•The implicit assumptions for the adaptive beamformer are that 
sources are uncorrelated and that the signal is low rank.  The cases 
where these assumptions are invalidated will be discussed in Part II.
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The PDF version of this power-point presentation as 
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