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Performance of an MEG Adaptive-Beamformer
Technique In the Presence of Correlated Neural
Activities: Effects on Signal Intensity and
Time-Course Estimates

Kensuke Sekihara Srikantan S. Nagarajan, David Poeppel, and Alec Marantz

Abstract—The influence of temporarily correlated source developed. Among such algorithms, a class of techniques called
activities on neuromagnetic reconstruction by adaptive beam- an adaptive beamformer have attracted great interest recently.
former techniques was investigated. It is known that the spatial Adaptive-beamformer techniques were originally developed
filter weight of an adaptive beamformer cannot perfectly block . . . . . .
correlated signals. This causes two major influences on the in the f_'eld_s of array _S'gnal pr'ocesslng., including radar, S_Onar'
reconstruction results: time course distortions and reductions and seismic exploration [3]. Since first introduced by Robinson
in reconstructed signal intensities. Our theoretical analysis and et al. [4], they have been successfully applied to neuromag-
numerical experiments both showed that the reduction in signal netic source reconstruction problems [5]-[9]. The details of
intensity for sources with a medium degree of correlation is small. adaptive beamformer techniques, as well as their comparison

The time-course distortion for such sources, however, may be dis- to least based truction techni h
cernible. Our analysis also showed that the magnitude correlation 0 least-squares-based source-reconstruction techniques suc

coefficient between two correlated sources can be accurately esti-as the minimum-norm method [10], are given in [11].
mated by using the beamformer outputs. A method of retrieving  Adaptive-beamformer techniques, however, require an im-
the original time courses using estimated correlation coefficients j;-it assumption that the time courses of the source activities
was developed. Our numerical experiments demonstrated that o o
reasonably accurate time courses can be retrieved from consider- are orthogonal to each other, i.e., all Squrce activities are Com-
ably distorted time courses even when the signal-to-noise ratio is pletely uncorrelated [12]. This assumption may not necessarily
low. hold in regard to neuromagnetic measurements. In general, cor-
Index Terms—Adaptive beamformer, biomagnetism, functional tical and subcortical activities are supposed to be more or less
neuroimaging, magnetoencephalographic (MEG) inverse prob- partially correlated. Indeed, this correlation itself has become an
lems, magnetoencephalography, neuromagnetic signal processing active research target [13]-[15] because the correlation between
the neural activities is considered to represent some sort of func-
tional connectivity between different regions in the brain [16].
Therefore, when applying adaptive-beamformer techniques, we
HE goal of neuromagnetic imaging is to visualize neurghould be aware of how robust they are to the source correlation,
activities at a fine time resolution in the order of mil-and what kind of influences arise when they are used to recon-
liseconds, and to provide functional information about braigtruct correlated sources.
dynamics [1], [2]. Toward this goal, a number of algorithms This paper attempts to answer these questions. It is known
for reconstructing spatio-temporal source activities fronmat the weight vector of adaptive beamformers cannot perfectly
magnetoencephalographic (MEG) measurements have bpitk correlated signals. This causes two major influences on
the source-reconstruction results: distortion in time-course es-
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Il. ADAPTIVE-BEAMFORMER TECHNIQUES FOR The measurement covariance matrix is denoteR@asvhich is
NEUROMEGNETICRECONSTRUCTION obtained fromR;, = (b(t)b” (t)), where(.) indicates the en-
A. Definitions semble average, which is replaced with the time average over a

certain time window in practice. It should be noted that when

We define the magnetic field measured by theth (1)) is not equal to zera, is not equal to the covariance ma-
detector coil at timet as b,,(t), and a column Vector iy and should rather be referred to as the second-order moment
b(t) = [ba(t), b2(t), ..., bar(t)]" as a set of measured datamatrix in such a case. However, according to conventiyis
where M is the total number of detector coils and superscripgferred to as a covariance matrix in this paper. The covariance
T indicates the matrix transpose. The spatial location is rep&xtrix of the source-moment activity is defined hereRasi.e.,
sented by a three-dimensional (3-D) veciotr = (z, y, z). R, = (s(t)sT(t)).
A total of @ discrete sources are assumed to generate thejsing (3) and assuming that the noisie) and the source ac-
neuromagnetic field. These discrete sources are modeled Ufti{)@y s(t) are uncorrelated, we get the relationship between the

the equivalent current dipoles [17]. The number of sour@es measurement covariance matrix and the source-activity covari-
is assumed to be less than the number of senkbrse., the znce matrix such that

measured neuromagnetic signal is assumed to be a low-rank o
signal [18], [19]. The locations of these sources are denoted as R, = LCRSLCT + 0T (5)
T1, T2, ..., T. The moment magnitude of thgh source at

time ¢t is denoted as(r,, ¢), and the source magnitude vecto ) : . : . : . :
is defined as(t) = [s(r1, 1), s(r2, 1) s(ro, 1" Gaussian noise with a variancesdfandl is the identity matrix.
The orientation of théth sourcé is defihed asa3-D cqumnThgjth e|genvglu:e andlthe eigenvectorof are _dgfmed anf |
vectorn(r.. 1) — o 1), mo(r. 1) m. (.. )T whose¢  ande;, respectively. Unless some source activities are perfectly
compoz’](erzt/ (\)/vhere[jnzsqgéls)a; 77;( c;lr z)i/nn'erisq’pa)g)er) is eanI correlated with each other, the rank®f is equal to the number
to the cosine of the angle between the direction of the sou&fesourcisg' ;’ he(rje]\;)re, ac_:cordlnlg to (SR, T;?SQFelglenvalues
moment and thé direction. We assume that the orientation Oghreatert_ a}g ‘T’md f_—(:)jelggnva_ues equalto . T%r atelruse,
each source is time independent. Omitting time notatiome the matrixEs Is defined asts __[el’ _eQ]' € column
define a3Q x ) matrix that expresses the orientations ofall span ofEs is the maximume-likelihood estimate of the signal

sources a¥ such that subspace oft; [20]. . . .
It should be pointed out that, in (5), interference magnetic

yvhere the noise in the measured data is assumed to be the white

7(r1) 0 e 0 fields originated from external noise sources such as brain back-
0 . ground activities can be considered as a part of signals, and their
P — n(ra) : ) influence can be accounted for in the first term of the right-hand

side of this equation. The noise here indicates only noises with
internal origins, such as those originated from the sensor coils,
0 e 0 n(rq) the superconducting quamtum interference devices (SQUIDS),
and their associated electronics. Therefore, the assumption of
spatially uncorrelated white Gaussian noise is acceptable for de-
riving (5).

0

We definel$, (r) as the output of thenth sensor; the output
is induced by the unit-magnitude source locatea aind di-
rected in the; direction. The column vectdg (r) is defined as
I(r) = [I5(r), I5(r), ..., 15,(r)]". Next, the lead field matrix, 5 s.a1ar Minimum-Variance Beamformer

which represents the sensitivity of the whole sensor array at
is defined adi(r) = [L.(r), I, (r), L.(r)]. The lead-field vector ~ TO estimate the source moment, we have focused on the class

in the source-moment direction is defined, for later usd(is Of techniques referred to as the adaptive beamformer [21]. This
wherel(r) = L(r)n(r). The composite lead field matrix for thetype of technique uses the following spatial-filter operation for

entire set ofQ sources is defined as estimating the source moment:
L. = [L(ry), L(r2), ..., L(rQ)]. 1) i(r, t) = w” (r)b(2) (6)

The relationship betweehit) ands(t) is then expressed as where 3(r, t) is the source-moment time course obtained as
b(t) = (L ®)s(t) +n(t) @) _the bear_nf_ormer ou_tput. Or_1e ngl—known adaptive beamf_ormer

R is the minimum-variance distortion-less beamformer originally

wheren(t) is the additive noise. Defining. asL. = L. %, this developed in the field of array signal processing [22]. This

relationship is rewritten as technique derives the weight vectas(r) by minimizing
_F w” (r)Ryw(r) under the constraint of’ (r)w(r) = 1. The
b(#) = Les(t) +nl(?) ) explicit form of the weight vector for the minimum-variance
where beamformer is known to be
L. =[L(r1)n(r1), L(ra)n(rs), .. ., L(rq)n(rq)] _ Rz,_ll(T)
w(r) = — — . @)
=[l(r), U(r2), ..., l(rg)] 4) ()R, I(r)

The matrixL. is the composite lead field matrix whose colummote that to use this formula, the source orientatign) is
is equal to the lead field vector in the source-moment directiomeeded to calculatér). However,n(r) is generally unknown,



1536 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 49, NO. 12, DECEMBER 2002

although several techniques have been developed to estimate it [ll. BEAMFORMER PERFORMANCE WHEN
[12], [23]. SOURCES ARECORRELATED

C. Vector Minimum-Variance Beamformer Formulation A. Signal Leakage and Errors in Time-Course Estimate

A vector-type beamformer uses a set of three weight vef%-r-:::; Yge'gggair\:ggtogy f?rﬁin??n?zirglnlrr?:n:)_l:/%rﬁn;iwg?e'am_
tors,w,(r), wy(r), andw.(r), each of which estimates the ="~ W (r)Ryw(r) under the constrainks” (r)l(r) — 1,

y, andz components of the source moment, thus enabling t% N - . -
source orientation as well as the source-moment magnitudei §aetir10;he ber?emflce):::rtrilr?r ptz'gt':giézc?gﬁf fr?eua(l)ltft) tSte S(c))\tjvg:reis
be estimated. A set of weight vectors for a vector-extended m'r%w rittenrg's 9 9 ' put p
imum-variance beamformer is given by [24], [25]

2
[wa(r), wy(r), w(r)] = R L(r)[L (R, L(r)] ™" (8)  p= <

Q
"”T("'p> Z U(rq)s(rq, t)

Using these weight vectors, the iy, andz components of the 0 =t
source moment are given by . Z <3(T f)2> T (r)i(r)|2
- qr 7 p q
[32(r, 1), 3y (7. 1), 52(r, )] = [wg (r), wy (7). wf(r)]TbEt)) =1
9 = (s(rp, 1)) + ) (s(rq, 1)) 0" (rp)l(ry) > (14)
wheres.(r, t) is the estimated source moment in theirec- < : > (§)< ! > pe

tion. The estimate of the source-moment orientation is denoteﬂ dtob lated with h oth
as[i, A, 7], which can be extracted from (9) such that where sources are assumed to be uncorrelated with each other,

and the relationship™ (r,)I(r,) = 1 is used. Thus, the weight
1" = [wl(r), w] (r), wl (r)]"b(t) vector obtained by minimizing® should have the property that
/|| w? (), w” (1), w? (#)]7b(t)]| . (10) w” (r,)l(r,) = 0 wherep # ¢. That is, the resultant weight
e Ty A should only pass the signal from, and block the signal from
The magnitude of the source moment is estimated from other sources, and the blocking capability of the beamformer
weight is expressed as

"”T("'p)l("'q) =bp,q (15)
wherewy (r) = [f,w,(r) + Hywy(r) + J.w.(r)]. It can be . _
seen that the composite weight vectoy (r) is equivalent to Whereé, , is the Kronecker delta defined a5, = 1 (p = ¢)
the weight vector for the scalar beamformer) in (7). Inthe andé, 4 = 0 (p # q).

following analysis, we use(r) for simplicity, but the results of In general cases where partially correlated sources exist, how-
the analysis are also valid fary (r). ever, the blocking capability of the weight vector is expressed

in the following equation:

[ﬁxv ﬁy ﬁz

5(r, t) = wy ()b(t) (11)

D. Eigenspace-Projected Beamformer -1
. . . T l - M (16)
The minimum-variance beamformer is known to be very w’ (rp)l(ry) = [R-1]

s 1pp

sensitive to errors in the forward modeling or errors in es-
timating the measurement covariance matrix. In the case wfiere[R; '], indicates thep, ¢) element ofR; . This equa-
neuromagnetic measurements, since such errors are alntiost, first derived by Zoltowski [27], is the basis of our analysis.
inevitable, the minimum-variance beamformer generallys derivation is described in Appendix | and, as shown in this
provides noisy results. The eigenspace-projection beamforrderivation, (16) exactly holds when the SNR is so high that noise
provides an output signal-to-noise ratio (SNR) much highean be neglected. We assume that the target source exists at
than that of the minimum-variance beamformer when suemnd that the); sources are correlated with the target source.
errors mentioned above exist [26]. The extension of tH@& total of Q; + 1 sources are mutually correlated). The beam-
minimum-variance beamformer to the eigenspace-projectit@rmer output at,,, 5(rp, t), is expressed as

beamformer is attained by projecting the weight vector of the

Q1 —1
P _ . . R
minimum-variance b'eamforme.r onto the signal 'sgbspace of the §(ry, t) = s(rp, t) + Z [ il]m s(rq, 1) 17)
measurement covariance matrix. That is, redefining the weight po (R, pp
vector obtained from (7) a@®™), the eigenspace-projection _ .
beamformer is given by [26] where the locations of the correlated interferences are denoted
asry, (g = 1, ..., Q). This equation shows that the beam-
w(r) = EsELw®™Y)(r) (12) former outputs for the correlated sources contain leakage from

the other correlated sources, and such leakage causes errors in

or(&%()jefirm% th((am\/{\)/eight vectors obtained from (8) 3¢ time-course estimates of the source activities.
[we™ " wy "7, w277, the  vector-extended  eigenspace \ye consider a case where, amapgources, the first and the
beamformer is given by [7] second sources are significantly correlated and the other sources
have no significant correlation with any other sources. We de-
[wa(r), wy(r), w-(r)] . gnitics - y Ofhe
fine the correlation coefficient between the first and the second

= EsEg [w.g:MV) (), wi(r), wM(r )} - (13) sources ag, and the average power of thjéh source as:?,
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NUMERICAL EXPERIMENTS IN SECTION IV sensor array

TABLE | L::
SOURCE PARAMETER VALUES USED FOR THE \ \O oo ® 0, é
B

B gy S o
source number location (cm) orientation
1 (1.0, 1.0, —=6.0) (1.0, 0., 0.) = 0 - second source
2 (1.0, 1.0, —6.0) (0.7, 0.7, 0.) N
3 (1.0, 1.6, —7.2) (0, 0.7, 0.7) 15 BN e e
third source
wherea? = (s(r;, t)%). The source covariance matrix and its 20k /-
inverse can be expressed asin (18) and (19), shown at the bottom / -5 0 5
of the page. - (cm)
: . first source y
Using (16) and (19), we can derive
o1 Fig. 1. The coordinate system and source-detector configuration used in
’w("‘l)l("‘l) =1 'w('rl)l('r2) =——NW the numerical experiments. The coordinate origin was set at the center of the
a2 detector coil located at the center of the coil array. The plane &t 1.0 cm
a9 is shown. The large circle shows the cross section of the sphere used for the
w(ry)l(r2) = _Ol_1 po w(rz)l(ry) =1 (20)  forward calculation.
and
TABLE 1
w(r)l(r;) =0 w(r)l(r;) =0 VALUES OF THE PARAMETERS USED FOR
. CALCULATING w (), wa(t), AND w3 (t
forj=3,...,Q. (21) (). (1), AND s )
Thergfore, v_vhen the beamf_ormer is pointing at the first source w;(t) (ms) Q (ms) t (ms) f (1/ms) to (ms)
locationry, it passes the signal from the second source with )
the multiplicative constant of a1 11/ a2, although it blocks the Jj=1 678 219 0009 139
signals from the other sources uncorrelated with the first source. j=2 105.3 246 0.0158 123

Consequently, the beamformer outputats(ry, t), is given by

st ) =stri 0= () stm0. @2)

In exactly the same manner, the beamformer outputsat
5(re, t), is given by
Q2

§(ro, t) = s(ra, t) — ( : u) s(r1, 1). (23)

These equations explicitly show that the beamformer output foPtimation
the first source contains the leakage from the second source an@lhe leakage from correlated activities not only causes errors
that the output for the second source contains the leakage frionthe time-course estimate but also causes intensity reduction

j=3 - - 0.0228 100

the first source. Equations (22) and (23) are valid for high SNR,
but they still hold for considerably low SNR, as is shown in our
numerical experiments.

a B. Signal-Intensity Reduction and Correlation-Coefficient

_ |: a% ua12(12:| N . -
jriese%] sy
R, = 0 ad - (18)
0
2
i 0 e 0 o)
and )
i 1 « — o e T
v 2 , 0O --- 0
atas(l = p?) | —pogas o
R ' = 0 1/a} - C . (19)
0
2
L 0 0 1/aQ_
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This equation indicates that the magnitude correlation co-
efficient can be accurately estimated by substituting the
beamformer outputs into (27). Appendix Il shows that the
magnitude of the cross coherence in the frequency domain
can also be correctly estimated by using the outputs from the
frequency-domain beamformer.

If a third correlated source exists, the accuracy of the esti-
mated correlation coefficient should be affected by this source.
This influence can be evaluated in the following manner. We as-
sume that the first, second, and third sources are mutually corre-
lated, and their correlation coefficients are denoted@s;:13,
anduo3. We further assume that the correlation between the first
and second sources is the target of the measurement and the third

0r source is an interference. According to (17), the beamformer
outputs at the target source locations are
. 1 _ _
0 100 200 300 400 5(ry ) == { [R50, ) + [BJT] |, s(ra, )
(a) latency (ms) [RS ]11 -
+ [R5, 1)} (29)
and
. 1 = _ =_
3(ra, ) = o { (R oy slr, )+ [R50, 0
[R<],,

+ [R;l]B s(rs, t)} (30)

normalized

wherers is the location of the third source, aid] is the source-
covariance submatrix related to the correlated three sources.
(This R, is presented in Appendix 111.)

latency (ms) Using (27), (29), (30), and (45), we finally obtain

(b)

. . . '[L12 = 2 2 .
Fig. 2. (a) Time coursesn (), w,(t), andws(t) used for the numerical \/(1 — u33)(1 — p3s)
experiments. The top panel represemntgt), the middle one.(t), and the ) )
bottom onejus (t). Each time course is normalized by its maximum value. Th@ his equation shows how the values;af andy»3 affectiis.

|M12 - u13lt23|

(1)

broken line in the top panel indicates time courgé?), which is obtained from Clearly. whe andus-= are smalliis is close to
wi(t) = (1 — Hw(t) + Lwo(t) with &€ = 0.5. The correlation coefficient Y MYi13 H23 12 |M12|'

betweenw/ (t) andw»(t), p, is 0.8 in this case. (b) Examples of the simulated . e .
magnetic-field recordings when SNR is equal to four &nd 0. C. Retrieval of Original Time Courses

. o ) _As discussed in the preceding sections, the beamformer
in the reconstructed source activities. Using (22) and (23) wigtputs(r;, t) contains not only the target source activities but

the relationshigs(r1, t)s(r2, t)) = paias, we get also the activities correlated with the target sources. However,
(3(r1, 1)3(ra, 1)) = araa(i® — 1) (24) i~fwe know thg amount of correlat(_ed interference contain_ed in
5(r;, t), the original target-source time courses can be retrieved
(3(ry, £)*) =3 (1 — 1) (25) by inverting (22) and (23), i.e.,
and . -1 =
5(r1, t) 1 —(a1/a)p 5(rq, t)
3(ry, 1)) =a2(1 — 4?). 26 [A }:[ } [~ ]
(3(ra, £)7) =as(t = 4) (26) 5(ra, t) —(aa/an)p 1 5(ra, t)
Equations (25) and (26) indicate that the power of the recon- (32)

structed sources is reduced by a factor ef?. This reduction

of source power has been known as the signal cancellationRere s(r;, t) is the retrieved time course of theh source

the field of the array signal processing [28], [29]. wherej = 1 and2. In the right-hand side of the aforemen-
We define the magnitude correlation coefficient between tiened equationy can be estimated from (28), and anda,

first and the second sources calculated from the beamforn§@f be obtained from? = (3(r1, t)*)/(1 — p?) andaj =

outputj as (3(r2, 1)%)/(1 = p?).

oo Ny D3rs )]
V(5(r1, 1)2) (3(r2, 1)?)
Substituting (24)—(26) into (27), we finally obtain

(27) IV. NUMERICAL EXPERIMENTS

A. Data Generation

s A series of numerical experiments were conducted to verify
i = |0‘1042(M - M)| = |yl (28) the validity of the arguments presented in Section IIl. In par-
Va1 — p2)a3(1 — p?) ' ticular, we have shown that the arguments still hold even for
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— | T

z (cm)

(d) y (cm) (e) y (cm)

Fig. 3. Magnitude-squared average reconstruo{yﬁ' A(r, t)2) obtained by using the minimum-variance beamformer in (8) and (11). SNR is equal to 16=(a)
0.08.B)r =0.5.(c)p =0.6. (d)pe = 0.7. (e)pe = 0.8. (f) x = 0.95. e is the cross-correlation coefficient between the first and second sources.

12 r " T - 0.9 :
1 Foo g 0.8 .
I . - = pan
2 i 5
E 0.8 \I\\ é 0.7
£ X 8
2 =
g o6 g 206f
£ N 3
\ o
. :
0.4r . 0.5 Tr t T 3 =
&
0.2 s . . . ' . . .
0 0.2 0.4 0.6 0.8 1 0.4 4 8 12 16
correlation coefficient: p SNR

Fig. 4. Intensity of the first source with respect to the correlation between tRgg. 5. Estimated correlation coefficient between the first and second

first and second sources. The broken line indicates the theoretical relationgtoprces. Monte Carlo-type simulations, which generated 100 sets of magnetic

/1 —p2. In these Monte Carlo simulations, the mean intensity of the firsecordings, were performed and the average valueg fifr five SNRs are

source was calculated from 100 generated data sets. The error bars indicateltiteed. The error bar shows tHe2 standard deviations. The experiments were

range of+2 standard deviations. The SNR was set to four. repeated fop: = 0.8 andy = 0.5. The broken horizontal lines show the true
values of the correlation coefficient.

low-SNR cases, although the arguments are based on the as-

sumption that noise can be neglected. A sensor alignment of the= 1.0. [The values of the spatial coordinates y, z) are ex-
37-sensor array from Magriemeuromagnetometer was usedressed in centimeters.] The locations as well as the orientations
in which the sensor coils are arranged in a uniform, concentaéthe sources are listed in Table I. The source-sensor configu-
array on a spherical surface with a radius of 12.2 cm. The seation and the coordinate system are illustrated in Fig. 1.

sors are first-order axial gradiometers with a baseline of 5 cm.First, three time courses; (t), w»(t), andws(t) were calcu-
The coordinate origin was set at the center of the detector dailed by using

located at the center of the coil array. Thalirection was de-

fined as that from the posterior to the anterior, anduthtirec- wj(t) = exp [(t — t1)* /%] sin[27 f(t — to)]

tion was defined as that from the right to the left hemispheres. forj=1,2 (33)
Three point sources were assumed to exist on a plane defined g$

14D Neuroimaging Inc., San Diego, CA ws(t) = sin[2w f(t — tg)] (34)
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0 100 200 300 400 0 100 200 300

0 100 200 300 400 0 100 200 300 400
(C) latency (ms) (d) latency (ms)

Fig. 6. Time-course outputs obtained by using the minimum-variance beamformer for the three sources when SNR is equal to feurdhf&ajb) u = 0.4,
(c)r = 0.6, and (d)r = 0.8. Time courses from the first to third sources are shown from top to bottom. The solid lines indicate the beamformer outputs and the
broken lines indicate the original time courses.

where, t1, f, andt, are the numerical parameters controldefined as the ratio of the Frobenius norm of the signal-mag-
ling the shapes of the time courses. The values of these patic-field data matrix to that of the noise matrix, i.e., the ratio
rameters used in these experiments are listed in Table II. T"@ﬁ\/(||ch(t)||2)/(||n(t)||2). As we explained in Section V,
courses; (t), wy(t), andw(t), are shown by the solid lines in the 'SNR of four represents a very poor SNR situation.

Fig. 2(a). The correlation coefficients of these three time courses

are 8 x 102 betweemu; (t) andws(t), 2 x 10~* between

w1 (t) andws(t), and 4x 10~% betweenws(t) andws(t). A B. Signal-Cancellation Experiments

modified time coursev](¢) was obtained fromw/(t) = (1 —

&wn (t) + Ewo(t), where parametércontrols the degree of the  We generated six data sets with the correlation coefficients
correlation betweem/ (t) andws(t). The time coursev;(t) between the first and second sourgesef 0.08, 0.5, 0.6, 0.7,
when¢ = 0.5 is shown by the broken line in Fig. 2(a). The0.8, and 0.95. The SNR was set at 16. The weight vectors for
correlation coefficient between’ (¢) andw,(t) is 0.8 in this detecting ther, y, andz components were obtained from (8),
case. The simulated magnetic recordings were calculated byasd the 3-D reconstruction was performed by using (11). The
signingw’ (t), wa(t), andws(t) to the first, second, and third reconstruction region included the three sources and an area de-
sources, respectively. finedby—2 < y < 2and-8 < z < =5 on planex = 1;

The magnetic-field recordings were calculated at 1-nibis area is displayed in Fig. 3. The interval between the recon-
intervals from zero to 400 ms by using the spherically hatruction grids was 0.1 cm. The results of magnitude-squared
mogeneous conductor [17] with its center se{&t0, —11). average reconstruction for the six valuesucdre shown in the
White Gaussian noise was then added to the simulated fisid contour maps in Fig. 3, where each contour line represents a
recordings. The simulated recordings with an SNR of four amdlative value of the source magnitugéé(r, t)2). The recon-
with ¢ set at zero are shown in Fig. 2(b). Here, the SNR #&ruction results contain three localized sources at the locations
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exceeds 0.6, and 60% of the original source intensity is still
maintained when the correlation reaches 0.8. Therefore, as far
as the signal intensity reduction is concerned, no serious influ-
ences arise from sources with weak or medium degrees of cor-
relation (1 < 0.6). Even when sources are significantly cor-
related(p ~ 0.7-0.8), the beamformer can still reconstruct
such sources if their intensities are strong enough to overcome
the signal cancellation. The results in Fig. 3 demonstrated this
fact, i.e., there is no large difference between the reconstructed
sources whep, = 0 andy = 0.6.

0 100 200 300 400
(a) latency (ms) C. Estimation of Cross-Correlation Coefficient

The correlation coefficient between the first and second
sources was estimated from (27) using beamformer outputs
5(r1, t) ands(rq, t); these outputs are obtained using (8) and
(112). To investigate the influence of noise on the accuracy of
the calculated correlation coefficient, we performed Monte
Carlo-type experiments in which 100 values of the correlation
coefficient between the first and second sources were calculated
using the 100 sets of simulated magnetic recordings generated
with different noise realizations. Such experiments were
repeated for five values of SNR, and the results are plotted in
Fig. 5 foru of 0.5 and 0.8. In this figure, the error bars show the
. . - range betweer:2 standard deviations. This plot shows that the

0 100 200 300 400 influence of the noise on the estimated correlation coefficient

(b) latency (ms) is generally very small. The estimated correlation coefficient is
biased and the average of the estimates is slightly smaller than

Fig. 7. (a) Predicted time courses and the minimum-variance beamfor the true value V-Vhen SNR equals three. However, this bias is
outbufs of the first and the second sources. The solid lines indicate rgféry small and is less than 5% for the whole SNR range used

beamformer outputs obtained when= 0.8 and SNR is equal to four. The for the experiments.
broken lines indicate the time courses predicted from (22) or (23). (b) Results

of the experiment on time-course retrieval when= 0.8 and SNR is equal
to four. Solid lines indicate retrieved time courses and broken lines indic
original time courses assumed.

4 Errors in Time-Course Estimate and Original Time Course
Retrieval

given in Table I. These results, however, are somewhat blurry afReconstructed time courses of the three source activities are
a result of noise effects [30]. shownin Fig. 6. The SNR was set at four in this experiment. The
These contour maps clearly show that, compared with the figsults in Fig. 6(a)—(d), respectively, correspongite= 0.08,
tensity of the third source, the intensities of the first and the = 0.4, 4 = 0.6, andp = 0.8. The solid lines indicate the
second sources are reduced according to their degree of cop@amformer outputs obtained from (8) and (11), and the broken
lation. This intensity reduction is theoretically predicted in (29jnes indicate the original time courses assumed in the numer-
and (26), which indicate that the intensities of the reconstructis@l experiments. When is small, original time courses can be
sources are reduced byafactogé(l — 112). Monte Carlo-type retrieved as beamformer outputs. Howeverudscreases, the
experiments were performed to check whether this relationstigeonstructed time courses become distorted because of the in-
holds in nonidealistic situations such as when SNR is consigrference from the other correlated source. This distortion is
erably low. One hundred sets of simulated magnetic recordirg)ddent whery, = 0.6 andp = 0.8; it is small but still dis-
were generated with different noise realizations for ten differeg@rnible whery = 0.4.
values ofu. The mean intensity of the reconstructed first source These distorted beamformer outputs can be theoretically pre-
is plotted in Fig. 4. The SNR was set at four. The theoreticdlcted from (22) and (23). The predicted beamformer outputs
trend /(1 — p?) is plotted with the broken line, and the errormnd the actual outputs far = 0.8 are shown in Fig. 7(a). The
bars show the range af2 standard deviations. In Fig. 4, al-outputs predicted from (22) and (23) are shown by broken lines,
though a small discrepancy is observed whapproaches one, and the beamformer outputs are shown by solid lines. The solid
the broken line is generally overlapped with the plots from thend broken lines are nearly perfectly overlapped, indicating that
Monte Carlo experiments, indicating that the theoretical relg22) and (23) are valid even for an SNR as low as four. We next
tionship holds well even at the low SNR situation. performed a time-course retrieval experiment. In this experi-
According to the trend\/(1 — p?), the intensity reduction ment, the true time courses were retrieved by using the beam-
is less than twenty percent, unless the correlation coefficifbtmer outputsi(ry, t) and 3(rs, ¢) with (32). The results of
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0 100 200 300 400 0 (b) 100 200 300 400

0 100 200 300 400 0 d 100 200 300 400
(C) latency (ms) ( ) latency (ms)

Fig. 8. Results from the eigenspace-projection beamformer given by (9), (11), and (13). The same simulated recordings as used for obtaingnig ffig.résul
were again used. Time course outputs for the three sources when SNR is equal to fougaad)(@g, (b) 1« = 0.4, (c)x = 0.6, and (d)x = 0.8. Time courses
from the first to third sources are shown from top to bottom. The solid lines indicate the beamformer outputs and the broken lines indicate tire@dginakes

assumed.

this experiment are shown in Fig. 7(b). In this figure, the reand the time-course retrieval using (32) are also effective for
trieved and true time courses are nearly perfectly overlapped,thle eigenspace-projection beamformer.

though a small discrepancy exists between the two time courses

due probably to noise effects. V. DISCUSSIONS

We also applied the elgenspace-projection beamf_orm_e ' tc\Ne have shown that when two sources are correlated, the
the same data sets used for obtaining the results in Fig. 6

The weight vector was obtained from (8) and (13), and tI}cﬁross—correlatlon coefficient can be accurately estimated from

. . beamformer outputs. However, if a third correlated source
reconstruction was performed by using (11). Reconstructeq: . ) L .
. . L ists, the accuracy of the estimated correlation coefficient is
time courses of the three source activities are shown in Fig.

aifected by this source. This influence can be evaluated from

in which the results in (a)-(d) correspond respectively t . . S
p=0.08, =04, p=006,andy = 0.8. These time courses (31). Whenyiys ~ 123, this equation can be simplified as

are, in principle, identical to those in Fig. 6, although the noise } 12 — 13|

was considerably reduced by the eigenspace projection [26]. Hi2 = m (35)

The predicted beamformer outputs and the actual outputs for

u = 0.8 are shown in Fig. 9(a), and the retrieved and trueherep; (=13 = po3) is the correlation of the target sources
time courses are shown in Fig. 9(b). In Fig. 9(a), the predictéthe first and second sources) with the interference source (the
outputs are nearly perfectly overlapped with the actual outputkird source). This equation is plotted for the three values of the
In Fig. 9(b), the retrieved and true time courses are overlappéatget correlationu,» in Fig. 10. This figure shows that even
These results confirm that the prediction using (22) and (28hen an additional correlated source exists, the errors due to
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One may notice that, in Figs. 6 and 8, the output for the first
source has a time course that is very similarut(t). This
similarity can be explained as follows. The caseuot= 0.8
is considered here. In this case, the time course of the first
sourcew (t) was derived fromw (t) = 0.5w1(¢) + 0.5wa(t).
Since the coefficient ofay /a2) i in (22) is equal to 0.53, the
outputs(ry, t) is expressed &gry, t) o< wi(t) —0.53ws(t) =
w1 (t) — 0.03ws(t). This indicates that the beamformer recon-
struction coincidentally removed nearly all the(¢) compo-
nents and(r, t) becomes very close to,(¢). On the other
hand, since the coefficient dixs/a1)u is equal to 1.2, the

0 100 200 300 400 output of the second-source time course is equal#g, )
(a) latency (ms) wy(t) — 1.2w)(t) = 0.6ws(t) + 0.4w,(t). Therefore, output
3(r9, t) is considerably distorted by the existence of thét)
component.

In our numerical experiments in Section IV, we used an SNR
of four to show that the results of our analysis in Section lll,
which is based on a high-SNR assumption, are still valid for
low-SNR cases. In the following, we show that an SNR of four
is a reasonable assumption for simulating low-SNR situations.
As pointed out in Section 1l-A, noise with external origins such
as background brain activities is considered as a part of the sig-
nals in our analysis. Thus, the noise referred to here indicates
only that with internal origins such as noise from the probe coils,
SQUIDs, and the associated electronics. The level of such noises

0 160 260 360 400 in typical modern neuromagnetic instruments is known to be
(b) latency (ms) generally less than 5 ffi/Hz [1], [31]. On the other hand, the

peak amplitude of a typical neuromagnetic signal is known to
Fig. 9. (a) Predicted time courses and eigenspace-projection beamfornqgt 50-500 fT [1]. A simple case, where the signal has a SI_hu-
outputs of the first and the second sources. Solid lines indicate the beamfor§@tdal waveform with a peak amplitude of 200 fT, is consid-
outputs obtained whem = 0.8 and SNR is equal to four. Broken lines indicateered here. The bandwith of the data acquisition is assumed to

the time courses predicted from (22) and (23). (b) Results of the experim . ; ; _
on time course retrieval whem = 0.8 and SNR is equal to four. Solid lines % 200 Hz, so the SNR defined from the Frobenius norm is cal

indicate retrieved time courses and broken lines indicate original time courséllated a00/50/1/2 x 2 = 2. This SNR can be improved by
signal averaging for evoked neuromagnetic measurements with
0.9 , . , ‘ , a factor equal to the square-root of the number of averagings. It
can, therefore, be concluded that an SNR of four is almost equal
to the SNR of the evoked neuromagnetic measurements with a
very few number of averagings, and this SNR value represents
very low-SNR situations.

One influence of correlated sources that is not discussed in
this paper is the degradation of the spatial resolution. The spa-
tial resolution is degraded by the source correlation, but the
degradation is generally small when the sources have a weak or
medium degree of correlation, as demonstrated in Fig. 3. That
is, an image blur can be observed, but it is not significant in
Fig. 3(a)—(e) { < 0.8). We are currently investigating the fac-

0 o1 02 0.3 04 0.5 0.6 tors that determine the spatial resolution in the adaptive beam-
correlation with third source: 1 former neuromagnetic reconstruction. The results of these in-
vestigations, including the influence of the source correlation,
Fig. 10. Effects of a third correlated source on the estimates of the tard¥lll D€ published in the near future.
correlation coefficient. Dotted, broken, and solid lines correspond to the In summary, we analyzed the effects of correlated sources on
estimate whem = 0.8, 1 = 0.7, andu = 0.6, respectively. the reconstruction results of MEG adaptive beamformer tech-
nigues. Two major influences were found: signal-intensity re-
this interference source are less than 10%, unlgsexceeds ductions and distortions in the time-course estimate. Our nu-
eighty percent ofs12. Therefore, it is generally true that if themerical experiments showed that the theoretical relationship be-
correlation with the interference source is not as strong as tieen signal intensity and source correlation holds in nonideal-
correlation between the target sources, a reasonably accuistie situations such as when SNR is considerably low. Indeed,
target-source correlation coefficient can be obtained. as far as the signal intensity is concerned, no serious influences

o
oo

e
9

o
=)

e
w

estimated correlation coefficient
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arise from sources with weak or medium degrees of correlatibft) as a vectoB(f) = [B1(f), ..., Bu(f)]T, whereg,,(f)
(1 < 0.5). However, distortion in time-course estimates is digs the Fourier spectrum of theith-channel recording,, ().
cernible even for such correlated sources. We also developedia also define the Fourier transform of the source-activity
method of correcting the time-course distortion for two-souraector ad(f) = [0(r1, f), ..., O(rq, f)]* whered(r,, f)is
correlation, and our numerical experiments demonstrate that the Fourier spectrum of thgth source magnitude, (¢). Let us
distortion can be almost perfectly corrected. define the cross-spectrum matrix of the measured dalzzas
Ts(f) = (B(f)BY(f)), where the superscrigi indicates the
APPENDIX | Hermitian transpose. The estimated Fourier spectrum of the

This appendix shows the derivation of (16), which was Origs_ource activity at, 6(r, f), is obtained as

inally derived by Zoltowski [27]. We define the matri¥ as 5 N _ T
C = L.R.LT. Then, using (5), we get the relationstiy = b(r, £) = w (r)B(]) (38)

C + o2I. Therefore, when the SNR is so high that noise can Qﬂwere the weight vectan? (r) is given by
neglected, the relationshi§, ~ C holds, and we get
o — _ ;)
R'~C* = (L.RL") = (L7)"RIL* wir) = Lo IO (39)
' T i o MET T
= (LF) R;'L}. (36) o

When the first and second sources have a coherence yalue

T 1 indi i B i J + —
Here,L T indicates the pseudoinverse bf defined asL = at the frequencyf, we get the relationship

[LTL.LT. Regarding (36), we also assume tiRt is non-

singular, and we use the fact that the transpose and the pseu- - n

doinverse operations are interchangeable. We apply the formula O(re, f) =0(rv, f) - (1/_2 7) 0(r2, f) (40)
L Tl(rj) = u;, whereu, is the M x 1 vector that has all ele-

ments equal to zero except for thth element that is equal to B(rs. ) =0(r _ (2 ) o(r 41
one. Using this formula and (36), we obtain (r2, ) =8(r2, f) v (r f) “1)

] Rglfjl(rq) whereu? is the power spectrum of thgh source atf. Then,

r ) [24]”
w (rp)l(rg) = Tr) 217 BT () substituting (40) and (41) into

:
+
w'R'uy,  [R7Y,, O(r1, /)07 (r2, f)

" WTR.'w, [R.Y,, G0 = ‘< ; >’ 2
P 7 Pr \/<9(,,.1_/ f)2> <9('I‘2-/f)2>

Note that this equation exactly holds when noise can be
neglected. SincdEsESR, = C, (37) is also valid for the leads to
eigenspace-projection beamformer mentioned in Section II-D.

One vital assumption in the argument above is that of the v (v — )|
low-rank signal; i.e., the assumption that the number of signal VL= 2)2(1 =2
sources) is less than the number of sensa#s If this assump-
tion does not holdL I(r;) is notequal tax; and (37) cannot be where# is the estimated magnitude coherence. Equation (43)
derived. However, since the number of sensors in commercialgicates that the accurate estimate of the magnitude coherence
available neuromagnetometers has increased constantly ovecéiebe obtained by substituting the outputs of the beamformer
last ten years and the latest neuromagnetometers are equipptr(42). It should be noted that the analysis in this appendix
with 200-300 sensor channels, the low-rank-signal assumptjiovides a theoretical validation of the method recently pro-
should hold for most neuromagnetic measurements. posed by Grosst al. [15].

¥ = = |9l (43)

APPENDIX I APPENDIX Il

This appendix shows that the magnitude of the cross coher-This appendix presents the inverse of the source covariance
ence in the frequency domain can also be estimated using thatrix in the case of a three-source correlation. We assume that
outputs from the frequency-domain beamformer implementhe first, second, and third sources are mutually correlated. The
tion. We define the Fourier transform of the measurement vectmrrelation coefficients of these sources are denoteda3:, 3,

2 2 2 2 2
012043(1 - /L23) (11&2013(M13/L23 - /L12) 10312423 — M13)
— 1

-1 _ 2 2 2 2 2
R, = ayaoas(u13pas — H12) ajaz(l — pis) ajasas

(
R, (

pi2/i13 — f123) (45)

aradas(piapies — pn3)  ajasas(piapns — p23) afa3(1 — piy)
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and uo3. In the source-activity covariance matik,, the sub-

[15]

matrix related to the three correlated sources is denotdl as
This matrix is expressed as

[16]

04% M2y 413001 Q2 (171

R, = | pr2cia a3 Ha3a0r3 (44)
18
M3z 23002003 a§ [18]

Its inverse is expressed as shown in (45) at the bottom of the

previous page, wherld?, | indicates the determinant &, and

[19]

is given by

B,

(1]

(2]

(3]

[4]

(3]

(6]
(71

(8]

9]

[10]

[11]

[12]

[13]

(14]

[20]

| = afa303(1 — iy — pis — n3s + 2u12p13023). (46) 21

[22]

[23]
REFERENCES

M. H&maléinen, R. Hari, R. J. limoniemi, J. Knuutila, and O. V. [24]
Lounasmaa, “Magnetoencephalography—Theory, instrumentation, and
applications to noninvasive studies of the working human brdRey.

Mod. Phys, vol. 65, pp. 413-497, 1993.

T. P. L. Roberts, D. Poeppel, and H. A. Rowley, “Magnetoencephalog-[25]
raphy and magnetic source imaginbdléuropsych., Neuropsych., Behav.
Neurology vol. 11, pp. 49-64, 1998.

B. D.van Veen and K. M. Buckley, “Beamforming: A versatile approach
to spatial filtering,”IEEE Acoust. Speech Signal Processing Magl.

5, pp. 4-24, Apr. 1988.

S. E. Robinson and D. F. Rose, “Current source image estimation by
spatially filtered MEG,” inBiomagnetism Clinical Aspegcts!. Hokeet

al., Eds. New York: Elsevier, 1992, pp. 761-765. [27]
S. E. Robinson and J. Vrba, “Functional neuroimaging by synthetic aper-
ture magnetometry (SAM),” ilRecent Advances in Biomagnetjsim
Yoshimotoet al, Eds. Sendai, Japan: Tohoku Univ. Press, 1999, pp.[28]
302-305.

J. Gross and A. A. loannides, “Linear transformations of data space in
MEG,” Phys. Med. Biol.vol. 44, pp. 2081-2097, 1999. [29]
K. Sekihara, S. S. Nagarajan, D. Poeppel, A. Marantz, and Y. Miyashita,
“Reconstructing spatio—temporal activities of neural sources using an
MEG vector beamformer techniqudEEE Trans. Biomed. Engvol. [30]
48, pp. 760-771, July 2001.

I. Hashimoto, T. Kimura, Y. Iguchi, R. Takino, and K. Sekihara, [31]
“Dynamic activation of distinct cytoarchitectonic areas of the human

Sl cortex after median nerve stimulatioreuroReportvol. 12, pp.
1891-1897, 2001.

I. Hashimoto, K. Sakuma, T. Kimura, Y. Iguchi, and K. Sekihara,
“Serial activation of distinct cytoarchitectonic areas of the human SI
cortex after posterior tibial nerve stimulatioreuroReportvol. 12,

pp. 1857-1862, 2001.

M. S. Hamalainen and R. J. limoniemi, “Interpreting measured magnetic
fields of the brain: Estimates of current distributions,” Helsinki Univ.
Technol., Helsinki, Finland, Tech. Rep. TKK-F-A559, 1984.

K. Sekihara and S. S. Nagarajan, “Neuromagnetic source reconstr

[26]

B
tion and inverse modeling,” iModeling and Imaging of Bioelectric Ac- ﬂ y

tivity—Principles and Application®8. He, Ed. Norwell, MA: Kluwer,
to be published.

K. Sekihara and B. Scholz, “Generalized Wiener estimation of thre
dimensional current distribution from biomagnetic measurements,”
Biomag 96: Proc. 10th Int. Conf. Biomagnetisé J. Aineet al,, Eds.,
1996, pp. 338-341.

A.S. Gevins, S. L. Bressler, N. H. Morgan, B. A. Cutillo, R. M. White, D.

S. Greer, and J. llles, “Event-related covariances during a bimanual E?/

.

1545

J. Gross, J. Kujara, M. Hamalainen, L. Timmermann, A. Schnitzler, and
R. Salmelin, “Dynamic imaging of coherent sources: Studying neural
interactions in the human brainProc. Nat. Acad. Sci.vol. 98, pp.
694-699, 2001.

W. Singer, “Neuronal synchrony: A versatile code for the definition of
relations,”Neuron vol. 24, pp. 49-65, 1999.

J. Sarvas, “Basic mathematical and electromagnetic concepts of the bio-
magnetic inverse problemPhys. Med. Biol.vol. 32, pp. 11-22, 1987.

A. Paulraj, B. Ottersten, R. Roy, A. Swindlehurst, G. Xu, and T. Kailath,
“Subspace methods for directions-of-arrival estimation,Hendbook

of StatisticsN. K. Bose and C. R. Rao, Eds. Amsterdam, The Nether-
lands: Elsevier, 1993, pp. 693-739.

R. O. Schmidt, “A signal subspace approach to multiple emitter location
and spectral estimation,” Ph.D. dissertation, Dept. Elect. Eng., Stanford
Univ., Stanford, CA, 1981.

L. L. Scharf,Statistical Signal Processing: Detection, Estimation, and
Time Series analysis Reading, MA: Addison-Wesley, 1991.

D. H. Johnson and D. E. Dudgeoirray Signal Processing: Concepts
and Techniques Englewood Cliffs, NJ: Prentice-Hall, 1993.

J. Capon, “High-resolution frequency wavenumber spectrum analysis,”
Proc. |IEEE vol. 57, pp. 1408-1419, Aug. 1969.

J. C. Mosher, P. S. Lewis, and R. M. Leahy, “Multiple dipole modeling
and localization from spatio—temporal MEG dat&EE Trans. Biomed.
Eng, vol. 39, pp. 541-557, June 1992.

M. E. Spencer, R. M. Leahy, J. C. Mosher, and P. S. Lewis, “Adaptive
filters for monitoring localized brain activity from surface potential time
series,” inConf. Rec. 26th Ann. Asilomer Conf. Signals, Systems, Com-
puters Nov. 1992, pp. 156-161.

B. D.van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki, “Local-
ization of brain electrical activity via linearly constrained minimum vari-
ance spatial filtering,JEEE Trans. Biomed. Engvol. 44, pp. 867-880,
Sept. 1997.

K. Sekihara, S. S. Nagarajan, D. Poeppel, A. Marantz, and Y. Miyashita,
“Application of an MEG eigenspace beamformer to reconstructing
spatio—temporal activities of neural sourceldtiman Brain Mapping

vol. 15, pp. 199-215, 2002.

M. D. Zoltowski, “On the performance analysis of the MVDR beam-
former in the presence of correlated interferendEEE Trans. Signal
Processingvol. 36, pp. 945-947, June 1988.

B. Widrow, K. M. Duval, R. P. Gooch, and W. C. Newman, “Signal
cancellation phenomena in adaptive antennas: Causes and ¢HES,”
Trans. Antennas Propagatiol. AP-30, pp. 469-478, May 1982.

A. Paulraj, V. U. Reddy, and T. Kailath, “Analysis of signal cancellation
due to multipath in optimum beamformers for moving array8EE J.
Ocean. Eng.vol. OE-12, pp. 163-172, Jan. 1987.

H. Cox, “Resolving power and sensitivity to mismatch of optimum array
processors,J. Acoust. Soc. Amerol. 54, pp. 771-785, 1973.

J. Vrba, “SQUID gradiometers in real environments,” $8QUID
Sensors: Fundamentals, Fabrication and ApplicatioHs Weinstock,

Ed. Norwell, MA: Kluwer, 1996, pp. 117-178.

Kensuke Sekiharareceived the M.S. and Ph.D. de-
grees from the Tokyo Institute of Technology, Tokyo,
Japan, in 1976 and 1987, respectively.

From 1976 to 2000, he was with Central Research
Laboratory, Hitachi, Ltd., Tokyo, Japan. He was a
visiting Research Scientist at Stanford University,
Stanford, CA, from 1985 to 1986, and at Basic De-
velopment, Siemens Medical Engineering, Erlangen,
Germany, from 1991 to 1992. From 1996 to 2000, he

¢ was with the “Mind Articulation” Research Project
sponsored by the Japan Science and Technology

suomotor task. I. Methods and analysis of stimulus- and response-lockegkporation. He is currently a Professor at Tokyo Metropolitan Institute

data,”Electroenceph. Clin. Neurophysiolol. 74, pp. 58—75, 1989.

of Technology, Tokyo, Japan. His research interests include biomagnetic

J. Sarnthein, H. Petsche, P. Rappelsberger, G. L. Shaw, and A. von Stiigerse problems, and statistical estimation theory, especially its application to
“Synchronization between prefrontal and posterior association cort@ctional neuroimaging.

during human working memory,Proc. Nat. Acad. Sci.vol. 95, pp.
7092-7096, 1998.

Dr. Sekihara is a Member of the IEEE Medicine and Biology Society and the
IEEE Signal Processing Society.



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 49, NO. 12, DECEMBER 2002

Srikantan S. Nagarajanreceived the B.S. degree in
electrical engineering from the University of Madras,
Madras, India, and the M.S. and Ph.D. degrees fro
the Department of Biomedical Engineering, Cas4
Western Reserve University, Cleveland, OH, in 199
and 1995, respectively.

From 1995 to 1998, he was a Postdoctoral Fello
at the Keck Center for Integrative Neuroscience, th
University of California, San Francisco (UCSF). In
1999, he was a full-time Research Scientist at Scie
tific Learning Corporation, Berkeley, CA, and an Ad-

&

David Poeppelreceived the B.S. and Ph.D. degrees
in cognitive neuroscience from the Massachusetts
Institute of Technology, Cambridge, in 1990 and
1995, respectively.

Currently, he is an Assistant Professor in the
Departments of Linguistics and Biology at the
University of Maryland at College Park. His research
uses the functional neuroimaging methods magne-
toencephalography (MEG), electroencephalography
(EEG), positron emission tomography (PET), and
functional magnetic resonance imaging (fMRI) to

junct Assistant Professor in the Department of Otolaryngology at UCSF. Subvestigate the neural basis of speech and language processing.

sequently, he was an Assistant Professor in the Department of Bioenginee
at the University of Utah, Salt Lake City. Currently, he is the Director of th
Biomagnetic Imaging Laboratory and an Assistant Professor in the Departm

of Radiology at UCSF. His research interests in neural engineering include b

electromagnetism, systems and computational neuroscience, rehabilitation,
statistical signal processing.

ring
e
ent

Alec Marantz received the B.A. degree in psycholin-
guistics from Oberlin College, Oberlin, OH, and the
Ph.D. degree in linguistics from the Massachusetts

Institute of Technology (MIT), Cambridge, in 1978
and 1981, respectively.

He joined the Faculty of MIT in 1990, where he
is currently Professor of Linguistics and Head of the
Department of Linguistics and Philosophy. His re-
search interests include the syntax and morphology of
natural languages, linguistic universals, and the neu-
robiology of language. He is currently involved in

revising morphological theory within linguistics and in exploring MEG tech-
niques to uncover how the brain processes language.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


