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Brain functional connectivity analysis
sensor space vs. source space

•There have been numerous interests in estimating  functional 
connectivity in human brain.

•Recently, a growing number of investigations begin to use the 
source space analysis, which first estimates source activity using 
an inverse method, and then computes a measure of connectivity 
using the estimated source activities. 

•My talk presents results from our investigations on functional 
connectivity analysis using MEG source space analysis.

•So far, many investigations have been performed using the 
sensor space analysis, in which a measure of connectivity is 
computed using sensor data.



Measures of brain functional connectivity 

•Various measures for estimating brain functional connectivity 
have been proposed. 

•The representative measure is the coherence.  Phase 
synchrony measures such as the phase-lag index are a sort 
of relatives of the coherence measure.

•There are quite a few investigations that use the vector-
autoregressive model-based measures such as partial coherence 
and granger causality.  

•More specific model-based approaches such as structural equation 
modeling or dynamic causal modeling have been applied.



Measures of brain functional connectivity 

•imaginary coherence,
•envelope imaginary coherence,
•phase-slope index,
•mean imaginary coherence.

In our investigation, we use a voxel pair-wise coherence.

In my talk, I restrict myself  to the coherence measure, and 
will talk about applications of several related measures 
developed based on the coherence measure, such as:



Voxel pair-wise coherence measure 
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•When computing voxel coherence, a reference voxel is first 
determined, and coherence map is computed between this reference
voxel, called the seed voxel, and all other voxels.  

Voxel pair-wise coherence fundamentally provides six-dimensional 
information, and such information is difficult to interpret.

Seed coherence:

Seed coherence provides three dimensional information in which 
interpretation is relatively easy.

The average is computed using epoch/trial averaging



Rationale of coherence measure

Lagged cross correlation between the th- and th- voxel time courses:
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Magnitude cross-spectrum is equal to the squared sum of all the 
lagged correlations, and the coherence is the normalized version of 
this quantity.

If  is zero for all , these two sources are independent. 

If  is non-zero for some , the two sources are considered interacting.
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Thus, the squared sum of all the lagged correlations can be a 
measure of the interaction:
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Imaginary part of coherence

Real part:
•Corresponds to zero time-lag correlation.
•Can be caused from common interference sources.

Imaginary part:
•Corresponds to non-zero time-lag correlation.
•Caused only by true brain interaction.

Use of the imaginary coherence was proposed by Nolte et al. to remove the 
spurious coherence caused by the volume conduction in EEG sensor-space analysis. 

In MEG source-space coherence analysis, we had better use the 
imaginary coherence to reduce spurious coherence caused due to 
algorithm blur (leakage).
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Imaging imaginary source coherence: computer simulation

Magnitude coherence map includes spurious coherence 
peak caused by the blur of imaging algorithm

The imaginary coherence map does not contain 
the seed peak, and contains the source that is 
truly interacting with the seed source.

Two interacting sources

Source independent from 
the other two sources

Source image

Magnitude coherence

Imaginary coherence

Seed voxel for coherence computation



What does imaginary coherence really represent?
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Imaginary coherence is actually equal to the coherence between 
the seed and residual signals; the residual signal is obtained by 
regressing out the seed signal from the target signal.



Brain MEG signals for measuring functional connectivity

Induced signal (task-related modulation of oscillatory brain activity), 
such as ERD or ERS, is used.

Resting state MEG in the alpha band is used.

Resting state MEG has a relatively high signal-to-interference ratio, 
and some promising clinical results have been obtained.

Signal-to-interference ratio is low, and a source time-course 
should be estimated, incorporating the reduction of influence 
from background interference.

Resting-state coherence

Event-related coherence



Narrow-band adaptive spatial filter
(used for estimating resting-state coherence)
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Narrow-band spatial filter can provide spatial resolution much higher than broad-
band spatial filter (Sarang et al., NeuroImage, 2008).

 Covariance matrix obtained from broad-band data : ( ).tR b

Dalal S.S., Guggisberg A.G., Edwards E., Sekihara K., et al., Neuroimage. 2008 May 1;40(4):1686-700. 

Broad-band spatial filter:
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Brain MEG signals for measuring functional connectivity

Event-related coherence:
Induced signal (task-related modulation of oscillatory brain activity), 
such as ERD or ERS, is used.

Resting state coherence
Resting state MEG, such as alpha rhythm, is used.

Signal-to-noise (interference) ratio is relatively high, and some 
promising clinical results have been obtained.

Signal-to-interference ratio is low, and a source time-course 
should be estimated, incorporating the reduction of influence of
baseline activity.



Data model: () )( ( )( ) BLS tt tt += +b b nb

measurement induced signal baseline activity sensor noise

Induced brain signal

Dual-condition measurements
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Inverse algorithms should reconstruct source activity only from
 use of   by making( ), ( ).S Ct tb b

• Prewhitening adaptive spatial filter
• Champagne algorithm

For induced signal measurements, dual-condition measurements are, 
in general, available.



Existing source imaging method that can make use 
of dual-condition measurements:

source image from 
source image from 
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Robinson’s F ratio method:

S. E. Robinson and J. Vrba, Recent Advances in Biomagnetism, pp. 302-305, 1999

This approach works when SIR is high, but becomes less effective
when large baseline activity exists, because the influence of base 
line activity is not simply additive.  

Also, it does not provide source time course, so cannot be used 
for source coherence estimation in a straight forward manner.



Prewhitening adaptive spatial filter
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Source time-course estimate free from baseline influence

Signal magnetic-field estimate
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Sekihara K, et al. IEEE Trans Biomed Eng. 2008 Mar;55(3).



Champagne algorithm
Source imaging based on variational Bayesian technique

Control:  
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Data model:

(1) The interference mixing matrix  and sensor-noise 
      covariance matrix  are estimated from the control data:  
      

(2) With  and     is estimated using the task data:
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Two step procedures of Champagne algorithm

The algorithm is presented in this afternoon for 14:15-14:30 by Julia Owen et al. “Robust 
Methods for Reconstructing Brain Activity and Functional Connectivity from MEG Data”.

Induced activity Baseline activity



Hand-motor MEG data induced by voluntary finger movement

Data obtained from subject’s right-finger tapping conducted every 10 sec

Sensor layout display of time-frequency 
maps of the data from all sensors

TC

Control Task 

•We set the task and control 
window in this manner. 

•The task window contains beta-
band power increase. 



Champagne algorithm

Prewhitening narrow-band spatial filter

F-image with narrow-band spatial filter

F-image with sLORETA

•This slide shows the results of 
source images obtained using our 
developed methods and existing 
methods. 

•sLORETA results show some 
localization bias, and source is not 
reconstructed at the correct location. 

•F-image with narrow-band 
adaptive spatial filter works fairly 
well on this data set, because the 
data contain fairly strong ERD.  

•Two developed methods give high 
spatial resolution, and very small 
localization bias, so the primary 
motor cortices in both hemispheres 
are localized with correct locations.
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Coherence imaging of motor-related MEG 

Sensor-layout display of time-frequency maps Time-frequency maps for 
selected sensors

Source image 

Data obtained from subject’s right-hand grasping conducted every 15 sec

TC

•Quite strong bilateral beta-band activity 
around 2-3 sec after the onset of the 
movements is observed.

•Bilateral motor activation is 
reconstructed in the results of source 
reconstruction.



Magnitude coherence image

Imaginary coherence image

Source image
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We can only observe the 
seed blur, which is a 
spurious coherence peak 
caused by the blur of 
imaging algorithm.

Results show the necessity of imaging imaginary coherence, However, in this particular 
example, the spurious coherence peak is well separated from the true coherence peak and can 
be identified by visual inspection. 

We set a seed point for 
coherence computation
at contra M1.

Ipsi M1 is clearly 
detected with no 
seed blur peak.



Magnitude coherence image

Imaginary coherence image

Imaging source coherence at alpha band
(Resting state MEG from a brain tumor patient)

Source power imageSeed point•Source image shows a large 
blurred peak in the occipital area. 

•The maximum point at this peak 
is selected as the reference point 
for the coherence computation. 

•The magnitude coherence image 
is very similar to the source power 
image, and there is not much 
information in this magnitude 
coherence map. 

•The imaginary coherence image 
shows multiple localized sources, 
and is very different from the 
magnitude coherence images.

We have not yet explored the clinical relevance of these results. However, the results 
should indicate potentials of the source imaginary coherence mapping.



Source envelope coherence
measure insensitive to inter-source jitters

Source time courses Their envelopes

Source time-course envelope is computed using:
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•Coherence is very sensitive to inter source jitters. This could be more problematic 
when we deal with high-frequency signal such as high-gamma activity. 

•Envelope coherence, computed using the envelopes of estimated source time 
courses, is considered much robust to inter source jitters.



Imaginary coherence

Maximum intensity projection display of coherence 3D mapping results

Results of computing envelope coherence
Hand-motor data 

Two sets of results have the same 
structural pattern, but envelope 
coherence results show significantly  
stronger source activity.

Envelope imaginary coherence

Specifically, the envelope coherence results 
show quite strong activity near cerebellum.



Estimating direction of information flow
using phase-slope index (PSI)

Cross spectrum 
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Here again, we only use the imaginary part of the cross spectrum.

G. Nolte et al.: Phys. Rev. Lett. 100, pp.234101, 2008 



Seed a reference 
point at ipsilateral 
M1. Positive PSI image

Negative PSI image

Application of PSI to hand-motor MEG data
Source image with 
left hand grasping

Positive PSI image

Negative PSI image

Contra-lateral M1 
is detected by 
negative PSI.

Source image with 
right hand grasping



•Thus, these results indicate that the contra-M1 
is first activated and the ipsi-M1 is activated 
later. 
•Information flows from the contra-M1 to ipsi-
M1.
•Such results agree with our physiological 
knowledge, and demonstrate the effectiveness of 
the use of PSI.

Application of PSI to hand-motor MEG data
Source image with 

left hand movement

Source image with 
right hand movement



So, far my talk is restricted to the seed strategy, in which  results are 
reduced to “interpretable” three dimensional information by 
introducing a reference (seed) point.

In many applications, however, the determination of the seed 
location is not a easy task, and may need some a priori knowledge.

Next, I am talking about mean imaginary coherence (MIC), in which 
the dimensionality of voxel pair-wise coherence is reduced to three 
dimensions by averaging the estimated imaginary coherence across
all voxel pairs.



Mapping of mean imaginary coherence

Coherence between the th and th voxels:

Mean imaginary coherence for the th vox
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Magnitude value of imaginary coherence is 
averaged over all voxel connections after the 
Fisher’s Z transform. 

A. G. Guggisberg et al., Annals of Neurology, Sep 25, 2007



Mean coherence images from hand-grasping (beta-band) MEG data

Mean imaginary coherence image Mean magnitude coherence image

•In the mean imaginary coherence image, we can detect the left and the right primary 
motor areas, as regions that actively communicate with other brain regions. 
•Mean magnitude coherence image does not detect these brain regions, and does not 
provide interpretable results.  

Question: “Does mean magnitude coherence also work?”

Some audiences might want to ask a question that mean of magnitude coherence 
also works.



Mean imaginary coherence (MIC) image from resting-
state (alpha-band) MEG data from a tumor patient

Tumor boundary

The raw results of MIC mapping are difficult to interpret, although some 
localized regions with high MIC values are found near the tumor boundary.

Statistical significance test of MIC voxel values is necessary.

Images below show different MRI slices of MRI overlay results. 



•This statistical assessment can also provide information on regions with abnormally low 
connectivity, as well as regions with abnormally high connectivity.
•Abnormal values of mean imaginary coherence are found within tumor and near tumor 
boundary 

High connectivity

Low connectivity

L-image analysis for patients with unilateral brain tumor
•To assess the MIC value of a voxel near the tumor, Null 
distribution is estimated from MIC values of an appropriate 
region in the contra-lateral hemisphere

•We then assess the statistical significance of the MIC value at 
the target voxel using this null distribution with an appropriate 
procedure for multiple comparisons. 

Target voxel
Tumor boundary

Null distribution

The images below show MIC values statistically thresholded
with this procedure. 



Mean imaginary coherence mapping of schizophrenia patients
(from alpha-band resting state MEG) 

Average MIC image for control  subjects

The greater connectivity regions are the right inferior frontal gyrus (IFG) and medial occipital gyrus
(MOG) bilaterally.  Reduced connectivity is observed near anterior prefrontal cortex (aPFC) and cortex 
along the medial frontal gyrus (MFG) and pre-central gyrus (PreCG) in patients with schizophrenia.  

Average MIC image for patients

•Next example is mean imaginary mapping applied to schizophrenia patients. In this 
application, we use a group comparisons between the patient and control normal subject.

•This statistical procedure is called p-image analysis.

•Images below show the results from the statistical comparisons. Here, non-parametric 
unpaired t test was used. Increased connectivity regions are shown in red, and decreased 
connectivity regions are shown in blue. 



Correlations between MIC and symptom scores of schizophrenia
patients

•positive symptoms: hallucinations, delusions & thought 
confusions
•negative symptoms: loss of interest, loss of energy, loss of 
warmth, loss of humor. 

A correlation of MIC-value of individual 
patient and patient’s symptom score are found. 

•Brodmann’s Area 40 and Brodmann’s Area 13 are 
negatively correlated with positive symptoms 
assessed in the patients.

•Brodmann’s Area 10 in left PFC is significantly 
correlated with negative symptoms. 

•Low MIC values in a large region of cortex along the 
medial wall are associated with high ratings for 
depression in patients.  

These results demonstrate that mean imaginary coherence 
imaging can be a powerful tool in psychopathology.



1 month after injury 2 years after injury
Blue-colored regions have significantly reduced in the 2-years-
after results with still keeping the same structural pattern.

These results indicate that mapping mean imaginary coherence can provide useful 
clinical information on brain damage.

Mean imaginary coherence mapping for
a patient with a traumatic brain damage

Blue parts indicate the brain regions with decreased mean imaginary coherence.



Summary

•Our investigation on estimating brain functional connectivity is
described.  

•The method, a pair-wise computation of coherence measure using 
estimated voxel time courses, relies on high performance inverse
methods. Two inverse algorithms we have developed are briefly 
described.

•The use of imaginary coherence and its effectiveness are described.

•Several preliminary results on the use of envelope coherence and
phase-slope index are presented.

•Mapping of mean imaginary coherence, and its clinical applications
are described.
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