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biomagnetic source localization
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Lead field vector for the j th sensor
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Lead field matrix for the whole sensor array
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Basic relationship
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Estimate 

Estimate ( , ) from the measurement ( )t ts r b

Problem of source localization:



Spatial filter
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main-lobe width

side-lobe amplituder

(̂ ) ( , ') ( ') 'd= ∫s r r r s r rRResolution kernel:

The weight w(r) must be chosen so that the resolution 
kernel has a reasonable shape.

What is reasonable shape?

•peak at r
•small mail-lobe width
•low side-lobe amplitude



Adaptive weight

Non-adaptive weight

 is data independent( )w r

 is data dependent( )w r



Data-independent (non-adaptive) weight

•Spatial resolution is limited by sensor-array configuration.

•Final results are not influenced by source temporal 
correlation.

•Spatial resolution can exceed the limit imposed by the
sensor-array configuration.

•Strong temporal correlation among source activities 
severely degrade the quality of final estimation results

Data-dependent (adaptive) weight



minimum-norm estimate (Hamalainen et al.)

Data-independent (non-adaptive) weight

The weight ( ) is obtained by w r
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Property of G matrix

( ) ( )i,j i jG d= ∫ l r l r r

 is poorly conditionedG  has a small condition numberG
Overlaps of sensor lead fields is large Overlaps of sensor lead fields is small
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Minimum-norm weight with normalized lead field

Minimum-norm estimate with normalized weight

Calculate  
2 2(̂ ) ( ) / ( )Tq =r w r b w r

Dale et al.,  
Valdes et al.
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Source imaging experiments

•Auditory-evoked field were measured using 148-channel  
whole-head sensor array (Magnes 2500).
Stimulus: 1-kHz pure tone applied to subject’s left ear 
Data acquisition: 1 kHz sampling frequency, 1-400 Hz 

bandpass filtering, 100 epochs averaged









Linear-estimation-based methods

•LORETTA:  impose the maximum-smoothness constraint. 
(Pascual-Marqui et al.)

•fMRI constraint: constrain solution based on fMRI results. 
(Dale et al.)

•FOCUSS: obtain a focal solution iteratively. (Gorodnitsky et al.)

•Bayesian approach: impose prior assumptions. (Schmidt et al.)

•l1-norm approach: use the l1-norm, instead of using the l2-norm. 
(Matuura et al., Uutela et al., Beucker et al.)



Data dependent (adaptive) weight

minimum-variance beamformer
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noise covariance matrix
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minimum-norm estimate

Generalized Wiener estimate:
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Problems when applying MV beamformer to MEG source
localization

(1) How to determine beamformer orientation .η

 norm artifact.(2) ( ) −L r

(3) Output SNR degradation due to the matrix inversion.



• search all directions (Robinson and Vrba).

• use the MUSIC algorithm to determine     (Sekihara et al.).

• use vector beamformer formulation.
(Spencer et al.Van Veen et al.)

η

What happens if the beamformer orientation is different 
from the source orientation?

Severe signal-intensity loss
⇓

How to determine beamformer orientation ?η
The weight ( , ) is calculated for  and .w r rη η



6cm

δθ

assumed source waveform

Computer simulation for calculating beamformer angular response

37-channel sensor array

A single source exists 6-cm
below the sensor array

beamformer orientation different
from the source orientation with δθ
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measured data: ( ) [ ( ) ( ) ( )] ( )x x y y z zt s tη η η= + +b l r l r l r
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Vector beamformer formulation

Three weight vectors    detects 
the x, y, and z component of the source moment, separately.
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Severe artifacts arise near the center of the sphere,
when the spherical conductor model is used.

norm artifact( ) −L r

To avoid these artifacts

• use normalized lead field (Van Veen et al.)

• use normalized weight (Robinson et al., Sekihara et al.)



assumed source waveform
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Time-averaged reconstruction 2(̂ , )ts r
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Borgiotti-Kaplan beamformer
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Vector extension of Borgiotti-Kaplan beamformer
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Resolution kernel for BK beamformer



Signal-to-noise ratio of the beamformer output is severely 
degraded even by a small error in the estimated lead field

To avoid this,

• use regularized  inverse (Robinson et al.)

• use eigenspace projection (Sekihara et al.)

Output SNR degradation for spatio-temporal reconstruction

This is caused by the use of direct matrix inversion 



Eigenspace projection

Eigendecomposition of D
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Extension to  eigenspace projection beamformer
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SNR consideration

Output of BK beamformer

where    
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assumed source waveform
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Spatio-tempotal reconstruction by vector-extended BK beamformer



Spatio-tempotal reconstruction by vector-extended BK beamformer
with regularized inverse, 1( )γ −+D I



Spatio-tempotal reconstruction by vector-extended BK beamformer 
with eigen-space projection
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Eigen-space projection does not preserve the null constraints

That is,

This fact does not cause a problem. 
(Poster: 167b)
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right auditory cortex activation
left auditory cortex activation

correlation coefficient: 0.97



Summary

•Adaptive spatial filter techniques can provide a spatial resolution 
higher than that of non adaptive techniques.

•This is because  the spatial resolution for non-adaptive techniques 
is limited by the sensor configuration but adaptive techniques can 
exceed this limit.

•Correlated source activities, however, affect the quality 
of the results obtained by adaptive techniques.

Therefore

Adaptive techniques may be suited to observe relatively small 
cortical regions with high spatial resolution, and non-adaptive 
techniques may be suited to observe whole-brain activities.



Collaborators

University of Utah
Dr. Srikantan S. Nagarajan

M. I. T. 
Dr. Alec Marantz

University of Maryland
Dr. David Poeppel

University of California
Dr. Tim Roberts

University of Tokyo
Dr. Yasushi Miyashita

Kanazawa Institute of Technology
Dr. Isao Hashimoto

Laboratory of Physiological Sciences
Dr. Keiji Sakuma

Communications Research Lab. 
Dr. Touru Miyauchi

Communications Research Lab.
Dr. Norio Fujimaki

Siraume University
Dr. Ryosuke Takino


