World Congress on Medical Physics and Biomedical Engineering 2006 Seoul, Korea, August, 2006

Adaptive spatial filter technique: its application to MEG/EEG functional source imaging

Kensuke Sekihara¹, Srikantan S. Nagarajan²

¹Department of Engineering, Tokyo Metropolitan Institute of Technology ²Biomagnetic Imaging Laboratory, University of California, San Francisco

Right posterior tibial nerve stimulation

measured by a 37-channel sensor array

Hashimoto et al., "Serial activation of distinct cytoarchitectonic areas of the human SI cortex after posterior tibial nerve stimulation," NeuroReport 12, pp1857-1862, 2001

Right median nerve stimulation

measured by a 160-channel whole-head sensor array

Hashimoto et al., Clin. Neurophysiol. Nov;114, pp.2107-17, 2003

Tomographic reconstruction

- data covariance matrix: $\boldsymbol{R} = \langle \boldsymbol{b}(t) \boldsymbol{b}^T(t) \rangle$
- source magnitude: $s(\mathbf{r},t)$
- source orientation: $\boldsymbol{\eta}(\boldsymbol{r},t) = [\eta_x(\boldsymbol{r},t), \eta_y(\boldsymbol{r},t), \eta_z(\boldsymbol{r},t)]^T$

Definitions

Sensor lead field

Lead field for source orientation: $\eta(r)$

$$\boldsymbol{L}(\boldsymbol{r}) = \begin{bmatrix} l_{1}^{x}(\boldsymbol{r}) & l_{1}^{y}(\boldsymbol{r}) & l_{1}^{z}(\boldsymbol{r}) \\ l_{2}^{x}(\boldsymbol{r}) & l_{2}^{y}(\boldsymbol{r}) & l_{2}^{z}(\boldsymbol{r}) \\ \vdots & \vdots & \vdots \\ l_{M}^{x}(\boldsymbol{r}) & l_{M}^{y}(\boldsymbol{r}) & l_{M}^{z}(\boldsymbol{r}) \end{bmatrix}, \quad \boldsymbol{l}(\boldsymbol{r}) = \boldsymbol{L}(\boldsymbol{r}) \begin{bmatrix} \eta_{x}(\boldsymbol{r}) \\ \eta_{y}(\boldsymbol{r}) \\ \eta_{z}(\boldsymbol{r}) \end{bmatrix}$$

Measurement equation $b(t) = \int l(r)s(r,t)dr$

Spatial filter-basic formulation

weight vector

$$\hat{s}(\boldsymbol{r},t) = \boldsymbol{w}^{T}(\boldsymbol{r})\boldsymbol{b}(t) = [w_{1}(\boldsymbol{r}), \dots, w_{M}(\boldsymbol{r})]\begin{bmatrix}b_{1}(t)\\\vdots\\b_{1}(t)\end{bmatrix} = \sum_{m=1}^{M} w_{m}(r)b_{m}(t)$$

$$\uparrow$$
Estimate of source activity

Estimate of source activity

Spatial filter for 3D-vector sources

 $\hat{s}(\boldsymbol{r},\boldsymbol{\eta},t) = \boldsymbol{w}^T(\boldsymbol{r},\boldsymbol{\eta})\boldsymbol{b}(t)$ Weight depends on $\boldsymbol{\eta}$, as well as \boldsymbol{r} .

When no information on η is available, use $\eta_{opt} = \arg \max_{\eta} \langle \hat{s}(\boldsymbol{r}, \boldsymbol{\eta}, t)^2 \rangle$

$$\hat{s}(\boldsymbol{r},t) = \boldsymbol{w}^{T}(\boldsymbol{r},\boldsymbol{\eta}_{opt})\boldsymbol{b}(t) = \boldsymbol{w}^{T}(\boldsymbol{r})\boldsymbol{b}(t)$$

Non-adaptive spatial filter: w(r) is data independent

Adaptive spatial filter:

w(r) is data dependent

Non-adaptive spatial filter--Spatial matched filter w(r) = l(r) / ||l(r)||

and

$$\hat{s}(\boldsymbol{r},t) = \boldsymbol{w}^{T}(\boldsymbol{r})\boldsymbol{b}(t) = \boldsymbol{l}^{T}(\boldsymbol{r})\boldsymbol{b}(t) / \|\boldsymbol{l}(\boldsymbol{r})\|$$

Filter outputs are the inner product between the lead field and data vector.

The inner product represents the similarity between them

The filter outputs form a peak at each source location if they are sufficiently isolated.

Non-adaptive spatial filter-- minimum-norm filter

Spatial filter formulation

 $\hat{s}(\boldsymbol{r}) = \boldsymbol{w}^{T}(\boldsymbol{r})\boldsymbol{b}; \quad \boldsymbol{w}(\boldsymbol{r}) = \boldsymbol{G}^{-1}\boldsymbol{l}(\boldsymbol{r})$

Non-adaptive spatial filter Variants of minimum-norm filter

Weight normalized minimum norm filter (Dale et al.)

$$\boldsymbol{w}(\boldsymbol{r}) = \boldsymbol{G}^{-1}\boldsymbol{l}(\boldsymbol{r}) / \sqrt{\boldsymbol{l}^{T}(\boldsymbol{r})\boldsymbol{G}^{-2}\boldsymbol{l}(\boldsymbol{r})}]$$

sLORETA (Pasucual-Marque)

$$\boldsymbol{w}(\boldsymbol{r}) = \boldsymbol{G}^{-1}\boldsymbol{l}(\boldsymbol{r}) / \sqrt{\boldsymbol{l}^{T}(\boldsymbol{r})\boldsymbol{G}^{-1}\boldsymbol{l}(\boldsymbol{r})}$$

A. M. Dale et al., Neuron, Vol.26, pp.55-67, 2000

R. D. Pascual-Marqui, Methods and Findings in Experimental and Clinical Pharmacology, Vol.24, pp.5-12, 2002

Adaptive spatial filter--minimum-variance filter

$$\underset{w}{\operatorname{arg\,min}} \begin{array}{l} \boldsymbol{w}^{T} \boldsymbol{R} \boldsymbol{w} \text{ subject to } \boldsymbol{w}^{T} \boldsymbol{l}(\boldsymbol{r}) = 1 \\ \downarrow \\ \boldsymbol{w}(\boldsymbol{r}) = \frac{\boldsymbol{R}^{-1} \boldsymbol{l}(\boldsymbol{r})}{\boldsymbol{l}^{T}(\boldsymbol{r}) \boldsymbol{R}^{-1} \boldsymbol{l}(\boldsymbol{r})} \end{array}$$

Assumption: $\langle s(\mathbf{r}_p, t) s(\mathbf{r}_q, t) \rangle = 0$ for $p \neq q$

Output power when the filter is focused on the *p*th source

$$\boldsymbol{w}^{T}(\boldsymbol{r}_{p})\boldsymbol{R}\boldsymbol{w}(\boldsymbol{r}_{p}) = \left\langle s(\boldsymbol{r}_{p},t)^{2} \right\rangle + \sum_{q \neq p} \left\langle s(\boldsymbol{r}_{q},t)^{2} \right\rangle \left\| \boldsymbol{w}^{T}(\boldsymbol{r}_{p})\boldsymbol{l}(\boldsymbol{r}_{q}) \right\| \sum_{\text{zero}} \left\langle s(\boldsymbol{r}_{p},t)^{2} \right\rangle \|\boldsymbol{w}^{T}(\boldsymbol{r}_{p})\boldsymbol{l}(\boldsymbol{r}_{p})\| \right\rangle$$

Minimizing output power gives the weight satisfying

$$\boldsymbol{w}^{T}(\boldsymbol{r}_{p})\boldsymbol{l}(\boldsymbol{r}_{q}) = 1 \text{ for } p = q$$
$$= 0 \text{ for } p \neq q$$

Minimum-variance filter for 3D-vector sources

Weight depending both on η and r.

$$w(r, \eta) = \frac{\boldsymbol{R}^{-1}\boldsymbol{L}(r)\boldsymbol{\eta}}{\boldsymbol{\eta}^{T}\boldsymbol{L}^{T}(r)\boldsymbol{R}^{-1}\boldsymbol{L}(r)\boldsymbol{\eta}}$$

Output power

$$\left\langle \hat{s}(\boldsymbol{r},\boldsymbol{\eta},t)^{2} \right\rangle = \frac{1}{\boldsymbol{\eta}^{T}\boldsymbol{L}^{T}(\boldsymbol{r})\boldsymbol{R}^{-1}\boldsymbol{L}(\boldsymbol{r})\boldsymbol{\eta}}$$

Therefore

$$\boldsymbol{\eta}_{opt} = \arg \max_{\boldsymbol{\eta}} \left\langle \hat{s}(\boldsymbol{r}, \boldsymbol{\eta}, t)^2 \right\rangle = \arg \min_{\boldsymbol{\eta}} [\boldsymbol{\eta}^T \boldsymbol{L}^T(\boldsymbol{r}) \boldsymbol{R}^{-1} \boldsymbol{L}(\boldsymbol{r}) \boldsymbol{\eta}] = \boldsymbol{u}_{min}$$

Eigenvector for the minimum eigenvalue of $\boldsymbol{L}^{T}(\boldsymbol{r})\boldsymbol{R}^{-1}\boldsymbol{L}(\boldsymbol{r})$

$$\boldsymbol{w}(\boldsymbol{r}) = \frac{\boldsymbol{R}^{-1}\boldsymbol{L}(\boldsymbol{r})\boldsymbol{u}_{min}}{\boldsymbol{u}_{min}^{T}\boldsymbol{L}^{T}(\boldsymbol{r})\boldsymbol{R}^{-1}\boldsymbol{L}(\boldsymbol{r})\boldsymbol{u}_{min}}$$

Comparison between spatial filter performances -Location bias-

Resolution kernel analysis

 $\hat{s}(\mathbf{r}) = \int \mathbb{R}(\mathbf{r}, \mathbf{r}') s(\mathbf{r}') d\mathbf{r}'$

 $\mathbb{R}(\mathbf{r},\mathbf{r}_1) = \mathbf{w}^T(\mathbf{r})\mathbf{l}(\mathbf{r}_1)$ (when a point source is located at \mathbf{r}_1)

always valid (Schwartz inequality) $\frac{\cos(\boldsymbol{l},\boldsymbol{f})}{1+\alpha[1-\cos^2(\boldsymbol{l},\boldsymbol{f})]} < 1$ always valid \boldsymbol{f} : source lead field vector at $\boldsymbol{r}_1 \quad \boldsymbol{\alpha} = (\boldsymbol{\sigma}_1^2 / \boldsymbol{\sigma}_0^2) \|\boldsymbol{f}\|^2 (> M), \quad \cos(\boldsymbol{l}, \boldsymbol{f}) = |\boldsymbol{l}^T \boldsymbol{f}| / \|\boldsymbol{f}\| \|\boldsymbol{l}\|$

The condition: $\mathbb{R}(r_1, r_1) > \mathbb{R}(r, r_1)$ $\|f\|\|l\| > l^T f$ Spatial matched filter always valid

 $f^T G^{-1} f > l^T G^{-1} f$ not necessarily valid

Weight normalized minimum norm

Minimum-norm

sLORETA

 $\frac{f^{T}G^{-1}f}{\sqrt{f^{T}G^{-2}f}} > \frac{l^{T}G^{-1}f}{\sqrt{l^{T}G^{-2}l}}$ not necessarily valid

 $(f^{T}G^{-1}f)(l^{T}G^{-1}l) > (l^{T}G^{-1}f)^{2}$

Minimum variance

Comparison between spatial filter performances -Spatial resolution-

Point-spread function: $\phi(\mathbf{r}) = \mathbb{R}(\mathbf{r}_1, \mathbf{r}) / \mathbb{R}(\mathbf{r}_1, \mathbf{r}_1)$

Spatial Matched Filter: $\phi(\mathbf{r}) = \cos(\mathbf{l}, \mathbf{f})$

SLORETA: $\phi(\mathbf{r}) = \cos(\mathbf{l}, \mathbf{f} \mid \mathbf{G}^{-1})$

Minimum variance:

$$\phi(\boldsymbol{r}) = \frac{\cos(\boldsymbol{l}, \boldsymbol{f})}{1 + \alpha [1 - \cos^2(\boldsymbol{l}, \boldsymbol{f})]}$$

Because $\alpha > M$, this part causes a rapid decay.

Auditory somatosensory response

Minimum-variance (normalized lead field)

sLORETA

Problems for adaptive spatial filter

Source correlation

Background brain interference

Influence of Source correlation

$$\boldsymbol{w}^{T}(\boldsymbol{r}_{p})\boldsymbol{l}(\boldsymbol{r}_{q}) = \boldsymbol{\delta}_{pq}$$
 (Sources are uncorrelated

$$\boldsymbol{w}^{T}(\boldsymbol{r}_{p})\boldsymbol{l}(\boldsymbol{r}_{q}) = rac{[\boldsymbol{R}_{S}^{-1}]_{pq}}{[\boldsymbol{R}_{S}^{-1}]_{pp}}$$

(Sources are partially correlated)

Reconstructed source time course:

$$\hat{s}(\mathbf{r}_{p},t) = s(\mathbf{r}_{p},t) + \sum_{q=1}^{Q} \frac{[\mathbf{R}_{S}^{-1}]_{pq}}{[\mathbf{R}_{S}^{-1}]_{pp}} s(\mathbf{r}_{q},t)$$

spatial-filter output

leakages from other correlated sources

 R_{s} : source covariance matrix,

$$[\mathbf{R}_{S}^{-1}]_{pq}$$
: the (p,q) element of \mathbf{R}_{S}^{-1}

Signal cancellation

When two correlated sources exist

Source power decreases by a factor of $(1 - \mu^2)$

$$\boldsymbol{\alpha}_{1} = \left\langle \hat{s}(\boldsymbol{r}_{1},t)^{2} \right\rangle, \ \boldsymbol{\alpha}_{2} = \left\langle \hat{s}(\boldsymbol{r}_{2},t)^{2} \right\rangle, \ \boldsymbol{\mu} = \left\langle \hat{s}(\boldsymbol{r}_{1},t)\hat{s}(\boldsymbol{r}_{2},t) \right\rangle / \boldsymbol{\alpha}_{1}\boldsymbol{\alpha}_{2}$$

Coherent source suppression:

If locations of coherent interferences are approximately known, its influence can be suppressed.

Correlation coefficient: 0.92

Impose the null sensitivity

Dalal S., Sekihara K., and Nagarajan S., "Modified Beamformers for Coherent Source Region Suppression," IEEE TBME Vol.53, pp.1357-1363, July, 2006

Problems for adaptive spatial filter

Source correlation

Background brain interference

Interferences affecting to MEG sensor data

Low-rank interference

High-rank interference

Eyeblinks

Electronics

Heartbeat

Dental & Jaw Muscles

no specific spatial, temporal, and frequency patterns

Influence of background source activity (Influence of brain noise)

Background activity causes a severe blur in the final reconstruction.

Prewhitening adaptive spatial filter Data model

Task: $\boldsymbol{b}(t) = \boldsymbol{b}_{S}(t) + \boldsymbol{b}_{I}(t) + \boldsymbol{n}(t)$ Control: $\boldsymbol{b}_{C}(t) = \boldsymbol{b}_{I}(t) + \boldsymbol{n}(t)$ Covariance matrix relations Task: $\boldsymbol{R} = \boldsymbol{R}_{S} + \boldsymbol{R}_{i+n}$

Control:
$$\boldsymbol{R}_{C} = \boldsymbol{R}_{i+n}$$

Problem How to obtain source reconstruction free from the influence of $\boldsymbol{b}_I(t)$

Data covariance: $\mathbf{R} = \langle \mathbf{b}(t)\mathbf{b}^{T}(t) \rangle$ Signal covariance: $\mathbf{R}_{S} = \langle \mathbf{b}_{S}(t)\mathbf{b}_{S}^{T}(t) \rangle$ Interference plus noise covariance: $\mathbf{R}_{i+n} = \langle (\mathbf{b}_{I}(t) + \mathbf{n}(t))(\mathbf{b}_{I}(t) + \mathbf{n}(t))^{T} \rangle$

Prewhitening adaptive spatial filter

Using u_j ; signal level eigenvectors of $\tilde{R} = R_C^{-1/2} R R_C^{-1/2}$ Signal covariance estimation

$$\hat{\boldsymbol{R}}_{S} = \boldsymbol{R}_{C}^{1/2} \left[\sum_{j=1}^{Q} (\boldsymbol{\gamma}_{j} - 1) \boldsymbol{u}_{j} \right] \boldsymbol{R}_{C}^{1/2}$$

Signal time course estimation

$$\hat{\boldsymbol{b}}_{S}(t) = \boldsymbol{R}_{C}^{1/2} \left[\sum_{j=1}^{Q} (\boldsymbol{\gamma}_{j} - 1) \boldsymbol{u}_{j} \right] \boldsymbol{R}_{C}^{-1/2} \boldsymbol{b}_{C}(t)$$

Prewhitening beamforming

$$\hat{s}_{PW}(\boldsymbol{r},t) = \frac{\boldsymbol{l}^{T}(\boldsymbol{r})(\hat{\boldsymbol{R}}_{S} + \boldsymbol{\mu}\boldsymbol{I})^{-1}\hat{\boldsymbol{b}}_{S}(t)}{\boldsymbol{l}^{T}(\boldsymbol{r})(\hat{\boldsymbol{R}}_{S} + \boldsymbol{\mu}\boldsymbol{I})^{-1}\boldsymbol{l}(\boldsymbol{r})}$$

For detail: K. Sekihara et al., IEEE Transactions on Biomedical Engineering, September 2006

Data without background sources

Data with background sources

Auditory evoked field

Conventional

Prewhitening

Conventional

Prewhitening

•Reviews principles of adaptive spatial filter source reconstruction.

•Discusses the comparison between adaptive and nonadaptive spatial filters.

Discusses the following problems:
1) influence of source correlation,
2) influence of brain background interference.

NUTMEG ToolBox (UCSF)

http://tempest.ucsf.edu/~sarang/nutmeg

◆ SPM2 (Sekihara): Graphics: ファイル(E) 編集(E) 表示(V) 挿入(D) ワール(E) デスパップ*(D) ウィントウ(W) ヘルプ*(H) Colours 炒ア SPM-Print Results-Fig

Collaborators

University of California, San Francisco

Kenneth Hilde Sarang Dilal Johanna Zumer Hagai Atthias

University of Maryland David Poeppel

Massachusetts Institute of Technology, Alec Marantz **Yokogawa Electric Ltd.** Hiroaki Tanaka Yaxuhiro Haruta

Kanazawa Institute of Technology Isao Hashimoto

Thank you for your attention

Visit http://www.tmit.ac.jp/~sekihara/