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MEG Covariance Difference Analysis: A Method
to Extract Target Source Activities by Using

Task and Control Measurements
Kensuke Sekihara,*Member, IEEE, David Poeppel, Alec Marantz, Colin Phillips,

Hideaki Koizumi, and Yasushi Miyashita

Abstract—A method is proposed for extracting target dipole-
source activities from two sets of evoked magnetoencephalo-
graphic (MEG) data, one measured using task stimuli and the
other using control stimuli. The difference matrix between the
two covariance matrices obtained from these two measurements
is calculated, and a procedure similar to the MEG-multiple signal
classification (MUSIC) algorithm is applied to this difference
matrix to extract the target dipole-source configuration. This
configuration corresponds to the source-configuration difference
between the two measurements. Computer simulation verified
the validity of the proposed method. The method was applied
to actual evoked-field data obtained from simulated task-and-
control experiments. In these measurements, a combination of
auditory and somatosensory stimuli was used as the task stimulus
and the somatosensory stimulus alone was used as the control
stimulus. The proposed covariance difference analysis success-
fully extracted the target auditory source and eliminated the
disturbance from the somatosensory sources.

Index Terms—Array signal processing, biomagnetics, biomed-
ical electromagnetic imaging, biomedical signal processing, func-
tional brain imaging, inverse problems.

I. INTRODUCTION

NONINVASIVE measurement of human brain functions
is attracting much interest. Such measurements often use

various kinds of sensory stimuli, especially when measuring
higher-order cognitive functions. One general difficulty here
is extracting information on the target brain activity, which is
of primary interest in the experiments. This is partly because
spontaneous brain activity overlaps the target activity. More
substantially, sensory stimuli generally elicit not only the
target cortical activities but also other activities that are not
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the main interest in the experiment. The existence of these
other activities can make interpreting the experimental results
difficult.

Therefore, in most studies using positron emission to-
mography (PET) or functional magnetic resonance imaging
(fMRI), neuropsychologists carefully design their experiments
to extract only the target activities. A common example for
such experimental designs contains two kinds of stimuli: a task
stimulus and a control stimulus. The task stimulus generally
elicits the target cortical activities as well as other activities
associated with them. The control stimulus is designed to
elicit only these associated activities. Then, by calculating the
difference between the images measured with each kind of
stimulus, the target activities can be extracted.

Among the various modalities that provide functional brain
images, magnetoencephalography (MEG) [1] has a distinct
advantage—it can provide a temporal resolution of less than
1 ms. MEG measurements have been used to localize various
kinds of cortical activities including the primary sensory areas
[2]–[4], spontaneous activities [5], and higher-order cortical
activities [6], [7]. However, experiments using task and control
stimuli are relatively rare in MEG, probably because appro-
priate data-analysis methods for such measurements do not
exist.

In this paper we propose a novel method for extracting the
target source information from evoked MEG data measured
with task and control stimuli. This method is based on the
covariance difference algorithm originally proposed to elimi-
nate the influence of nonwhite noise with unknown statistical
properties in sonar-signal processing [8]. Two sets of data are
measured under different stimulus conditions; the difference
between the covariance matrices obtained from these two
measurements is then calculated. A procedure similar to the
MEG-multiple signal classification (MUSIC) algorithm [9] is
applied to this difference matrix to extract the target source
configuration, which corresponds to the source-configuration
difference between the two measurements.

After describing the proposed method, we present results
from computer simulation and from application to evoked-
response measurements simulating task-and-control-type ex-
periments. Both sets of results strongly suggest that the pro-
posed algorithm is effective. In this paper, we use plain italics
to indicate scalars, lower-case boldface italics to indicate vec-
tors, and upper-case boldface italics to indicate matrices. The
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superscriptT indicates the matrix transpose. The eigenvalues
are numbered in decreasing order. For simplicity, we omit
the explicit time notation unless any confusion due to this
omission arises.

II. M ETHOD

A. Definitions

We define the magnetic field measured by themth
detector coil at timetk as bm(tk); and vector bbb(tk) =
(b1(tk); b2(tk); � � � ; bM (tk))T as a set of measured data at
tk where k = 1;2; � � � ;K: Here, K is the total number
of time points, andM is the total number of detector
coils. The spatio-temporal data matrixBBB is defined asBBB =
[bbb(t1; bbb(t2); � � � ; bbb(tK)]: We assume that a total ofP current-
dipole sources generate a biomagnetic field. The spherical
homogeneous conductor model [10] is assumed, and two
tangential components, the� and� components, of the source
moment are considered. The magnitude of thepth dipole-
source moment is defined asSp(tk): Its orientation is defined
as the dipole’s normal vector���p(tk) = (��p (tk); �

�
p(tk)), where

k���(tk)k = 1: The source magnitude vector attk is defined as
sss(tk) = (S1(tk); S2(tk); � � � ; SP (tk))T : The source temporal
behaviorSSS is defined asSSS = [sss(t1); sss(t2); � � � ; sss(tK)]:

The lead field vectors for the� and � components of the
pth source are defined aslll�p = (l�p;1; l

�
p;2; � � � ; l

�
p;M )T and

lll�p = (l�p;1; l
�
p;2; � � � ; l

�
p;M )T : We define the lead field vector

for thepth source attk aslllp(tk): This lllp(tk) is obtained using

lllp(tk) = ��p (tk)lll
�
p + ��p(tk)lll

�
p: (1)

The lead field matrix for the entire set ofP dipole sources
is defined as

LLL(tk) = [lll1(tk); lll2(tk); � � � ; lllP (tk)]: (2)

For simplicity, we assume in this paper that all dipole
sources have fixed orientations during measurement. Because
LLL(tk) becomes time-independent under this assumption, the
relationship betweenBBB and SSS can be expressed, using the
simpler notationLLL

BBB = LLLSSS +NNN: (3)

NNN is the noise matrix defined byNNN = [nnn(t1); nnn(t2); � � � ;
nnn(tK)], wherennn(tk) is the additive noise at timetk: The
conventional way of estimating the locations of the dipole
sources is based on minimizing the least squares cost function

F = kBBB � L̂LLŜSSk2 = k
�
III � L̂LL

�
L̂LLT L̂LL

�
�1

L̂LLT
�
BBB)k2: (4)

Here,III is the unit matrix, and the estimates ofLLL andSSS are
denoted aŝLLL and ŜSS, respectively. This minimization requires
a 3P -dimensional search, whereP is again the number of
sources. Generally, for such a highly multidimensional opti-
mization search, there is no guarantee of obtaining a correct
solution unless we can set the initial estimate very close to
the true solution.

B. MUSIC Algorithm

The MUSIC algorithm approach has recently been intro-
duced [9], [11], [12] to avoid this highly multidimensional
search. A distinct advantage of this algorithm is that regardless
of the number of dipole sources, it gives a suboptimal estimate
of the source locations by using only a three-dimensional
search in the solution space. We define the measured-data
covariance matrix asRRR, the covariance matrix of the dipole-
source activities asQQQ: Using (3), we get

RRR � BBBBBBT = LLL(SSSSSST )LLLT +NNNNNNT
� LLL(QQQ)LLLT + �2III (5)

where it is assumed that the noise in the measured data is
white Gaussian noise with variance�2, and that the noise
is uncorrelated with the signal. Unless some of the source
activities are perfectly correlated with each other, the rank
of RRR is equal to the number of sourcesP: Therefore,RRR
hasP eigenvalues greater than�2 and M � P eigenvalues
equal to �2: We denote the eigenvectors ofRRR as feeejg,
where j = 1; 2; � � � ;M; and define matricesEEES andEEEN as
EEES = [eee1; � � � ; eeeP ] andEEEN = [eeeP+1; � � � ; eeeM ]: The span of
the columns inEEES is called the signal subspace and that in
EEEN called the noise subspace.

To estimate the locations of the dipole sources
(xxx1; xxx2; � � � ; xxxP ); the MUSIC algorithm takes advantage
of the fact that the lead field vector at eachxxxp is orthogonal
to the noise subspace. Namely

LLLTeeej = 0 for j = P + 1; � � � ;M: (6)

Thus, the source locations can be obtained by checking the
orthogonality between the lead field vector and the noise
subspace projector,EEENEEE

T
N : The measure that evaluates this

orthogonality is called the MUSIC localizer, and is proposed
to be [9]

J(xxx) = 1=�min(LLL(xxx)
TEEENEEE

T
NLLL(xxx); LLL(xxx)

TLLL(xxx)) (7)

where�min(�; �) indicates the generalized minimum eigenvalue
of the matrix pair given in parenthesis. In this equation,LLL(xxx)
is expressed asLLL(xxx) = [lll�(xxx); lll�(xxx)] wherelll�(xxx) and lll�(xxx)
are the lead field vectors for the� and � components of a
source atxxx:

The MUSIC localizer is calculated in a volume where
sources can exist, and each location where the localizer reaches
a peak is chosen as the location of one dipole source. Note that
the localizer shown in (7) is derived under the assumption that
the source orientations are fixed during measurement. It has
been proven, however, that this localizer is also effective for
dipole sources whose orientations vary during measurement
[9]. It is also worth noting that the eigenvector corresponding
to the minimum eigenvalue in (7) gives the estimate of the
dipole-source orientation.

C. Covariance Difference Analysis

The essence of covariance difference analysis is calculating
the difference between covariance matrices obtained from two
measurements with different stimulus conditions. This analysis
provides the difference in source distributions between the two
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measurements, and thus is an appropriate tool for analyzing
the data taken in MEG measurements with a pair of task-and-
control stimulus conditions.

We assume thatPT sources are elicited by the task stimulus
and that, among thesePT sources,PC sources are also elicited
by the control stimulus. In this paper, the sources elicited
only by the task stimulus and not by the control stimulus
are called the target sources and the sources elicited by the
control stimulus are called the control sources. We define the
number of target sources asPS , such thatPS = PT � PC :

The covariance matrix for the task measurement,RRRT , can be
expressed as

RRRT = [lll1; lll2; � � � ; lllPT ]QQQT [lll1; lll2; � � � ; lllPT ]
T +WWWT (8)

whereQQQT andWWWT , respectively, are the source and noise
covariance matrices for the task condition. The covariance
matrix for the control measurement,RRRC , is expressed as

RRRC = [lll1; lll2; � � � ; lllPC ]QQQC [lll1; lll2; � � � ; lllPC ]
T +WWWC (9)

where QQQC and WWWC are the source and noise covariance
matrices for the control condition.

To make the covariance difference algorithm valid, we
need two assumptions: first, the correlation between the target
sources and the control sources are negligibly small, and sec-
ond, the noise statistical property remains unchanged between
the two measurements. Under the first assumption, we have

QQQT =

�
QQQS OOOPCPS
OOOPSPC QQQC

�
: (10)

Here,OOO�� is a � � � matrix with all of its elements equal to
zero. The covariance matrix for the target sources,QQQS , is a
PS � PS matrix explicitly given by

QQQS =

2
4 hS2

1
i � � � hS1SPS i

...
...

...
hSPSS1i � � � hS2PS i

3
5: (11)

The covariance matrix for the control sources,QQQC , is a
PC � PC matrix given by

QQQC =

2
64

hS2PS+1i � � � hSPS+1SPT i
...

...
...

hSPT SPS+1i � � � hS2PT i

3
75: (12)

The second assumption leads toWWWT = WWWC : Therefore
���RRR, which is the difference betweenRRRT and RRRC, can be
expressed as

���RRR = RRRT �RRRC = [lll1; lll2; � � � ; lllPS ]QQQS [lll1; lll2; � � � ; lllPS ]
T :

(13)

It was shown in [8] that���RRR hasPS nonzero eigenvalues
and M � PS zero-level eigenvalues, and that eigenvectors
corresponding to zero-level eigenvalues are orthogonal to the
lead field vector at the target source locations. That is, defining
such eigenvectors aseee0

j, the relationship

[lll1; lll2; � � � ; lllPS ]
Teee0

j = 0 for j = PS + 1; � � � ;M (14)

holds true. This relationship corresponds to the orthogonality
relationship shown in (6) for the standard MUSIC algorithm.
Thus, corresponding to the localizer in the standard MUSIC
algorithm shown in (7), the locations of the target sources can
be obtained by scanning the localizer calculated from

J(xxx) = 1=�min(LLL(xxx)
TEEEZEEE

T
ZLLL(xxx);LLL(xxx)

TLLL(xxx)) (15)

whereEEEZ = [eee0

PS+1
; � � � ; eee0

M ]:

In the above discussion, we made the assumption that all
the control sources are activated by the task stimulus. This
may not always be true. That is, some control sources may
not appear in the task stimulus condition. The covariance
difference analysis, however, is still effective in such cases
if the condition described below is satisfied.

Let us assume that, among thePC control sources,PD
sources are only activated in the control stimulus condition
and ~PD sources are activated both in the task and the control
conditions. A number fromPS+1 to PS+PD is given to each
source in the first group of control sources. That is,Sj where
j = PS + 1; � � � ; PS + PD represent the moment magnitudes
of the sources in this group. A number fromPS + PD + 1

to PS + PC is given to each source in the second group,
and their moment magnitudes are represented bySj, where
j = PS + PD + 1; � � � ; PS + PC : Note that the relationship
PC = PD + ~PD holds.

The covariance matrix for the control sources activated only
by the control stimulus,QQQD, is thus given by

QQQD =

2
64

hS2PS+1i � � � hSPS+1SPS+PD i
...

...
...

hSPS+PDSPS+1i � � � hS2PS+PD i

3
75: (16)

The covariance matrix for the control sources activated by
both the task and control stimulus,~QQQD, is given by

~QQQD =

2
64

hS2PS+PD+1i � � � hSPS+PD+1SPS+PC i
...

...
...

hSPS+PCSPS+PD+1i � � � hS2PS+PC i

3
75:

(17)

Using ~QQQD; the source-covariance matrix for the task stimulus
condition can be expressed as

QQQT =

"
QQQS OOO

~PD
PS

OOOPS
~PD

~QQQD

#
: (18)

At this point, we make further assumption that the correlation
between the two group of the control sources is negligibly
small. Then, the source-covariance matrix for the control
stimulus condition is given by

QQQC =

"
QQQD OOO

~PD
PD

OOOPD
~PD

~QQQD

#
: (19)

Thus, in this case, the difference matrix���RRR can be ex-
pressed as

���RRR =RRRT �RRRC = [lll1; � � � ; lllPS ; lllPS+1; � � � ; lllPS+PD ]

����QQQ[lll1; � � � ; lllPS ; lllPS+1; � � � ; lllPS+PD ]
T (20)
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where

���QQQ =

�
QQQ
S

OOOPD
PS

OOOPS
PD

�QQQ
D

�
: (21)

It can be shown that the zero-level eigenvectors of���RRR are
orthogonal to[lll1; � � � ; lllPS+PD ] [8]. That is, a localizer search
using (15) not only detects the target sources but also the
control sources that are activated only by the control stimulus.
These two groups of sources can, however, be discriminated
by checking the signs of the diagonal elements in matrix���QQQ,
which can be estimated using

d���QQQ =

h�
LLLTLLL

�
�1

LLLT
i
���RRR

h�
LLLTLLL

�
�1

LLLT
iT

(22)

where

LLL = [lll1; � � � ; lllPS+PD ]:

To calculateLLL, the orientations of the dipole sources need
to be estimated using the eigenvector corresponding to the
smallest eigenvalue in (15). An example of applying (22) to
discriminate the two groups of sources will be presented in
Section III-D.

D. Summary of Algorithm

The covariance difference algorithm is summarized as fol-
lows.

Step 1) The covariance matrices of the measured spatio-
temporal data are calculated for the task and
control measurements. Then, the difference ma-
trix between these two covariance matrices is
calculated.

Step 2) Eigen-decomposition of this difference matrix is
performed, and the subspace spanned by zero-
level eigenvectors is defined by separating the
zero-level eigenvalues from the nonzero eigen-
values.

Step 3) The localizer defined by (15) is calculated
throughout the field of view, and each location
whereJ(xxx) reaches a peak is determined to be
the location of one dipole source.

Step 4) When it is possible that the results obtained in
Step 3 contain control source locations, the signs
of the diagonal elements of���QQQ are checked using
(22) to separate the target sources from control
sources.

III. COMPUTER SIMULATION

A. General Data-Generation Conditions

We used computer simulation to test the validity of the
proposed method. A 37-channel magnetometer whose coil
alignment was the same as that of the Magnes biomagnetic
measurement system (Biomagnetic Technologies Inc., San
Diego) was assumed. Thez direction was defined as the
direction perpendicular to the plane of the detector coil located
at the center of the coil alignment, andz was equal to zero at
this coil plane. The values of the spatial coordinates(x; y; z)

Fig. 1. Source and detector configuration assumed in computer simulation.

are expressed in centimeters. Three signal dipole sources were
assumed to exist on a plane defined asy = 1.0: the first
dipole source was at (�1.1, 1.0,�5.6), the second was at
(2.8, 1.0,�5.4), and the third was at (4.5, 1.0,�7.3). The
source and detector configuration for this simulation is shown
schematically in Fig. 1.

The spherical homogeneous conductor model [10] with
the origin set at (1.0, 1.0,�10) was used in this computer
simulation. The simulated magnetic field was calculated at 1-
ms intervals from 0 to 400 ms. To generate the simulated
biomagnetic field, the� components of these sources were
modeled using exponentially damped sinusoidal functions, and
the � components were set to zero. The waveforms assigned
to each� component of the three sources are shown in Fig. 2.
Here, the correlation coefficients between any pair of the three
waveforms were less than 0.3.

Uncorrelated Gaussian noise was added to make the final
signal-to-noise ratio (SNR) equal to 0.3 for the single-epoch
data in the task condition. The SNR was defined by the ratio
of the Frobenius norm of the signal-magnetic-field data matrix
to that of the noise matrix. One hundred sets of the magnetic-
field data were generated and averaged to create the magnetic
field data used for the source estimation. The final SNR of
this averaged field data was approximately three for the task
condition.

B. Comparison with the Waveform-Subtraction Method

We first assumed that the task condition activates all three
sources and that the control condition activates only the first
and third sources. In this case, the second source is the
target source. In actual task-and-control-type measurements,
the onset of the control-source response may differ between
the task and control measurements. To take this possibility into
account, the onset of control-source activation was set to be
delayed by 30 ms in the control measurement. The activation
waveforms shown by the solid lines in Fig. 2 are used in the
task condition and those shown by the broken lines are used
in the control condition. The averaged magnetic-fields for the
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(a)

(b)

(c)

Fig. 2. The waveforms assigned to the� components of (a) the first, (b) the second, and (c) the third source in the computer simulation. In Section III-B,
the waveforms indicated by the solid lines are used in the task condition and those by the broken lines in the control condition.

task and control conditions are shown in Fig. 3(a) and (b).
One of the single-epoch data is shown in Fig. 3(c).

The standard MUSIC localizer in (7) was applied to the
averaged field data; the results of calculating the localizer on
the y = 1:0 plane are shown in Fig. 4(a) and (b). Fig. 4(a)
shows the results for the task condition and (b) shows those
for the control condition. The contours in these figures show
the relative value of the localizer, and each area where the
localizer reaches a peak is considered to be the location of
one dipole source. In Fig. 4(a) the localizer clearly detects
the three signal sources, and in Fig. 4(b) it clearly detects
the first and third sources. The results of applying covariance
difference analysis are shown in Fig. 4(c). In this case, only
the target source (the second source) remains—the influence
of the control sources (the first and third sources) has been
completely eliminated.

A naive way to extract information about the target activity
from the task and control measurements is to directly subtract
the field waveform elicited under the control condition from
that under the task condition. The results of this simple wave-
form subtraction are shown in Fig. 4(d). Here, the control field
waveform was subtracted from the task waveform, and the
standard MUSIC localizer [(7)] was applied to this subtracted
waveform. These results show that the simple subtraction

method cannot separate the target source activity from the
control activities due to the 30-ms time offset existing in
the control source activations between the two conditions. A
comparison between Fig. 4(c) and (d) clearly demonstrates the
effectiveness of the proposed covariance difference analysis.

C. Effects of Strong Correlation Between
Task and Control Sources

We conducted the computer simulation when the target
source had a strong correlation with one of the control sources.
The waveform indicated in Fig. 2(a) was assigned to both the
first and second sources. The same data generation procedure
as in Section III-B was repeated, and the covariance difference
analysis was applied to the generated field data. The results are
shown in Fig. 5. Here, the elimination of the control source
influence obviously failed. These results demonstrate that the
proposed covariance difference algorithm is not effective when
strong correlation exists between the task and control sources.

D. Influence of a Control Source not
Elicited in the Task Condition

We next assumed that the task condition activates the first
and third sources and that the control condition activates the
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(a)

(b)

(c)

Fig. 3. The 37-channel overlapped display of the field waveform generated in the computer simulation in Section III-B: (a) the task condition, (b) the control
condition, and (c) one of the 100 single-epoch data generated in the task condition. This data is used to obtain the results shown in Fig. 7(b).

(a) (b) (c) (d)

Fig. 4. Results of the MUSIC source localization when the task condition activates all three sources and the control condition activates the first and third
sources: (a) Results of applying the standard MUSIC localizer [(7)] to the data obtained under the task condition, (b) results of applying (7) to the data
obtained under the control condition, (c) results of the covariance difference analysis using (15), and (d) results of the simple waveform-subtraction method.
The contours show the relative values of the localizer on they = 1:0 plane, and each area where the localizer reaches a peak is considered to be the location
of one dipole source. The circle is the boundary of the sphere used for the forward calculation, depicting the approximate size of a human brain on this plane.

second and third sources. In this case, the first source is the
target source and the second source is activated only in the
control condition. The source waveforms shown by the solid
lines in Fig. 2(a), (b), and (c) were assigned to the first, second,
and third sources both for the task and control conditions. The
results obtained by applying the standard MUSIC localizer
to the task and control data are shown in Fig. 6(a) and (b),

respectively. According to the discussion in Section II-C, the
covariance difference analysis should detect the control (the
second) source as well as the target (the first) source. The
results of the covariance difference analysis are shown in
Fig. 6(c). In these results, the first and second sources are
detected. We then estimated the matrix���QQQ by using (22);
the diagonal elements were found to be 33.8 (the first source)
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Fig. 5. The results of the covariance difference analysis when strong corre-
lation exists between the task and control sources. The waveform shown in
Fig. 2(a) was assigned to both the first and second sources in this computer
simulation.

and�42.71 (the second source). The signs of these diagonal
elements indicate that the first source is the target source
and the second source is the control source. These results
demonstrate the validity of the discussion in Section II-C.

E. Influence of Time Jitter in Control Source Response

It is possible that the onset of the control source response
will have a time jitter and vary from epoch to epoch in
actual cognitive experiments. In such cases, the proposed
covariance difference analysis cannot effectively eliminate the
control source influence if it is applied to the data obtained
by averaging multiple epochs. The same computer simulation
as described in Section III-B was again performed except
that the onset of the control source in the task measurement
was randomly changed within a maximum of 30 ms when
generating data for each epoch. The covariance difference
analysis was applied to the data averaged over 100 sets of
these single-epoch data.

The results are shown in Fig. 7(a). Obviously, the control
source influence was not eliminated. The results obtained when
the covariance difference analysis was applied to a pair of the
single-epoch data are shown in Fig. 7(b). One of the single
epoch data used here is shown in Fig. 3(c). The results contain
a severe blur, due to the low signal-to-noise ratio of the single
epoch data, even though the control source influence was
removed. This blur, however, can be reduced by averaging
the difference matrix obtained using each set of single-epoch
data. The results of using this averaged-difference matrix are
shown in Fig. 7(c). To obtain these results,100 single-epoch
difference matrices were averaged, and the proposed localizer
[(15)] was calculated using this averaged difference matrix.
The quality of these results is almost equal to that of the results
in Fig. 4(c). Therefore, when one suspects that the onset of the
control-source response may vary, the procedure mentioned
in this subsection should be applied to eliminate the control
source influence.

IV. A PPLICATION TO EVOKED-FIELD MEASUREMENTS

SIMULATING TASK- AND CONTROL-TYPE EXPERIMENTS

We applied the proposed method to source localization for
measured evoked responses; these measurements simulated
task- and control-type experiments. The evoked responses

1These elements are expressed using an arbitrary scale.

were recorded using the 37-channel Magnes magnetometer
installed at the Biomagnetic Imaging Laboratory, University
of California, San Francisco. All measurements were done in
a magnetically shielded room.

In these experiments we applied an auditory stimulus, a
somatosensory stimulus, or both to a male volunteer. The
auditory stimulus was a 1000-Hz pure tone with a 200-
ms duration; it was applied to the subject’s right ear. The
somatosensory stimulus was a 30-ms-duration tactile pulse (17
psi) delivered to the distal segment of the right index finger.
In the combination stimulus, the auditory and somatosensory
stimuli started at the same time. These auditory, somatosen-
sory, and combination stimuli were repeatedly given one after
the other without changing the head position relative to the
sensor array. The data was acquired at a sampling frequency
of 1 kHz for the prestimulus interval of 300 ms and the
poststimulus interval of 800 ms and averaged for 256 epochs
of each stimulus condition. An on-line bandpass filter with a
bandwidth from 1–400 Hz was used and no post-processing
digital filter was applied. The sensor array was placed on
the left hemisphere and positioned to best record the M100
auditory response. The mean interstimulus interval was 2 s,
randomly varied between 1.75 and 2.25 s.

Thex; y; andz coordinates used to express the localization
results are depicted in Fig. 8. The results of applying the
standard MUSIC algorithm are shown in Figs. 9, 10, and 11.
The data from 0–300 ms post stimulus onset were used for
the analysis. In these figures, the localizer shown in (7) was
calculated with an interval of 0.5 cm within a volume defined
as �4 � x � 6, �3 � y � 6, and 3 � z � 11: These
figures show the projections of the localizer values onto the
transverse, coronal, and sagittal planes; the relative positions
of these planes are shown in Fig. 8. The circles depicting a
human head represent the projections of the sphere used to
calculate the forward solutions.

The results obtained using the data measured with only
the auditory stimulus are shown in Fig. 9. The sharp single
peak corresponds to a source in the auditory cortex. The
results from the somatosensory stimulus alone are shown in
Fig. 10. Two sources, probably corresponding to sources at
the primary (SI) and secondary somatosensory (SII) cortices,
can be seen, although they are not well resolved. The results
from the combination of auditory and somatosensory stimuli
are shown in Fig. 11. Two peaks can be seen in the left
hemisphere. The sharp peak probably corresponds to the
source at SI; the dull peak probably corresponds to the two
sources at the auditory and secondary somatosensory cortices;
these two sources cannot be resolved because they are very
close together.

We calculated two covariance matrices for the covariance
difference analysis: one by using the data from the combined
stimulus and the other by the data from the somatosensory
stimulus. That is, the combined stimulus was assumed to be the
task stimulus, and the somatosensory stimulus was assumed
to be the control stimulus. The data portion from 0–300 ms
were also used for calculating both of the two covariance
matrices. The results of the covariance difference analysis are
shown in Fig. 12. A single sharp peak exists at almost the
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(a) (b) (c)

Fig. 6. Results of the MUSIC source localization when the task condition activates the first and third sources and the control condition activates the
second and third sources: (a) Results for the data obtained from task condition, (b) results for the data from control condition, and (c) results of the
covariance difference analysis using (15).

(a) (b) (c)

Fig. 7. Results of the same computer simulation as in Fig. 4 for the case when the onset of the control source response was randomly varied within
30 ms when generating each set of epoch data: (a) Results of the covariance difference analysis applied to the data obtained by averaging 100 sets of
single-epoch data, (b) results of the covariance difference analysis applied to a pair of single epoch data, and (c) results when 100 single-epoch difference
matrices were averaged, and the localizer in (15) was calculated using the averaged matrix.

Fig. 8. Thex; y; andz coordinates used to express the localization results
shown in Figs. 9–12. The midpoint between the left and right preauricular
points is defined as the coordinate origin. The axis directed away from the
origin toward the left preauricular point is defined as the+y axis, and that
from the origin to the nasion is the+x axis. The+z axis is defined as the
axis that is perpendicular to both these axes and directed from the origin to
the vertex. The relative positions of the transverse, sagittal and coronal planes
are also shown.

same location where the source from the auditory stimulus
was localized (Fig. 9). These results clearly show that the
covariance difference analysis can extract the target (auditory)
source location and eliminate the disturbance from the control
(somatosensory) sources.

V. CONCLUSION

As mentioned in Section III-B, a naive method to extract the
information about the target activities is to simply subtract the
magnetic-field waveform obtained by the control measurement
from that by the task measurement. The advantages of the

proposed covariance difference algorithm over this simple
subtraction method are summarized as follows.

First, the simple subtraction method is effective only when
the onset of the control-source time response in the task
measurements is exactly equal to that in the control measure-
ments. Otherwise, this method fails to extract the target-source
information, as was shown in Fig. 4(d). Second, the simple
subtraction method also cannot handle the case where some of
the control sources do not appear in the task measurements. In
this case, even if all sources are correctly localized, the simple
subtraction method provides no procedure for discriminating
between the target sources and the control sources. In contrast,
covariance difference analysis can discriminate between these
two types of sources by checking the signs of the diagonal
elements of matrixd���QQQ obtained using (22), as discussed in
Section II-C.

The assumption that makes the proposed covariance differ-
ence analysis valid is that the brain response is linear, i.e.
the brain responses to different stimuli are additive and the
correlation between these responses is zero. It should be noted
that the validity and the limitations of the linear modeling
of brain response have been studied in the functional MRI
[13], [14], and the linear modeling proves to be effective for
analyzing the fMRI or PET data in ordinary measurement
conditions [15], although the brain response is known to be,
in principle, highly nonlinear.

The success of the proposed covariance difference analysis
depends on the assumption that this linear modeling is also
valid for MEG measurements. In actual MEG measurements,
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Fig. 9. Results of applying the standard MUSIC localizer in (7) to data obtained with the auditory stimulus. The localizer was calculated with an interval
of 0.5 cm within a volume defined as�4 � x � 6;�3 � y � 6, and2 � z � 10; the projections of the localizer values onto the transverse, coronal, and
sagittal planes are shown. The circles depicting a human head represent the projections of the sphere used to calculate the forward solution.

Fig. 10. Results of applying the standard MUSIC localizer in (7) to data obtained with the somatosensory stimulus.

Fig. 11. Results of applying the standard MUSIC localizer in (7) to data measured with combination of the auditory and somatosensory stimuli.

Fig. 12. Results of the covariance difference analysis. One covariance matrix was calculated from the auditory-somatosensory combined response and the
other was calculated from the somatosensory response. The localizer in (15) was used.

however, this assumption may not always be valid, so the
proposed method would not be effective in some cases.
The validity and limitations of the linear model for the

neuromagnetic measurements should be investigated, and the
usefulness and limitations of the proposed method must be
evaluated in such investigations.
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In summary, we have proposed a method for extracting
target source activities, which are of primary interest in
experiments, by using two sets of evoked MEG data: one
set measured by using task stimulus and the other by using
control stimulus. The proposed method is a variant of the
MEG-MUSIC algorithm, that is, a procedure similar to the
MUSIC algorithm is applied to the difference between the
two covariance matrices obtained from the above two mea-
surements. Computer simulation showed the validity of the
proposed method. Application to evoked-field measurements
strongly suggested the method’s effectiveness.
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