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MEG Covariance Difference Analysis: A Method
to Extract Target Source Activities by Using
Task and Control Measurements
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Abstract—A method is proposed for extracting target dipole- the main interest in the experiment. The existence of these

source activities from two sets of evoked magnetoencephalo-gther activities can make interpreting the experimental results
graphic (MEG) data, one measured using task stimuli and the difficult

other using control stimuli. The difference matrix between the Theref . di . . .
two covariance matrices obtained from these two measurements erefore, In most studies using positron emission to-
is calculated, and a procedure similar to the MEG-multiple signal mography (PET) or functional magnetic resonance imaging

classification (MUSIC) algorithm is applied to this difference (fMRI), neuropsychologists carefully design their experiments
matrix to extract the target dipole-source configuration. This g extract only the target activities. A common example for

configuration corresponds to the source-configuration difference ; ; ; ; ; "
between the two measurements. Computer simulation verified such experimental designs contains two kinds of stimuli: a task

the validity of the proposed method. The method was applied Stimulus and a control stimulus. The task stimulus generally
to actual evoked-field data obtained from simulated task-and- elicits the target cortical activities as well as other activities

control experiments. In these measurements, a combination of associated with them. The control stimulus is designed to
auditory and somatosensory stimuli was used as the task stimulus g|icit only these associated activities. Then, by calculating the

and the somatosensory stimulus alone was used as the controldifference between the images measured with each kind of
stimulus. The proposed covariance difference analysis success- 9

fully extracted the target auditory source and eliminated the Stimulus, the target activities can be extracted. '
disturbance from the somatosensory sources. Among the various modalities that provide functional brain

Index Terms—Array signal processing, biomagnetics, biomed- Images, magnetoencep'halography (MEG) [1]_ has a distinct
ical electromagnetic imaging, biomedical signal processing, func- advantage—it can provide a temporal resolution of less than
tional brain imaging, inverse problems. 1 ms. MEG measurements have been used to localize various
kinds of cortical activities including the primary sensory areas
[2]-[4], spontaneous activities [5], and higher-order cortical
) ~activities [6], [7]. However, experiments using task and control
N ONINVASIVE measurement of human brain functionsgtimuli are relatively rare in MEG, probably because appro-

M is attracting much interest. Such measurements often yfyte data-analysis methods for such measurements do not

various kinds of sensory stimuli, especially when measurigist.
higher-order cognitive functions. One general difficulty here |, this paper we propose a novel method for extracting the
is extracting information on the target brain activity, which iarget source information from evoked MEG data measured
of primary Interest in the_ experiments. This is partl_y_becaug,ﬁth task and control stimuli. This method is based on the
spontaneous brain activity overlaps the target activity. Mogyariance difference algorithm originally proposed to elimi-
substantially, sensory stimuli generally elicit not only th@ate the influence of nonwhite noise with unknown statistical
target cortical activities but also other activities that are nB"opertieS in sonar-signal processing [8]. Two sets of data are

Manuscript received January 16, 1997: revised July 2, 199Serisk measured under dlfferent stlmylus cond.ltlons; the difference
indicates corresponding author. between the covariance matrices obtained from these two

*K. Sekihara, is with the Mind Articulation Project, Japan Science anfheasurements is then calculated. A procedure similar to the
(Te"h”.‘l’"l’(gyk.choréorat!?” (JST)') Yushima 4-9-2, Bunkyo, Tokyo 113 JapeG_multiple signal classification (MUSIC) algorithm [9] is
e-mail: ksekiha@po.iijnet.or.jp). : - ? .

D. Poeppel is with the Biomagnetic Imaging Laboratory, University oPplied to this difference matrix to extract the target source
Ci;'\'fohf/ln'a, Staf} Frélt?lclf]cobCA 51414?1-0??_8 US_At-_ " husetts Insiit configuration, which corresponds to the source-configuration

. Marantz 1s wi e Department or Linguistics, Massachusetlts Institu

of Technology, Cambridge, MA 02139 USA. fifference bet.vv.een the two measurements.

C. Phillips is with Linguistic and Cognitive Science, University of After describing the proposed method, we present results
Delaware, Newark, DE 19716 USA. _ _ from computer simulation and from application to evoked-

H. Koizumi is with the Mind Articulation Project, Japan Science and t - lati task-and trol
Technology Corporation (JST), Tokyo 113 Japan. response measurements simulating task-and-contro -type ex-

Y. Miyashita is with the Department of Physiology, The University ofperiments. Both sets of results strongly suggest that the pro-
Tokyo, School of Medicine, Hongo, Tokyo 113 Japan. He is also with thggged algorithm is effective. In this paper, we use plain italics

I. INTRODUCTION

Mind Articulation Project, Japan Science and Technology Corporation (JST), . _ .. S L
Tokyo 113 Japan. ) P 9y o U5 indicate scalars, lower-case boldface italics to indicate vec-
Publisher Item Identifier S 0018-9294(98)00248-1. tors, and upper-case boldface italics to indicate matrices. The

0018-9294/98$10.001 1998 IEEE



88 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 45, NO. 1, JANUARY 1998

superscript!” indicates the matrix transpose. The eigenvalu& MUSIC Algorithm

are num_b_ere_d in decr_easing order. For simplicity, we orriit The MUSIC algorithm approach has recently been intro-
the_ e>_<pI|C|t _time notation unless any confusion due to thi§,ceq [9], [11], [12] to avoid this highly multidimensional
omission arises. search. A distinct advantage of this algorithm is that regardless
of the number of dipole sources, it gives a suboptimal estimate
Il. METHOD of the source locations by using only a three-dimensional
search in the solution space. We define the measured-data
covariance matrix a$t, the covariance matrix of the dipole-

A. Definitions T :
i o source activities a§). Using (3), we get

We define the magnetic field measured by theh
detector coil at timet; as b,,(t;), and vectorb(t;) = R~ BBT = L(SST)LT + NNT = L(Q)L" 4+ °1 (5)
(b1(tr), ba(tr), -, bar(tx))T as a set of measured data at
tr where k = 1,2,--- K. Here, K is the total number Where it is assumed that the noise in the measured data is
of time points, andM is the total number of detectorWhite Gaussian noise with varianee’, and that the noise
coils. The spatio-temporal data mattk is defined asB = s uncorrelated with the signal. Unless some of the source
[b(t1,b(ts), -, b(tx)]. We assume that a total d? current- activities are perfectly correlated with each other, the rank

dipole sources generate a biomagnetic field. The spheri€hlft is equal to the number of sources Therefore, K
homogeneous conductor model [10] is assumed, and th@s P eigenvalues greater thart and M — P eigenvalues
tangential components, theand® components, of the source€qual to o*. We denote the eigenvectors dt as {e;},
moment are considered. The magnitude of hle dipole- Wherej = 1,2,.--, M, and define matrice&'s and En as
source moment is defined &s(t;). Its orientation is defined s = [e1,---,ep] and Ey = [epi1, -+, en]. The span of |
as the dipole’s normal vect%(tk) — (m‘f’(tk); UZ(tk))- where the columns |nE5_ is called the signal subspace and that in
|In(tx)|| = 1. The source magnitude vectoratis defined as £~ called the noise subspace.
s(tr) = (S1(tx), Sa(tx), -, Sp(tx))T. The source temporal To estimate the locations of the dipole sources
behaviorS is defined asS = [s(t1),s(t2), - - -, s(tx)]. (z1,22,---,zp), the MUSIC algorithm takes advantage
The lead field vectors for the and ¢ components of the Of the fact that the lead field vector at each is orthogonal

pth source are defined & = (17,,17,,---,12 )" and 10 the noise subspace. Namely

0= (18,05, 15,7 We define the lead field vector LTe;=0 for j=P+1,--- M (6)
for the pth source at;, asl, (t;). Thisi,(t;) is obtained using
Thus, the source locations can be obtained by checking the
L(ty) = Uﬁ(tk)lﬁ'i‘ﬂzak)lﬂ (1) orthogonality between the lead field vector and the noise
subspace projecto y E&. The measure that evaluates this

The lead field matrix for the entire set ¢t dipole sources oihogonality is called the MUSIC localizer, and is proposed
is defined as to be [9]

L(te) = [L(tr) L(te), - Lo (L)) ©) J(@) = 1/ Ain(T(2) ENEXT(z), T(z) T(z))  (7)

For simplicity, we assume in this paper that all dipolevhere.i, (-, ) indicates the generalized minimum eigenvalue
sources have fixed orientations during measurement. Becaofthe matrix pair given in parenthesis. In this equatibty)
L(t;) becomes time-independent under this assumption, tiseexpressed aé(z) = [I,(x),ls(z)] wherel,(z) andly(x)
relationship betweer3 and S can be expressed, using theare the lead field vectors for the and # components of a
simpler notationZ source atr.
The MUSIC localizer is calculated in a volume where
B=L5+N. (3)  sources can exist, and each location where the localizer reaches
] ) ] ) a peak is chosen as the location of one dipole source. Note that
N is the noise matrix defined by = [n(t1),n(l2),---, the |ocalizer shown in (7) is derived under the assumption that
n(ix)], wheren(ty) is the additive noise at timé;. The o source orientations are fixed during measurement. It has
conventional way of estimating the locations of the dipol§een proven, however, that this localizer is also effective for
sources is based on minimizing the least squares cost functb%ide sources whose orientations vary during measurement
e soaman—lsT 2 [9]. It is also worth noting that the eigenvector corresponding
F=B-LS|I" = H(I_L(L L) L >B)|| ) to the minimum eigenvalue in (7) gives the estimate of the

Here, I is the unit matrix, and the estimates bfand.S are dipole-source orientation.

denoted ad, and S, respectively. This minimization requires ) ) )

a 3P-dimensional search, wherB is again the number of C- Covariance Difference Analysis

sources. Generally, for such a highly multidimensional opti- The essence of covariance difference analysis is calculating
mization search, there is no guarantee of obtaining a corréoe difference between covariance matrices obtained from two
solution unless we can set the initial estimate very close meeasurements with different stimulus conditions. This analysis
the true solution. provides the difference in source distributions between the two
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measurements, and thus is an appropriate tool for analyzimgds true. This relationship corresponds to the orthogonality
the data taken in MEG measurements with a pair of task-anélationship shown in (6) for the standard MUSIC algorithm.
control stimulus conditions. Thus, corresponding to the localizer in the standard MUSIC
We assume thaPr sources are elicited by the task stimulualgorithm shown in (7), the locations of the target sources can
and that, among thedér sources /- sources are also elicitedbe obtained by scanning the localizer calculated from
by the control stimulus. In this paper, the sources elicited — - - —
O}rzly by the task stimulus and n%tpby the control stimulus 7 (#) = 1/ Amin(L(2)" Ez 5 L(=), L) I(z)) ~ (15)
are called the target sources and the sources elicited by {he. o Ez =]
control stimulus are called the control sources. We define the|, ha abo
number of target sources d%;, such thatPs = Pr — P¢.
The covariance matrix for the task measureméht, can be
expressed as

i1l
ve discussion, we made the assumption that all
the control sources are activated by the task stimulus. This
may not always be true. That is, some control sources may
not appear in the task stimulus condition. The covariance
Rr = [l lo, - 1p 1Qr [l 1, .JIPT]T LWr  (8) _difference _a_nalysis, however, is _stiII e_ffe_ctive in such cases
if the condition described below is satisfied.
where @ and Wr, respectively, are the source and noise Let us assume that, among th& control sources/p
covariance matrices for the task condition. The covariangeurces are only activated in the control stimulus condition
matrix for the control measuremerft-, is expressed as and Pp sources are activated both in the task and the control
conditions. A number fronPs +1 to Ps+ Pp is given to each
Re = [l by, 1p]Qc[li, o, -, Ipc ] + We  (9)  source in the first group of control sources. Thatdswhere
. . j=Ps+1,--- Ps+ Pp represent the moment magnitudes
Wher_e Q. and W, are the 'source and noise covariancgs «vo sources in this group. A number frofy + Pp + 1
matrices for the control condition. to Ps + Pc is given to each source in the second group,

To make the covariance difference _algorlthm valid, W&nd their moment magnitudes are representedshywhere
need two assumptions: first, the correlation between the targeé Ps+ Pp +1,---, Ps + Pc. Note that the relationship

sources an(_JI the C(_)nt_rol sources are ne_ghglbly small, and SeC — p, + Pp holds.
ond, the noise statistical property remains unchanged betwee
the two measurements. Under the first assumption, we ha

P
QPS OP§:|
Op.  Qc

Here, O}, is ap x v matrix with all of its elements equal to

zero. The covariance matrix for the target sour@@s, is a ) _ )
Ps x Ps matrix explicitly given by The covariance matrix for the control sources activated by

both the task and control stimulu@,,, is given by

}he covariance matrix for the control sources activated only
Vk?y the control stimulusg),, is thus given by
Qr = [ (10) (SPot1) o {SPs415Ps1Pp)

(SPs+PpSPst1) - (SPatpp)

(St) o (SuSks)
Qs = . : . (11) <51235+PD+1> o (SPstPr+15Ps+Pc)
(SpsS1) -+ (9B.) @p = (s g > . (52 : >
The covariance matrix for the control sourced., is a PetPerPstlott Ps+be (17)
Pe x Pc matrix given by
9 o Using @ p, the source-covariance matrix for the task stimulus
(b1l (Spst15Pr) condition can be expressed as
(SppSpesi) - (53) Qs O
ProPs+1 Pr QT = OPS Q T (18)
Pp D

The second assumption leads B = W . Therefore
AR, which is the difference betweeR; and R-, can be At this point, we make further assumption that the correlation

expressed as between the two group of the control sources is negligibly
- small. Then, the source-covariance matrix for the control
AR= Ry — Rc =[l1, by, Ip]Qs[ly, o, - - Ip]" stimulus condition is given by
(13) 0, OF
It was shown in [8] thatAR has Ps nonzero eigenvalues Qe = oo St (19)
s g OPD @p

and M — Ps zero-level eigenvalues, and that eigenvectors
corresponding to zero-level eigenvalues are orthogonal to theThus, in this case, the difference matu¥®k can be ex-
lead field vector at the target source locations. That is, definipgessed as

such eigenvectors ag, the relationship AR=Ry—Ro =[lh, - Ipo dpess, - Ipesrn]

[IIJIZJ"'JIPS]Te} =0 for _]Ips—l—l,,M (14) 'AQ[lla"'alPsalPS-I—la"'alPs-I—PD]T (20)
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where 7

orr
AQ = [Qpi s ]
Op, —Qp
. >
It can be shown that the zero-level eigenvectorsAg? are 7 E; N o
orthogonal toly, - - -, {p.+p,] [8]. That is, a localizer search X
using (15) not only detects the target sources but also thﬁ. Y _ Second Source
: . st Source
control sources that are activated only by the control stimulus.
These two groups of sources can, however, be discriminated b
by checking the signs of the diagonal elements in mafg,
which can be estimated using

(21)

Third Source

AQ = [(LTL)”LT}AR[(LTL)”LT]T (22) Dot
ane y=
where

L= [lla o 'les-l-PD]'

To calculate L, the orientations of the dipole sources need

to be estimated using the eigenvector corresponding to tlﬂ'% 1. Source and detector configuration assumed in computer simulation.
smallest eigenvalue in (15). An example of applying (22) to _ _ _ _

discriminate the two groups of sources will be presented &€ expressed in centimeters. Three signal dipole sources were

Section lI-D. assumed to exist on a plane definedyas= 1.0: the first
dipole source was atH1.1, 1.0,—5.6), the second was at
D. Summary of Algorithm (2.8, 1.0,—5.4), and the third was at (4.5, 1.6,7.3). The

Th . diff lorithm i ved fojource and detector configuration for this simulation is shown
e covariance difference algorithm is summarized as chematically in Fig. 1.

lows. The spherical homogeneous conductor model [10] with
Step 1) The covariance matrices of the measured spatigg origin set at (1.0, 1.0-10) was used in this computer
temporal data are calculated for the task angmylation. The simulated magnetic field was calculated at 1-
control measurements. Then, the difference Mans intervals from 0 to 400 ms. To generate the simulated
trix between these two covariance matrices i§iomagnetic field, thep components of these sources were
calculated. modeled using exponentially damped sinusoidal functions, and
Step 2)  Eigen-decomposition of this difference matrix ighe g components were set to zero. The waveforms assigned
performed, and the subspace spanned by zefg-eachg component of the three sources are shown in Fig. 2.
level eigenvectors is defined by separating thgere, the correlation coefficients between any pair of the three
zero-level eigenvalues from the nonzero eigeRyaveforms were less than 0.3.
values. Uncorrelated Gaussian noise was added to make the final
Step 3) The localizer defined by (15) is calculatedignal-to-noise ratio (SNR) equal to 0.3 for the single-epoch
throughout the field of view, and each locationyata in the task condition. The SNR was defined by the ratio
where J(z) reaches a peak is determined to bgf the Frobenius norm of the signal-magnetic-field data matrix
the location of one dipole source. to that of the noise matrix. One hundred sets of the magnetic-
Step 4) When it is possible that the results obtained fjp|q data were generated and averaged to create the magnetic
Step 3 contain control source locations, the sigig|d data used for the source estimation. The final SNR of

of the diagonal elements () are checked using this averaged field data was approximately three for the task
(22) to separate the target sources from contrghndition.

sources.

B. Comparison with the Waveform-Subtraction Method

Ill. COMPUTER SIMULATION We first assumed that the task condition activates all three

sources and that the control condition activates only the first
and third sources. In this case, the second source is the
We used computer simulation to test the validity of th&arget source. In actual task-and-control-type measurements,
proposed method. A 37-channel magnetometer whose dbié onset of the control-source response may differ between
alignment was the same as that of the Magnes biomagnetie task and control measurements. To take this possibility into
measurement system (Biomagnetic Technologies Inc., Sagcount, the onset of control-source activation was set to be
Diego) was assumed. The direction was defined as thedelayed by 30 ms in the control measurement. The activation
direction perpendicular to the plane of the detector coil locatechveforms shown by the solid lines in Fig. 2 are used in the
at the center of the coil alignment, andvas equal to zero at task condition and those shown by the broken lines are used
this coil plane. The values of the spatial coordinatesy, z) in the control condition. The averaged magnetic-fields for the

A. General Data-Generation Conditions
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Fig. 2. The waveforms assigned to thecomponents of (a) the first, (b) the second, and (c) the third source in the computer simulation. In Section III-B,
the waveforms indicated by the solid lines are used in the task condition and those by the broken lines in the control condition.

task and control conditions are shown in Fig. 3(a) and (bhethod cannot separate the target source activity from the

One of the single-epoch data is shown in Fig. 3(c). control activities due to the 30-ms time offset existing in
The standard MUSIC localizer in (7) was applied to ththe control source activations between the two conditions. A

averaged field data; the results of calculating the localizer onmparison between Fig. 4(c) and (d) clearly demonstrates the

the y = 1.0 plane are shown in Fig. 4(a) and (b). Fig. 4(agffectiveness of the proposed covariance difference analysis.

shows the results for the task condition and (b) shows those

for the control condition. The contours in these figures show Effects of Strong Correlation Between

the relative value of the localizer, and each area where thgsk and Control Sources

localizer reaches a peak is considered to be the location O(Ne conducted the computer simulation when the taraet
one dipole source. In Fig. 4(a) the localizer clearly detects P 9

the three signal sources, and in Fig. 4(b) it clearly dete ource had a strong correlation with one of the control sources.

) gn: ' 9. ; y dae e waveform indicated in Fig. 2(a) was assigned to both the
the first and thlrd.sources. The'resglts of apply|r!g covanangs: and second sources. The same data generation procedure
e Ty i £25, 1L i Secon - s repeted, and e covarnce dierrce

9 . . analysis was applied to the generated field data. The results are
of the control sources (the first and third sources) has been L L
mpletely eliminated shown in Fig. 5. Here, the elimination of the control source
coApgey © i aet ' tinf i bout the t t acti .tinfluence obviously failed. These results demonstrate that the
f nt?ve; WEy %ex r?c Im ormation a toq i ed.argﬁ ac Lvt' roposed covariance difference algorithm is not effective when
rom the fask and control measurements 1s 1o directly Subtr ?Fong correlation exists between the task and control sources.
the field waveform elicited under the control condition from

that under the task condition. The results of this simple wave-

form subtraction are shown in Fig. 4(d). Here, the control field: Influence of a Control Source not

waveform was subtracted from the task waveform, and tidcited in the Task Condition

standard MUSIC localizer [(7)] was applied to this subtracted We next assumed that the task condition activates the first
waveform. These results show that the simple subtractiand third sources and that the control condition activates the
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Fig. 3. The 37-channel overlapped display of the field waveform generated in the computer simulation in Section IlI-B: (a) the task conditioon(b)lthe c
condition, and (c) one of the 100 single-epoch data generated in the task condition. This data is used to obtain the results shown in Fig. 7(b).
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Fig. 4. Results of the MUSIC source localization when the task condition activates all three sources and the control condition activates thaifidst and t
sources: (a) Results of applying the standard MUSIC localizer [(7)] to the data obtained under the task condition, (b) results of applying (7§ato the da
obtained under the control condition, (c) results of the covariance difference analysis using (15), and (d) results of the simple wavefoion-subthact.

The contours show the relative values of the localizer ornytke 1.0 plane, and each area where the localizer reaches a peak is considered to be the location
of one dipole source. The circle is the boundary of the sphere used for the forward calculation, depicting the approximate size of a human brinen this p

second and third sources. In this case, the first source is thepectively. According to the discussion in Section II-C, the

target source and the second source is activated only in tovariance difference analysis should detect the control (the
control condition. The source waveforms shown by the solgkcond) source as well as the target (the first) source. The
lines in Fig. 2(a), (b), and (c) were assigned to the first, secomdsults of the covariance difference analysis are shown in
and third sources both for the task and control conditions. TR&. 6(c). In these results, the first and second sources are
results obtained by applying the standard MUSIC localizeletected. We then estimated the matth) by using (22);

to the task and control data are shown in Fig. 6(a) and (e diagonal elements were found to be 33.8 (the first source)
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were recorded using the 37-channel Magnes magnetometer
installed at the Biomagnetic Imaging Laboratory, University
of California, San Francisco. All measurements were done in
a magnetically shielded room.

In these experiments we applied an auditory stimulus, a
somatosensory stimulus, or both to a male volunteer. The
auditory stimulus was a 1000-Hz pure tone with a 200-
ms duration; it was applied to the subject’s right ear. The
somatosensory stimulus was a 30-ms-duration tactile pulse (17
Fig. 5. The results of the covariance difference analysis when strong cor es-l) dellvere_d tO_ the (_jIStaI segment (_)f the right index finger.
lation exists between the task and control sources. The waveform showr!hthe combination stimulus, the auditory and somatosensory
Fig. 2(a) was assigned to both the first and second sources in this compstémuli started at the same time. These auditory, somatosen-
simulation. sory, and combination stimuli were repeatedly given one after

the other without changing the head position relative to the
and —42.7 (the second source). The signs of these diagorsgnsor array. The data was acquired at a sampling frequency
elements indicate that the first source is the target soufel kHz for the prestimulus interval of 300 ms and the
and the second source is the control source. These respiiststimulus interval of 800 ms and averaged for 256 epochs
demonstrate the validity of the discussion in Section II-C. of each stimulus condition. An on-line bandpass filter with a

bandwidth from 1-400 Hz was used and no post-processing
E. Influence of Time Jitter in Control Source Response digital filter was applied. The sensor array was placed on

It is possible that the onset of the control source respon@@ _Ieft hemisphere and posmqned t9 best record the M100
will have a time jitter and vary from epoch to epoch ir131ud|tory response. The mean interstimulus interval was 2 s,
actual cognitive experiments. In such cases, the propoé@&?}omly varlzd betw(;e_en 1.75 agd 2.25 s. he localizati
covariance difference analysis cannot effectively eliminate the lex, Y ag c cogr _mat_es use hto exprless tf € ocla_|zat|(;]n
control source influence if it is applied to the data obtaind§SUlts are depicted in Fig. 8. The results of applying the
by averaging multiple epochs. The same computer simulatigfadard MUSIC algorithm are shown in Figs. 9, 10, and 11.
as described in Section Ill-B was again performed excepf® data from 0-300 ms post stimulus onset were used for
that the onset of the control source in the task measuremlft analysis. In these figures, the localizer shown in (7) was
was randomly changed within a maximum of 30 ms whetdlculated with an interval of 0.5 cm within a volume defined
generating data for each epoch. The covariance differerfie =4 < # < 6, =3 <y < 6, and3 < » < 11. These
analysis was applied to the data averaged over 100 sets igures show the projections of the localizer values onto the
these single-epoch data transverse, coronal, and sagittal planes; the relative positions

The results are shown in Fig. 7(a). Obviously, the contr@f these planes are shown in Fig. 8. The circles depicting a
source influence was not eliminated. The results obtained wH#nan head represent the projections of the sphere used to

the covariance difference analysis was applied to a pair of th@culate the forward solutions.

e The results obtained using the data measured with only

single-epoch data are shown in Fig. 7(b). One of the sing{l{] . : ha .
epoch data used here is shown in Fig. 3(c). The results cont4]f @uditory stimulus are shown in Fig. 9. The sharp single

a severe blur, due to the low signal-to-noise ratio of the sing?§2K corresponds to a source in the auditory cortex. The
epoch data, even though the control source influence V\;ggults from the somatosensory stimulus alpne are shown in
removed. This blur, however, can be reduced by averagifilf)- 10- Two sources, probably corresponding to sources at
the difference matrix obtained using each set of single-epoltl¢ Primary (S) and secondary somatosensory (SlI) cortices,
data. The results of using this averaged-difference matrix be seen, although they are not well resolved. The results
shown in Fig. 7(c). To obtain these results, 100 single-epoff@M the combination of auditory and somatosensory stimuli
difference matrices were averaged, and the proposed localiggf Shown in Fig. 11. Two peaks can be seen in the left
[(15)] was calculated using this averaged difference matril}.em'Sphere'_ The sharp peak probably corresponds to the
The quality of these results is almost equal to that of the resuf@urce at Si; the dull peak probably corresponds to the two
in Fig. 4(c). Therefore, when one suspects that the onset of fRICeS at the auditory and secondary somatosensory cortices;
control-source response may vary, the procedure mentiorlB§S€ two sources cannot be resolved because they are very

in this subsection should be applied to eliminate the contr®PSe together. , _ _
source influence. We calculated two covariance matrices for the covariance

difference analysis: one by using the data from the combined
stimulus and the other by the data from the somatosensory
stimulus. That is, the combined stimulus was assumed to be the

) - task stimulus, and the somatosensory stimulus was assumed
We applied the proposed method to source localization fgy e the control stimulus. The data portion from 0-300 ms

measured evoked responses; these measurements simulgigd also used for calculating both of the two covariance

task- and control-type experiments. The evoked responsgsirices. The results of the covariance difference analysis are
1These elements are expressed using an arbitrary scale. shown in Fig. 12. A single sharp peak exists at almost the

-5

-10

z (cm)

-16

IV. APPLICATION TO EVOKED-FIELD MEASUREMENTS
SIMULATING TASK- AND CONTROL-TYPE EXPERIMENTS
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Fig. 6. Results of the MUSIC source localization when the task condition activates the first and third sources and the control condition activates the
second and third sources: (a) Results for the data obtained from task condition, (b) results for the data from control condition, and (c) results of the

covariance difference analysis using (15).

-15

©

Fig. 7. Results of the same computer simulation as in Fig. 4 for the case when the onset of the control source response was randomly varied within
30 ms when generating each set of epoch data: (a) Results of the covariance difference analysis applied to the data obtained by averaging 100 sets of

single-epoch data, (b) results of the covariance difference analysis applied to a pair of single epoch data, and (c) results when 100 sindézesmach dif
matrices were averaged, and the localizer in (15) was calculated using the averaged matrix.

transverse plane proposed covariance difference algorithm over this simple
subtraction method are summarized as follows.
<> First, the simple subtraction method is effective only when

the onset of the control-source time response in the task

measurements is exactly equal to that in the control measure-
sagittal plane ments. Otherwise, this method fails to extract the target-source
information, as was shown in Fig. 4(d). Second, the simple
subtraction method also cannot handle the case where some of
the control sources do not appear in the task measurements. In
this case, even if all sources are correctly localized, the simple
subtraction method provides no procedure for discriminating
Fig. 8. Thez,y, andz coordinates used to express the localization resuldetween the target sources and the control sources. In contrast,

shown in Figs. 9-12. The midpoint between the left and right pfeaU”CU'ébvarlance difference analysis can discriminate between these
points is defined as the coordinate origin. The axis directed away from t

origin toward the left preauricular point is defined as thg axis, and that WO types of sources by ChECkmg the S|gns of the d|agonal

from the origin to the nasion is thex axis. The+= axis is defined as the elements of matrl)dQ obtained using (22), as discussed in
axis that is perpendicular to both these axes and directed from the orlgmggctlon I-C.

the vertex. The relative positions of the transverse, sagittal and coronal planes

are also shown. The assumption that makes the proposed covariance differ-

ence analysis valid is that the brain response is linear, i.e.
same location where the source from the auditory stimuluse brain responses to different stimuli are additive and the
was localized (Fig. 9). These results clearly show that tl@rrelation between these responses is zero. It should be noted
covariance difference analysis can extract the target (auditofiyt the validity and the limitations of the linear modeling
source location and eliminate the disturbance from the contedl prain response have been studied in the functional MRI
(somatosensory) sources. [13], [14], and the linear modeling proves to be effective for

analyzing the fMRI or PET data in ordinary measurement

V. CONCLUSION conditions [15], although the brain response is known to be,
As mentioned in Section 1ll-B, a naive method to extract the principle, highly nonlinear.
information about the target activities is to simply subtract the The success of the proposed covariance difference analysis
magnetic-field waveform obtained by the control measuremeaigpends on the assumption that this linear modeling is also
from that by the task measurement. The advantages of thadid for MEG measurements. In actual MEG measurements,

coronal plane
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Fig. 9. Results of applying the standard MUSIC localizer in (7) to data obtained with the auditory stimulus. The localizer was calculated wittahn inter
of 0.5 cm within a volume defined as4 < » < 6,-3 < y < 6, and2 < z < 10; the projections of the localizer values onto the transverse, coronal, and
sagittal planes are shown. The circles depicting a human head represent the projections of the sphere used to calculate the forward solution.
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Fig. 11. Results of applying the standard MUSIC localizer in (7) to data measured with combination of the auditory and somatosensory stimuli.
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Fig. 12. Results of the covariance difference analysis. One covariance matrix was calculated from the auditory-somatosensory combineddrélsponse an
other was calculated from the somatosensory response. The localizer in (15) was used.

however, this assumption may not always be valid, so timeuromagnetic measurements should be investigated, and the
proposed method would not be effective in some casesefulness and limitations of the proposed method must be
The validity and limitations of the linear model for theevaluated in such investigations.
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