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Least-squares-based methods

Least-squares principle in which the errors 
between the estimates and the measurements are 
minimized.  

Covariance-based methods

Low-rank signal assumption and the orthogonality 
principle. 

•The MUSIC Algorithm
•Adaptive spatial filter (adaptive beamformer)



Organization of my talk

•Give a brief review on the covariance-based methods.

•Discuss their behavior toward noise.
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Low-rank signal assumption

Number of sensors M > Number of sources Q
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Orthogonality principle

at any source location −= =T T
N q N q ql r l r r1( ) ( ) ( ) 0Ε Γ

The MUSIC algorithm source location
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This term becomes zero at source locations 

MUSIC algorithm chooses each location where the localizer 
has a very large value as one source location. 



Spatial filter
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Necessity of the low-rank signal assumption
for minimum-variance spatial filter

Consider a easiest case where we know locations and orientations
of all sources

weight can be obtained 
by solving
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Minimum variance spatial filter output: 
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assumed source waveform
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Minimum-norm 
reconstruction

Minimum-variance
spatial filter reconstruction

MUSIC reconstruction



The behavior of covariance-based methods toward various 
types of noise are significantly different from that of the 
least-squares-based methods.

My talk introduces several interesting behavior of the 
covariance-based methods toward noise.

• My arguments use the minimum-variance spatial 
filter as a representative method among covariance-
based methods.

• Due to the similarity, most of my arguments can be 
applied to the MUSIC algorithm.



Noise in measurements

signal source of interest sensor noise
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Sensor noise

•can be modeled by white Gaussian noise
•uncorrelated among sensor channels

Sensor noise causes the spatial resolution degradation



assumed source waveform
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The detail of the analysis on the spatial resolution 
degradation and some other problems related to this 
type of noise has been presented in our poster:

K. Sekihara et al. “Spatial resolution, leakage, and signal-to-
noise ratio in adaptive-beamformer source reconstruction 
techniques”



External disturbances
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•power-line interferences

•Base-line drift

•MCG artifacts

⇓
Low rank

Their spatio-temporal activities have small number of 
significantly large eigenvalues.



Simulated disturbances 

•Case1: Recordings from right hemisphere channels 
(total 60 channels) contain the same periodic noise.

•Case2: All channel recordings have uniform linear trends

•Case3: Each channel has its own linear trend different to 
each other
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Simulated recordings



Minimum-variance spatial filter reconstruction results
Signal to sensor noise ratio: 16



Low-rank disturbance

signal source activities disturbance
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Eigenspectrum of DR



Visualization of the first eigenvector of the disturbances
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Neurophysiological noise
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closely related to the resting state of the brain or the 
default mode of brain activities.

Neurophysiological noise can be modeled by 
randomly distributed incoherent dipoles.

•de Munck et al., IEEE Trans. Biomed. Eng., 39, 791-804, 1992.
•Valdes et al., Brain Topography, 4, 309-319, 1992.
•Lutkenhoner, J. Appl. Phys., 75, 7204-7210, 1994.



This type of noise may invalidate the low-rank signal 
assumption; 

Number of sensors M > Number of sources P

Even when the low-rank signal assumption is satisfied, 
the size of noise subspace affects the spatial resolution of 
the reconstructed results. 



Minimum-variance spatial filter output: 
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assumed source waveform
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Generate many random dipoles 
in a volume: 

-4 < x < -1,   1< x <4
-4 < y < 4

-10 < z < -2                                                               

1

Number of noise random dipoles

 The power of noise dipoles is fixed at
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Time courses of the noise sources are incoherent to 
each other.



37-channel sensors used (M=37)



148-channel sensors used (M=148)



Experiments for changing PN while NS is fixed at 48
M=37



Questions 

A large number of randomly distributed dipoles
as a model of  spontaneous neural activity!!  

Do such noise sources really exist?

If yes, how large is the power of each dipole?



Summary 
Sensor noise

The spatial resolution is affected by this type of noise.
Some other effects are described in our poster.

External disturbances

Their effects on the reconstruction is negligible, if their eigenvectors 
are very different from lead field vectors in the source space.

Neurophysiology noise

It can seriously affect the quality of source reconstruction, if a large 
number of incoherent dipoles are an appropriate model for it.
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