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L east-squares-based methods

L east-squares principle in which the errors
between the estimates and the measurements are
minimized.

Covariance-based methods

L ow-rank signal assumption and the orthogonality
principle.

*The MUSIC Algorithm
«Adaptive spatial filter (adaptive beamformer)



Organization of my talk

*Give a brief review on the covariance-based methods.

eDiscuss their behavior toward noise.



Definitions

()

b, (t)
e data vector: b(t) = :

b,, ()

e data covariance matrix: R = (b(t)b" (t))

e source magnitude: s(r,t)

e source orientation: n(r,t) = [ny (r,t), Ty (r,t), ny (r,t)]



sd=Is)Fls =1

L ead field vector for the source orientation 7(r)

L(r) =

IHORHONAGE
HOMHONHG

1) ) 1)

I(r) = L(r)

7.(r)
1, (r)

7,(r) |



Low-rank signal assumption

Number of sensors M > Number of sources Q
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Orthogonality principle

E\I(r,) = (') I(r,) = 0 at any source location

The MUSIC algorithm source |location
f(r)= — 1 A t(r)
I (r)E E I(r)

|

Thisterm becomes zero at source locations

MUSIC algorithm chooses each location where the localizer
has avery large value as one source location.



Spatial filter

S(r,t) = w" (1)b(t) = W, (r), ... W,, ()]
l 0

estimate of s(r, t) weight vector

Minimum-variance spatial filter

min w' Rw subjecttow™l(r) =1 = w' (r)=

1
I"(r)R'I(r)

(8(r, 1)) =

by(t)

oy, (t)
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With constraint: w' (r)I(r,) = 1,

w' (1, )Rw(r,) = (5@, ) ) + X (s, ) ) | ()G,

q+p

min[w' (5, )Rw(r,) ] = w' ()I()=0.q = p

Therefore, this minimization gives the weight satisfying
w' (r)I(r,) =1 forp =q
=0 forp =g

w(r,) only passes the signal from asource at ,
and blocks all other signals.




Necessity of the low-rank signal assumption
for minimum-variance spatial filter

Consider a easiest case where we know locations and orientations
of all sources

weight w(r,) (containing M unknowns) can be obtained
by solving aset of Q linear equations:

w! (rI(r)=w, (@) (r)+...+w_(r) (r)=1
w' (rI(r)=w, (k. (r)+...+w ()l (,)=0

w' () )=w, (Pl () + ...+ w,, ()], (r,)=0

when Q > M, thereisno solution for w' (r,)



Minimum variance spatial filter output:
1 <§ (r) >
I"(P)RI(r)
B 1
I'(PN3(r)+ ' (r)T(U(r)

) -
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Thisterm becomes zero at source locations

Eigen decomposition of R:

1 | T Q 1 T 1 M T T
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assumed source waveform
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148-channel sensor array




Minimum-norm
reconstruction

Minimum-variance
gpatia filter reconstruction

MUSIC reconstruction

0
¥ (cm)



The behavior of covariance-based methods toward various
types of noise are significantly different from that of the
| east-squares-based methods.

My talk introduces several interesting behavior of the
covariance-based methods toward noise.

e My arguments use the minimum-variance spatial
filter as a representative method among covariance-
based methods.

* Duetothe similarity, most of my arguments can be
applied to the MUSIC algorithm.



Noise In measur ements

signal source of interest SENsor Noise

\ |

b(t) = LY. s(r, 1) + LY. £(1.,t) + () + n(t)

neurophysiological noise -l disturbances



Sensor noise

«can be modeled by white Gaussian noise
suncorrelated among sensor channels

Sensor noise causes the spatial resolution degradation
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Resolution kernd: s(r) = [K(r,r" )s(r' )dr’

When asingle source exists at r, ,

1)l cos[l (r),1(r)]

2] [L + (SNR) sin?[1 (), 1(1;)]]
i
|nput power SNR

K(r,r) =

where cos’(a, b) = |a" b /[(aT a)(b" b)],
sin’(a, b) = 1 — cos’(a, b)



The detail of the analysis on the spatial resolution
degradation and some other problems related to this
type of noise has been presented in our poster:

K. Sekihara et al. “Spatial resolution, leakage, and signal-to-
noiseratio in adaptive-beamformer sour ce reconstruction
techniques’



External disturbances
b(t) = LY, s(r,,t) + LY. £(,t) + d(t) + n(t)

d(t) may includes:

spower-line interferences
*Base-line drift

*MCG artifacts

U
Low rank

Their spatio-temporal activities have small number of
significantly large eigenval ues.




Simulated disturbances
*Casel: Recordings from right hemisphere channels
(total 60 channels) contain the same periodic noise.
«Case2: All channel recordings have uniform linear trends

*Case3: Each channdl hasits own linear trend different to
each other
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relative amplitude

relative amplitude

Simulated recordings

no disturbance
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Minimum-variance spatial filter reconstruction results
Signal to sensor noise ratio: 16

no disturbance periodic noise
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Low-rank disturbance

signal source activities disturbance

! !
b(t) = LZ_: s(r,, t) + n(t) + d(t)

Assume no correlation between s(r,,t) and d(t)

Covariance matrices

from L% s(r,,t) + n(t)
U
R=R +R
T B T D
fromb®)  fromd(t): R, = (dt)d" ()



When R_ IS arank one matrix,

N
RD = Auu

U

We can derive,

I"(RM(r) = 1" ()RM(r) | 1-cos’(lu | Ry |
M

generalized cosine between / and u with the metric R’

When I and u are very different, cos’(/,u | R.') <1, and

1 N 1
I'(NDRU@) 1'(r)RI(r)

) -




Eigenspectrum of R,
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Neurophysiological noise

b(t) = LY. s(r,t) + LY. £(n, 1) + n(t)

closely related to the resting state of the brain or the
default mode of brain activities.

Neurophysiological noise can be modeled by
randomly distributed incoherent dipoles.

ede Munck et a., IEEE Trans. Biomed. Eng., 39, 791-804, 1992.
*Valdeset a., Brain Topography, 4, 309-319, 1992.
_utkenhoner, J. Appl. Phys., 75, 7204-7210, 1994.




Thistype of noise may invalidate the low-rank signal
assumption;

Number of sensors M > Number of sources P

Even when the low-rank signal assumption is satisfied,
the size of noise subspace affects the spatial resolution of
the reconstructed results.




Minimum-variance spatia filter output:

1 1

R e e T O R T R T

(SCY)

source location

small « I' (r)L, I(r) — large



M)~ Y 7 (e, ||2

i=Q+1

M-Q signal subspace M-Q

_ noi se Subspace !

When r # source location,

I' (P I(r) >  I'(rLI(r)

high spatial resolution low spatial resolution

AN

<§(l’)2 > <§(I’)2 >

The spatial resolution depends on the size of the noise subspace
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source plane
scm, L x=0
Generate many random dipoles =

In avolume: N hed
-4<x<-1l, 1I<x<4
-4<y<4 8cm W
10<z< -2 24
< > X/ y

8cm
N : Number of noise random dipoles

P, : Thepower of noise dipolesis fixed at
P, = 0.1P, where P, isthe power of the third
source (P, = P, =1.2P,).

Time courses of the noise sources are incoherent to
each other.



37-channel sensors used (M=37)

NO NOISE SOUICES




148-channel sensors used (M=148)

NO NOISE SOUICES




Experiments for changing P while Ngisfixed at 48

No NOISE SOUICES PN/P3=0.01

¥ (cm)

PN/P3=O.03




Questions

A large number of randomly distributed dipoles
as amodel of spontaneous neural activity!!

Do such noise sourcesreally exist?

If yes, how large is the power of each dipole?



Summary

Sensor noise

The spatial resolution is affected by this type of noise.
Some other effects are described in our poster.

External disturbances

Their effects on the reconstruction is negligible, if their eigenvectors
are very different from lead field vectors in the source space.

Neurophysiology noise

It can seriously affect the quality of source reconstruction, if alarge
number of incoherent dipoles are an appropriate model for it.
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