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Performance of an MEG Adaptive-Beamformer
Technique in the Presence of Correlated Neural

Activities: Effects on Signal Intensity and
Time-Course Estimates

Kensuke Sekihara�, Srikantan S. Nagarajan, David Poeppel, and Alec Marantz

Abstract—The influence of temporarily correlated source
activities on neuromagnetic reconstruction by adaptive beam-
former techniques was investigated. It is known that the spatial
filter weight of an adaptive beamformer cannot perfectly block
correlated signals. This causes two major influences on the
reconstruction results: time course distortions and reductions
in reconstructed signal intensities. Our theoretical analysis and
numerical experiments both showed that the reduction in signal
intensity for sources with a medium degree of correlation is small.
The time-course distortion for such sources, however, may be dis-
cernible. Our analysis also showed that the magnitude correlation
coefficient between two correlated sources can be accurately esti-
mated by using the beamformer outputs. A method of retrieving
the original time courses using estimated correlation coefficients
was developed. Our numerical experiments demonstrated that
reasonably accurate time courses can be retrieved from consider-
ably distorted time courses even when the signal-to-noise ratio is
low.

Index Terms—Adaptive beamformer, biomagnetism, functional
neuroimaging, magnetoencephalographic (MEG) inverse prob-
lems, magnetoencephalography, neuromagnetic signal processing.

I. INTRODUCTION

T HE goal of neuromagnetic imaging is to visualize neural
activities at a fine time resolution in the order of mil-

liseconds, and to provide functional information about brain
dynamics [1], [2]. Toward this goal, a number of algorithms
for reconstructing spatio-temporal source activities from
magnetoencephalographic (MEG) measurements have been
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developed. Among such algorithms, a class of techniques called
an adaptive beamformer have attracted great interest recently.
Adaptive-beamformer techniques were originally developed
in the fields of array signal processing, including radar, sonar,
and seismic exploration [3]. Since first introduced by Robinson
et al. [4], they have been successfully applied to neuromag-
netic source reconstruction problems [5]–[9]. The details of
adaptive beamformer techniques, as well as their comparison
to least-squares-based source-reconstruction techniques such
as the minimum-norm method [10], are given in [11].

Adaptive-beamformer techniques, however, require an im-
plicit assumption that the time courses of the source activities
are orthogonal to each other; i.e., all source activities are com-
pletely uncorrelated [12]. This assumption may not necessarily
hold in regard to neuromagnetic measurements. In general, cor-
tical and subcortical activities are supposed to be more or less
partially correlated. Indeed, this correlation itself has become an
active research target [13]–[15] because the correlation between
the neural activities is considered to represent some sort of func-
tional connectivity between different regions in the brain [16].
Therefore, when applying adaptive-beamformer techniques, we
should be aware of how robust they are to the source correlation,
and what kind of influences arise when they are used to recon-
struct correlated sources.

This paper attempts to answer these questions. It is known
that the weight vector of adaptive beamformers cannot perfectly
block correlated signals. This causes two major influences on
the source-reconstruction results: distortion in time-course es-
timates and reduction in reconstructed source intensities. We
performed theoretical analysis under the condition that two cor-
related sources exist and derived theoretical relationships be-
tween the degree of these influences and the degree of source
correlations. We also develop a method of retrieving the original
time courses when two sources are correlated. In this paper, Sec-
tion II briefly reviews existing adaptive-beamformer techniques
for neuromagnetic reconstruction. Section III presents our theo-
retical analysis regarding the influence of the source correlation
on the adaptive beamformer performance. Section IV presents
the results of several numerical experiments that validate the ar-
guments in Section III. Throughout this paper, plain italics in-
dicate scalars, lower case boldface italics indicate vectors, and
upper case boldface italics indicate matrices.

0018-9294/02$17.00 © 2002 IEEE
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II. A DAPTIVE-BEAMFORMER TECHNIQUES FOR

NEUROMEGNETICRECONSTRUCTION

A. Definitions

We define the magnetic field measured by theth
detector coil at time as , and a column vector

as a set of measured data
where is the total number of detector coils and superscript

indicates the matrix transpose. The spatial location is repre-
sented by a three-dimensional (3-D) vector: .
A total of discrete sources are assumed to generate the
neuromagnetic field. These discrete sources are modeled using
the equivalent current dipoles [17]. The number of sources
is assumed to be less than the number of sensors; i.e., the
measured neuromagnetic signal is assumed to be a low-rank
signal [18], [19]. The locations of these sources are denoted as

. The moment magnitude of theth source at
time is denoted as , and the source magnitude vector
is defined as .

The orientation of theth source is defined as a 3-D column
vector whose
component (where equals , , or in this paper) is equal
to the cosine of the angle between the direction of the source
moment and the direction. We assume that the orientation of
each source is time independent. Omitting time notation, we
define a matrix that expresses the orientations of all
sources as such that

...

...
.. .

We define as the output of the th sensor; the output
is induced by the unit-magnitude source located atand di-
rected in the direction. The column vector is defined as

. Next, the lead field matrix,
which represents the sensitivity of the whole sensor array at,
is defined as . The lead-field vector
in the source-moment direction is defined, for later use, as
where . The composite lead field matrix for the
entire set of sources is defined as

(1)

The relationship between and is then expressed as

(2)

where is the additive noise. Defining as , this
relationship is rewritten as

(3)

where

(4)

The matrix is the composite lead field matrix whose column
is equal to the lead field vector in the source-moment direction.

The measurement covariance matrix is denoted as, which is
obtained from , where indicates the en-
semble average, which is replaced with the time average over a
certain time window in practice. It should be noted that when

is not equal to zero, is not equal to the covariance ma-
trix and should rather be referred to as the second-order moment
matrix in such a case. However, according to convention,is
referred to as a covariance matrix in this paper. The covariance
matrix of the source-moment activity is defined here as; i.e.,

.
Using (3) and assuming that the noise and the source ac-

tivity are uncorrelated, we get the relationship between the
measurement covariance matrix and the source-activity covari-
ance matrix such that

(5)

where the noise in the measured data is assumed to be the white
Gaussian noise with a variance ofand is the identity matrix.
The th eigenvalue and the eigenvector of are defined as
and , respectively. Unless some source activities are perfectly
correlated with each other, the rank of is equal to the number
of sources . Therefore, according to (5), has eigenvalues
greater than and eigenvalues equal to . For later use,
the matrix is defined as . The column
span of is the maximum-likelihood estimate of the signal
subspace of [20].

It should be pointed out that, in (5), interference magnetic
fields originated from external noise sources such as brain back-
ground activities can be considered as a part of signals, and their
influence can be accounted for in the first term of the right-hand
side of this equation. The noise here indicates only noises with
internal origins, such as those originated from the sensor coils,
the superconducting quamtum interference devices (SQUIDs),
and their associated electronics. Therefore, the assumption of
spatially uncorrelated white Gaussian noise is acceptable for de-
riving (5).

B. Scalar Minimum-Variance Beamformer

To estimate the source moment, we have focused on the class
of techniques referred to as the adaptive beamformer [21]. This
type of technique uses the following spatial-filter operation for
estimating the source moment:

(6)

where is the source-moment time course obtained as
the beamformer output. One well-known adaptive beamformer
is the minimum-variance distortion-less beamformer originally
developed in the field of array signal processing [22]. This
technique derives the weight vector by minimizing

under the constraint of . The
explicit form of the weight vector for the minimum-variance
beamformer is known to be

(7)

Note that to use this formula, the source orientation is
needed to calculate . However, is generally unknown,
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although several techniques have been developed to estimate it
[12], [23].

C. Vector Minimum-Variance Beamformer Formulation

A vector-type beamformer uses a set of three weight vec-
tors, , , and , each of which estimates the,
, and components of the source moment, thus enabling the

source orientation as well as the source-moment magnitude to
be estimated. A set of weight vectors for a vector-extended min-
imum-variance beamformer is given by [24], [25]

(8)

Using these weight vectors, the, , and components of the
source moment are given by

(9)
where is the estimated source moment in thedirec-
tion. The estimate of the source-moment orientation is denoted
as , which can be extracted from (9) such that

(10)

The magnitude of the source moment is estimated from

(11)

where . It can be
seen that the composite weight vector is equivalent to
the weight vector for the scalar beamformer in (7). In the
following analysis, we use for simplicity, but the results of
the analysis are also valid for .

D. Eigenspace-Projected Beamformer

The minimum-variance beamformer is known to be very
sensitive to errors in the forward modeling or errors in es-
timating the measurement covariance matrix. In the case of
neuromagnetic measurements, since such errors are almost
inevitable, the minimum-variance beamformer generally
provides noisy results. The eigenspace-projection beamformer
provides an output signal-to-noise ratio (SNR) much higher
than that of the minimum-variance beamformer when such
errors mentioned above exist [26]. The extension of the
minimum-variance beamformer to the eigenspace-projection
beamformer is attained by projecting the weight vector of the
minimum-variance beamformer onto the signal subspace of the
measurement covariance matrix. That is, redefining the weight
vector obtained from (7) as , the eigenspace-projection
beamformer is given by [26]

(12)

or redefining the weight vectors obtained from (8) as
, the vector-extended eigenspace

beamformer is given by [7]

(13)

III. B EAMFORMER PERFORMANCE WHEN

SOURCES ARECORRELATED

A. Signal Leakage and Errors in Time-Course Estimate

The weight vector for the minimum-variance beam-
former is obtained by minimizing the output power;

under the constraint .
When the beamformer pointing locationis equal to the source
location , neglecting the noise term, the output power is
rewritten as

(14)

where sources are assumed to be uncorrelated with each other,
and the relationship is used. Thus, the weight
vector obtained by minimizing should have the property that

where . That is, the resultant weight
should only pass the signal from, and block the signal from
other sources, and the blocking capability of the beamformer
weight is expressed as

(15)

where is the Kronecker delta defined as ( )
and ( ).

In general cases where partially correlated sources exist, how-
ever, the blocking capability of the weight vector is expressed
in the following equation:

(16)

where indicates the element of . This equa-
tion, first derived by Zoltowski [27], is the basis of our analysis.
Its derivation is described in Appendix I and, as shown in this
derivation, (16) exactly holds when the SNR is so high that noise
can be neglected. We assume that the target source exists at
and that the sources are correlated with the target source.
(A total of sources are mutually correlated). The beam-
former output at , , is expressed as

(17)

where the locations of the correlated interferences are denoted
as , ( ). This equation shows that the beam-
former outputs for the correlated sources contain leakage from
the other correlated sources, and such leakage causes errors in
the time-course estimates of the source activities.

We consider a case where, amongsources, the first and the
second sources are significantly correlated and the other sources
have no significant correlation with any other sources. We de-
fine the correlation coefficient between the first and the second
sources as , and the average power of theth source as ,
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TABLE I
SOURCE PARAMETER VALUES USED FOR THE

NUMERICAL EXPERIMENTS IN SECTION IV

where . The source covariance matrix and its
inverse can be expressed as in (18) and (19), shown at the bottom
of the page.

Using (16) and (19), we can derive

(20)

and

for (21)

Therefore, when the beamformer is pointing at the first source
location , it passes the signal from the second source with
the multiplicative constant of , although it blocks the
signals from the other sources uncorrelated with the first source.
Consequently, the beamformer output at, , is given by

(22)

In exactly the same manner, the beamformer output at,
, is given by

(23)

These equations explicitly show that the beamformer output for
the first source contains the leakage from the second source and
that the output for the second source contains the leakage from

Fig. 1. The coordinate system and source-detector configuration used in
the numerical experiments. The coordinate origin was set at the center of the
detector coil located at the center of the coil array. The plane atx = 1:0 cm
is shown. The large circle shows the cross section of the sphere used for the
forward calculation.

TABLE II
VALUES OF THE PARAMETERS USED FOR

CALCULATING w (t), w (t), AND w (t)

the first source. Equations (22) and (23) are valid for high SNR,
but they still hold for considerably low SNR, as is shown in our
numerical experiments.

B. Signal-Intensity Reduction and Correlation-Coefficient
Estimation

The leakage from correlated activities not only causes errors
in the time-course estimate but also causes intensity reduction

...

...
.. .

(18)

and

...

...
...

(19)
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Fig. 2. (a) Time coursesw (t), w (t), andw (t) used for the numerical
experiments. The top panel representsw (t), the middle one,w (t), and the
bottom one,w (t). Each time course is normalized by its maximum value. The
broken line in the top panel indicates time coursew (t), which is obtained from
w (t) = (1 � �)w (t) + �w (t) with � = 0:5. The correlation coefficient
betweenw (t) andw (t), �, is 0.8 in this case. (b) Examples of the simulated
magnetic-field recordings when SNR is equal to four and� = 0.

in the reconstructed source activities. Using (22) and (23) with
the relationship , we get

(24)

(25)

and

(26)

Equations (25) and (26) indicate that the power of the recon-
structed sources is reduced by a factor of . This reduction
of source power has been known as the signal cancellation in
the field of the array signal processing [28], [29].

We define the magnitude correlation coefficient between the
first and the second sources calculated from the beamformer
output as

(27)

Substituting (24)–(26) into (27), we finally obtain

(28)

This equation indicates that the magnitude correlation co-
efficient can be accurately estimated by substituting the
beamformer outputs into (27). Appendix II shows that the
magnitude of the cross coherence in the frequency domain
can also be correctly estimated by using the outputs from the
frequency-domain beamformer.

If a third correlated source exists, the accuracy of the esti-
mated correlation coefficient should be affected by this source.
This influence can be evaluated in the following manner. We as-
sume that the first, second, and third sources are mutually corre-
lated, and their correlation coefficients are denoted as, ,
and . We further assume that the correlation between the first
and second sources is the target of the measurement and the third
source is an interference. According to (17), the beamformer
outputs at the target source locations are

(29)

and

(30)

where is the location of the third source, and is the source-
covariance submatrix related to the correlated three sources.
(This is presented in Appendix III.)

Using (27), (29), (30), and (45), we finally obtain

(31)

This equation shows how the values of and affect .
Clearly, when and are small, is close to .

C. Retrieval of Original Time Courses

As discussed in the preceding sections, the beamformer
output contains not only the target source activities but
also the activities correlated with the target sources. However,
if we know the amount of correlated interference contained in

, the original target-source time courses can be retrieved
by inverting (22) and (23), i.e.,

(32)

where is the retrieved time course of theth source
where and . In the right-hand side of the aforemen-
tioned equation, can be estimated from (28), and and
can be obtained from and

.

IV. NUMERICAL EXPERIMENTS

A. Data Generation

A series of numerical experiments were conducted to verify
the validity of the arguments presented in Section III. In par-
ticular, we have shown that the arguments still hold even for
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Fig. 3. Magnitude-squared average reconstructionh~s(rrr; t) i obtained by using the minimum-variance beamformer in (8) and (11). SNR is equal to 16. (a)� =
0:08. (b)� = 0:5. (c)� = 0:6. (d)� = 0:7. (e)� = 0:8. (f) � = 0:95. � is the cross-correlation coefficient between the first and second sources.

Fig. 4. Intensity of the first source with respect to the correlation between the
first and second sources. The broken line indicates the theoretical relationshipp
1� � . In these Monte Carlo simulations, the mean intensity of the first

source was calculated from 100 generated data sets. The error bars indicate the
range of�2 standard deviations. The SNR was set to four.

low-SNR cases, although the arguments are based on the as-
sumption that noise can be neglected. A sensor alignment of the
37-sensor array from Magnes1 neuromagnetometer was used
in which the sensor coils are arranged in a uniform, concentric
array on a spherical surface with a radius of 12.2 cm. The sen-
sors are first-order axial gradiometers with a baseline of 5 cm.
The coordinate origin was set at the center of the detector coil
located at the center of the coil array. Thedirection was de-
fined as that from the posterior to the anterior, and thedirec-
tion was defined as that from the right to the left hemispheres.
Three point sources were assumed to exist on a plane defined as

14D Neuroimaging Inc., San Diego, CA

Fig. 5. Estimated correlation coefficient between the first and second
sources. Monte Carlo-type simulations, which generated 100 sets of magnetic
recordings, were performed and the average values of~� for five SNRs are
plotted. The error bar shows the�2 standard deviations. The experiments were
repeated for� = 0:8 and� = 0:5. The broken horizontal lines show the true
values of the correlation coefficient.

. [The values of the spatial coordinates are ex-
pressed in centimeters.] The locations as well as the orientations
of the sources are listed in Table I. The source-sensor configu-
ration and the coordinate system are illustrated in Fig. 1.

First, three time courses , , and were calcu-
lated by using

for (33)

and

(34)
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Fig. 6. Time-course outputs obtained by using the minimum-variance beamformer for the three sources when SNR is equal to four and (a)� = 0:08, (b)� = 0:4,
(c) � = 0:6, and (d)� = 0:8. Time courses from the first to third sources are shown from top to bottom. The solid lines indicate the beamformer outputs and the
broken lines indicate the original time courses.

where , , , and are the numerical parameters control-
ling the shapes of the time courses. The values of these pa-
rameters used in these experiments are listed in Table II. Time
courses , , and , are shown by the solid lines in
Fig. 2(a). The correlation coefficients of these three time courses
are 8 10 between and , 2 10 between

and , and 4 10 between and . A
modified time course was obtained from

, where parametercontrols the degree of the
correlation between and . The time course
when is shown by the broken line in Fig. 2(a). The
correlation coefficient between and is 0.8 in this
case. The simulated magnetic recordings were calculated by as-
signing , , and to the first, second, and third
sources, respectively.

The magnetic-field recordings were calculated at 1-ms
intervals from zero to 400 ms by using the spherically ho-
mogeneous conductor [17] with its center set at .
White Gaussian noise was then added to the simulated field
recordings. The simulated recordings with an SNR of four and
with set at zero are shown in Fig. 2(b). Here, the SNR is

defined as the ratio of the Frobenius norm of the signal-mag-
netic-field data matrix to that of the noise matrix, i.e., the ratio

of . As we explained in Section V,
the SNR of four represents a very poor SNR situation.

B. Signal-Cancellation Experiments

We generated six data sets with the correlation coefficients
between the first and second sources,, of 0.08, 0.5, 0.6, 0.7,
0.8, and 0.95. The SNR was set at 16. The weight vectors for
detecting the , , and components were obtained from (8),
and the 3-D reconstruction was performed by using (11). The
reconstruction region included the three sources and an area de-
fined by and on plane ;
this area is displayed in Fig. 3. The interval between the recon-
struction grids was 0.1 cm. The results of magnitude-squared
average reconstruction for the six values ofare shown in the
six contour maps in Fig. 3, where each contour line represents a
relative value of the source magnitude . The recon-
struction results contain three localized sources at the locations
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Fig. 7. (a) Predicted time courses and the minimum-variance beamformer
outputs of the first and the second sources. The solid lines indicate the
beamformer outputs obtained when� = 0:8 and SNR is equal to four. The
broken lines indicate the time courses predicted from (22) or (23). (b) Results
of the experiment on time-course retrieval when� = 0:8 and SNR is equal
to four. Solid lines indicate retrieved time courses and broken lines indicate
original time courses assumed.

given in Table I. These results, however, are somewhat blurry as
a result of noise effects [30].

These contour maps clearly show that, compared with the in-
tensity of the third source, the intensities of the first and the
second sources are reduced according to their degree of corre-
lation. This intensity reduction is theoretically predicted in (25)
and (26), which indicate that the intensities of the reconstructed
sources are reduced by a factor of . Monte Carlo-type
experiments were performed to check whether this relationship
holds in nonidealistic situations such as when SNR is consid-
erably low. One hundred sets of simulated magnetic recordings
were generated with different noise realizations for ten different
values of . The mean intensity of the reconstructed first source
is plotted in Fig. 4. The SNR was set at four. The theoretical
trend is plotted with the broken line, and the error
bars show the range of2 standard deviations. In Fig. 4, al-
though a small discrepancy is observed whenapproaches one,
the broken line is generally overlapped with the plots from the
Monte Carlo experiments, indicating that the theoretical rela-
tionship holds well even at the low SNR situation.

According to the trend , the intensity reduction
is less than twenty percent, unless the correlation coefficient

exceeds 0.6, and 60% of the original source intensity is still
maintained when the correlation reaches 0.8. Therefore, as far
as the signal intensity reduction is concerned, no serious influ-
ences arise from sources with weak or medium degrees of cor-
relation . Even when sources are significantly cor-
related – , the beamformer can still reconstruct
such sources if their intensities are strong enough to overcome
the signal cancellation. The results in Fig. 3 demonstrated this
fact, i.e., there is no large difference between the reconstructed
sources when and .

C. Estimation of Cross-Correlation Coefficient

The correlation coefficient between the first and second
sources was estimated from (27) using beamformer outputs

and ; these outputs are obtained using (8) and
(11). To investigate the influence of noise on the accuracy of
the calculated correlation coefficient, we performed Monte
Carlo-type experiments in which 100 values of the correlation
coefficient between the first and second sources were calculated
using the 100 sets of simulated magnetic recordings generated
with different noise realizations. Such experiments were
repeated for five values of SNR, and the results are plotted in
Fig. 5 for of 0.5 and 0.8. In this figure, the error bars show the
range between 2 standard deviations. This plot shows that the
influence of the noise on the estimated correlation coefficient
is generally very small. The estimated correlation coefficient is
biased and the average of the estimates is slightly smaller than
the true value when SNR equals three. However, this bias is
very small and is less than 5% for the whole SNR range used
for the experiments.

D. Errors in Time-Course Estimate and Original Time Course
Retrieval

Reconstructed time courses of the three source activities are
shown in Fig. 6. The SNR was set at four in this experiment. The
results in Fig. 6(a)–(d), respectively, correspond to ,

, , and . The solid lines indicate the
beamformer outputs obtained from (8) and (11), and the broken
lines indicate the original time courses assumed in the numer-
ical experiments. When is small, original time courses can be
retrieved as beamformer outputs. However, asincreases, the
reconstructed time courses become distorted because of the in-
terference from the other correlated source. This distortion is
evident when and ; it is small but still dis-
cernible when .

These distorted beamformer outputs can be theoretically pre-
dicted from (22) and (23). The predicted beamformer outputs
and the actual outputs for are shown in Fig. 7(a). The
outputs predicted from (22) and (23) are shown by broken lines,
and the beamformer outputs are shown by solid lines. The solid
and broken lines are nearly perfectly overlapped, indicating that
(22) and (23) are valid even for an SNR as low as four. We next
performed a time-course retrieval experiment. In this experi-
ment, the true time courses were retrieved by using the beam-
former outputs and with (32). The results of
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Fig. 8. Results from the eigenspace-projection beamformer given by (9), (11), and (13). The same simulated recordings as used for obtaining the results in Fig. 6
were again used. Time course outputs for the three sources when SNR is equal to four and (a)� = 0:08, (b)� = 0:4, (c)� = 0:6, and (d)� = 0:8. Time courses
from the first to third sources are shown from top to bottom. The solid lines indicate the beamformer outputs and the broken lines indicate the originaltime courses
assumed.

this experiment are shown in Fig. 7(b). In this figure, the re-
trieved and true time courses are nearly perfectly overlapped, al-
though a small discrepancy exists between the two time courses
due probably to noise effects.

We also applied the eigenspace-projection beamformer to
the same data sets used for obtaining the results in Fig. 6.
The weight vector was obtained from (8) and (13), and the
reconstruction was performed by using (11). Reconstructed
time courses of the three source activities are shown in Fig. 8,
in which the results in (a)–(d) correspond respectively to

, , , and . These time courses
are, in principle, identical to those in Fig. 6, although the noise
was considerably reduced by the eigenspace projection [26].
The predicted beamformer outputs and the actual outputs for

are shown in Fig. 9(a), and the retrieved and true
time courses are shown in Fig. 9(b). In Fig. 9(a), the predicted
outputs are nearly perfectly overlapped with the actual outputs.
In Fig. 9(b), the retrieved and true time courses are overlapped.
These results confirm that the prediction using (22) and (23)

and the time-course retrieval using (32) are also effective for
the eigenspace-projection beamformer.

V. DISCUSSIONS

We have shown that when two sources are correlated, the
cross-correlation coefficient can be accurately estimated from
the beamformer outputs. However, if a third correlated source
exists, the accuracy of the estimated correlation coefficient is
affected by this source. This influence can be evaluated from
(31). When , this equation can be simplified as

(35)

where ( ) is the correlation of the target sources
(the first and second sources) with the interference source (the
third source). This equation is plotted for the three values of the
target correlation in Fig. 10. This figure shows that even
when an additional correlated source exists, the errors due to
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Fig. 9. (a) Predicted time courses and eigenspace-projection beamformer
outputs of the first and the second sources. Solid lines indicate the beamformer
outputs obtained when� = 0:8 and SNR is equal to four. Broken lines indicate
the time courses predicted from (22) and (23). (b) Results of the experiment
on time course retrieval when� = 0:8 and SNR is equal to four. Solid lines
indicate retrieved time courses and broken lines indicate original time courses.

Fig. 10. Effects of a third correlated source on the estimates of the target
correlation coefficient. Dotted, broken, and solid lines correspond to the
estimate when� = 0:8, � = 0:7, and� = 0:6, respectively.

this interference source are less than 10%, unlessexceeds
eighty percent of . Therefore, it is generally true that if the
correlation with the interference source is not as strong as the
correlation between the target sources, a reasonably accurate
target-source correlation coefficient can be obtained.

One may notice that, in Figs. 6 and 8, the output for the first
source has a time course that is very similar to . This
similarity can be explained as follows. The case of
is considered here. In this case, the time course of the first
source was derived from .
Since the coefficient of in (22) is equal to 0.53, the
output is expressed as

. This indicates that the beamformer recon-
struction coincidentally removed nearly all the compo-
nents and becomes very close to . On the other
hand, since the coefficient of is equal to 1.2, the
output of the second-source time course is equal to

. Therefore, output
is considerably distorted by the existence of the

component.
In our numerical experiments in Section IV, we used an SNR

of four to show that the results of our analysis in Section III,
which is based on a high-SNR assumption, are still valid for
low-SNR cases. In the following, we show that an SNR of four
is a reasonable assumption for simulating low-SNR situations.
As pointed out in Section II-A, noise with external origins such
as background brain activities is considered as a part of the sig-
nals in our analysis. Thus, the noise referred to here indicates
only that with internal origins such as noise from the probe coils,
SQUIDs, and the associated electronics. The level of such noises
in typical modern neuromagnetic instruments is known to be
generally less than 5 fT Hz [1], [31]. On the other hand, the
peak amplitude of a typical neuromagnetic signal is known to
be 50–500 fT [1]. A simple case, where the signal has a sinu-
soidal waveform with a peak amplitude of 200 fT, is consid-
ered here. The bandwith of the data acquisition is assumed to
be 200 Hz, so the SNR defined from the Frobenius norm is cal-
culated as . This SNR can be improved by
signal averaging for evoked neuromagnetic measurements with
a factor equal to the square-root of the number of averagings. It
can, therefore, be concluded that an SNR of four is almost equal
to the SNR of the evoked neuromagnetic measurements with a
very few number of averagings, and this SNR value represents
very low-SNR situations.

One influence of correlated sources that is not discussed in
this paper is the degradation of the spatial resolution. The spa-
tial resolution is degraded by the source correlation, but the
degradation is generally small when the sources have a weak or
medium degree of correlation, as demonstrated in Fig. 3. That
is, an image blur can be observed, but it is not significant in
Fig. 3(a)–(e) ( ). We are currently investigating the fac-
tors that determine the spatial resolution in the adaptive beam-
former neuromagnetic reconstruction. The results of these in-
vestigations, including the influence of the source correlation,
will be published in the near future.

In summary, we analyzed the effects of correlated sources on
the reconstruction results of MEG adaptive beamformer tech-
niques. Two major influences were found: signal-intensity re-
ductions and distortions in the time-course estimate. Our nu-
merical experiments showed that the theoretical relationship be-
tween signal intensity and source correlation holds in nonideal-
istic situations such as when SNR is considerably low. Indeed,
as far as the signal intensity is concerned, no serious influences
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arise from sources with weak or medium degrees of correlation
( ). However, distortion in time-course estimates is dis-
cernible even for such correlated sources. We also developed a
method of correcting the time-course distortion for two-source
correlation, and our numerical experiments demonstrate that the
distortion can be almost perfectly corrected.

APPENDIX I

This appendix shows the derivation of (16), which was orig-
inally derived by Zoltowski [27]. We define the matrix as

. Then, using (5), we get the relationship
. Therefore, when the SNR is so high that noise can be

neglected, the relationship holds, and we get

(36)

Here, indicates the pseudoinverse of defined as
. Regarding (36), we also assume that is non-

singular, and we use the fact that the transpose and the pseu-
doinverse operations are interchangeable. We apply the formula

, where is the vector that has all ele-
ments equal to zero except for theth element that is equal to
one. Using this formula and (36), we obtain

(37)

Note that this equation exactly holds when noise can be
neglected. Since , (37) is also valid for the
eigenspace-projection beamformer mentioned in Section II-D.

One vital assumption in the argument above is that of the
low-rank signal; i.e., the assumption that the number of signal
sources is less than the number of sensors. If this assump-
tion does not hold, is not equal to and (37) cannot be
derived. However, since the number of sensors in commercially
available neuromagnetometers has increased constantly over the
last ten years and the latest neuromagnetometers are equipped
with 200–300 sensor channels, the low-rank-signal assumption
should hold for most neuromagnetic measurements.

APPENDIX II

This appendix shows that the magnitude of the cross coher-
ence in the frequency domain can also be estimated using the
outputs from the frequency-domain beamformer implementa-
tion. We define the Fourier transform of the measurement vector

as a vector , where
is the Fourier spectrum of the th-channel recording .
We also define the Fourier transform of the source-activity
vector as where is
the Fourier spectrum of theth source magnitude . Let us
define the cross-spectrum matrix of the measured data as:

, where the superscript indicates the
Hermitian transpose. The estimated Fourier spectrum of the
source activity at , , is obtained as

(38)

where the weight vector is given by

(39)

When the first and second sources have a coherence value
at the frequency , we get the relationship

(40)

(41)

where is the power spectrum of theth source at . Then,
substituting (40) and (41) into

(42)

leads to

(43)

where is the estimated magnitude coherence. Equation (43)
indicates that the accurate estimate of the magnitude coherence
can be obtained by substituting the outputs of the beamformer
into (42). It should be noted that the analysis in this appendix
provides a theoretical validation of the method recently pro-
posed by Grosset al. [15].

APPENDIX III

This appendix presents the inverse of the source covariance
matrix in the case of a three-source correlation. We assume that
the first, second, and third sources are mutually correlated. The
correlation coefficients of these sources are denoted as, ,

(45)
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and . In the source-activity covariance matrix , the sub-
matrix related to the three correlated sources is denoted as.
This matrix is expressed as

(44)

Its inverse is expressed as shown in (45) at the bottom of the
previous page, where indicates the determinant of and
is given by

(46)
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