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Abstract—We have developed a method that incorporates
the time-frequency characteristics of neural sources into mag-
netoencephalographic (MEG) source estimation. This method,
referred to as the time-frequency multiple-signal-classification
algorithm, allows the locations of neural sources to be estimated
from any time-frequency region of interest. In this paper, we
formulate the method based on the most general form of the
quadratic time-frequency representations. We then apply it to
two kinds of nonstationary MEG data: gamma-band (frequency
range between 30–100 Hz) auditory activity data and spontaneous
MEG data. Our method successfully detected the gamma-band
source slightly medial to the N1m source location. The method
was able to selectively localize sources for alpha-rhythm bursts
at different locations. It also detected the mu-rhythm source
from the alpha-rhythm-dominant MEG data that was measured
with the subject’s eyes closed. The results of these applications
validate the effectiveness of the time-frequency MUSIC algorithm
for selectively localizing sources having different time-frequency
signatures.

Index Terms—Biomagnetism, biomedical signal processing,
functional brain imaging, inverse problems, time-frequency
analysis.

I. INTRODUCTION

T HE NONINVASIVE measurement of magnetic fields gen-
erated from human cortical neural activities, referred to as

magnetoencephalography (MEG) [1], has been found to be a
powerful tool in studies of human neurophysiology and neural
information processing. One major problem with MEG mea-
surements is the inverse problem [1], a problem of estimating
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neural current distributions from the magnetic field measured
outside a human head. Because this estimation problem is inher-
ently ill-posed, the estimation needs to incorporate some prior
knowledge regarding the source characteristics. Such character-
istics can include possible source locations, the source spatial
extent, the total number of sources, or the frequency character-
istics of source activities.

Neuronal activities in a human brain are basically nonsta-
tionary. Time-frequency analysis has, therefore, played an im-
portant role in analyzing and characterizing electrophysiolog-
ical data such as that from MEG or encephalography (EEG)
[2]–[4]. We have developed a method that incorporates the time-
frequency characteristics of the source activity into the source
estimation. The method, referred to as the time-frequency mul-
tiple-signal classification (MUSIC) algorithm, allows us to es-
timate the locations of neural sources from any time-frequency
region of interest (ROI). We have reported, in a short commu-
nication, the formulation of a method based on the Cohen-class
quadratic time-frequency representations [5]. The present paper
presents a formulation based on the most general form of the
quadratic time-frequency representations. It also presents the re-
sults of applying the developed method to two types of nonsta-
tionary MEG data: stimulus-locked auditory gamma-band data
and spontaneous MEG (alpha and mu rhythm) data.

A recent study investigated the possibility of incorporating
source estimation with time-frequency analysis in the form of a
two step procedure [6]. They first synthesize a signal that only
contains the target time-frequency components of interest, and
then apply a single-dipole localization procedure to this synthe-
sized signal. This method relies on a technique referred to as
time-frequency synthesis. This technique, however, is tedious
and may be computationally intensive when an ROI with an
arbitrary shape is used. In contrast, our method, which esti-
mates neural sources directly from the time-frequency domain
data, is more straightforward. Note that a method similar to our
method was independently developed and reported recently in
the radar-signal processing field [7].

The purpose of this paper is to describe the formulation
of the time-frequency MUSIC algorithm, and to present the
details of our investigation that validate this formulation.
Following the method’s formulation, which is based on general
quadratic time-frequency representations, we present the
results from numerical experiments that not only validated the
method’s formulation, but also showed the basic superiority
of the method over existing source-localization methods. We
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then apply the time-frequency MUSIC algorithm to auditory
gamma-band evoked-field data and spontaneous MEG (alpha
and mu rhythm) data. These data were used because the their
origins have been relatively well investigated, and we can
assess the validity of the time-frequency MUSIC results by
comparing them with results from previous investigations
[8]–[12]. The results of these applications validated the basic
effectiveness of the time-frequency MUSIC algorithm when
analyzing such nonstationary MEG signals as mixtures of
various time-frequency components.

Throughout this paper, a lower-case boldface font indicates a
vector, and an upper-case boldface font indicates a matrix. The
superscript indicates the matrix transpose and the superscript

indicates the Hermitian conjugate transpose of a matrix.

II. M ETHOD

A. Definitions

Let us define the magnetic field measured by the
th detector coil at time as and a vector

as a set of measured
data where is the total number of detector coils. A total
of current-dipole sources are assumed to generate the bio-
magnetic field, and the locations of these sources are denoted
as . The magnitude of theth dipole-source
moment is defined as . The source magnitude vector is
defined as . The spherical
homogeneous conductor model [13] is used, so we consider
two tangential components, the and components, of the
source moment while its radial component is assumed to be
zero. The dipole orientation is defined as its normal vector

, where . We also define a
matrix that expresses the orientations of alldipole

sources as such that

...
...

.. .
(1)

In this paper, for simplicity, we assume that no dipole sources
change their orientation during the time period of interest, and
we use time-independent to express the dipole-source orien-
tations.

The lead-field vectors for the and compo-
nents of the source moment at are defined as

and
. Here, and express

the th sensor output induced by the unit-magnitude source
directed in the and directions, respectively. We define the
lead-field matrix for the source at as
which represents the sensitivity of the sensor array at location

. The composite lead-field matrix for the entire set of
dipole sources is defined as .
Then, the relationship between and is expressed as

(2)

where is the additive noise.

B. Conventional Time-Domain MUSIC Algorithm

The MEG inverse problem is the problem of estimating
the source locations and the source activity
from the measurement . The conventional way to solve
this inverse problem is to minimize the least-squares error

where is the estimated measurement.
Estimating the source locations, in this minimization, requires a

dimensional nonlinear search. Generally, for such a highly
multidimensional search, there is no guarantee of obtaining
a correct solution unless we can set the initial estimate very
close to the true solution. The MUSIC algorithm approach
has been introduced [14], [15] in order to avoid this highly
multidimensional search. A distinct advantage of this algorithm
is that regardless of the number of dipole sources, it gives a
suboptimal estimate of the source locations by using only a
three-dimensional search in the solution space.

We define the measured-data covariance matrix as, and the
covariance matrix of the dipole-source activities as. Using
(2) and assuming that the noise and signal are uncorrelated, we
have

(3)

where indicates the ensemble average, and it is assumed that
the noise is white Gaussian noise with variance. This equa-
tion shows the relationship between the covariance matrices
of measurement and source activities; this relationship is the
basis of deriving the MUSIC algorithm. We denote the eigen-
vectors of as , where (the eigen-
values are numbered in decreasing order), and define matrix
as . The eigenvectors
are those corresponding to the noise-level eigenvalues, and the
span of the columns in the matrix is called the noise sub-
space.

To estimate the locations of the sources, the MUSIC algo-
rithm takes advantage of the fact that the sensor lead-field with
an optimum orientation , in which represents the
normal vector in the optimum orientation, is orthogonal to the
noise subspace of at the true source locations. This orthog-
onality can be evaluated by the following function [15], which
is called the MUSIC localizer

(4)

where indicates the generalized minimum eigenvalue
of the matrix pair given in parenthesis. Equation (4) is calculated
in a volume where sources can exist, and each location where

reaches a peak is chosen as the location of one source.

C. Time-Frequency Domain MUSIC Algorithm

1) Covariance-Matrix Relationship in the Time-Frequency
Domain: Here, we describe the time-frequency domain
MUSIC algorithm, which makes it possible to estimate neural
sources from each time-frequency component of MEG data.
Time-frequency signal representations are generally classified
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into two groups: linear and quadratic representations [16].
Although the linear representations include the well-known
short-time Fourier transform (STFT) and the wavelet transform,
quadratic time-frequency representations are known to provide
better performance, and thus many modern time-frequency
representations have quadratic forms [17]. We thus use a
general quadratic time-frequency representation to formulate
the method, but it can also be easily formulated using linear
time-frequency representations.

Let us denote the time-frequency representation matrix of the
vector signal as and that of as . In the
most general quadratic form, they are expressed as

(5)

and

(6)

The matrix is an matrix. Its diagonal ele-
ments are the auto-time-frequency distributions of the channel
recordings and its off-diagonal elements are the cross-time-fre-
quency distributions between different channel recordings. The
matrix is a matrix. Its diagonal elements are the
auto-time-frequency distributions of the source activities and
its off-diagonal elements are the cross-time-frequency distribu-
tions between different source activities.

In (5) and (6), is a kernel, which de-
termines the characteristics of the resultant quadratic
time-frequency distributions [17]. When this kernel has
the form , the resultant
time-frequency representations are called the Cohen class.
When the kernel has a form of the affine smoothing, i.e.,

, where is
a constant that converts scale to frequency, the quadratic
time-frequency representations are called the affine class. The
relationship between several specific choices of the kernel and
the properties of the resultant time-frequency distributions has
been well studied in the field of time-frequency analysis. A
detailed discussions on such studies are found in [16]–[18].

Using (2), (5), and (6), we can derive

(7)

where

(8)

(9)

and

(10)

Let us introduce the target time-frequency regionwhich con-
tains the signal of interest whose source configuration is to be in-
vestigated. We assume that the noise and signal are uncorrelated
in the target region, and that the noise is white Gaussian and is
uncorrelated between channels. Then, we obtain

and where again indi-
cates the ensemble average andis the noise-power density in
the time-frequency domain. We also assume that the noise has
the ergodic property, so the ensemble average can be approxi-
mated with the average over the target region, i.e.,

and

We also define the matrices and obtained by averaging
and over the target time-frequency region

and

(11)

Then, we finally derive the relationship

(12)

This equation shows the relationship between the measurement
and source-activity covariance matrices in the time-frequency
domain [its conventional time-domain counterpart is shown in
(3)], and is the basis of deriving the time-frequency MUSIC
algorithm.

2) Deriving the Time-Frequency MUSIC Localizer:We
denote the noise-level eigenvectors of as

, where is the number of sources whose
activity has time-frequency components in the target region.
Then, since the noise-level eigenvectors satisfy the relationship,

, (12) leads to

(13)

The matrices and are full-column-rank matrices. There-
fore, when the matrix is a full-rank matrix, we get

for (14)

The above equation indicates that source locations can be ob-
tained by checking the orthogonality between the optimally-ori-
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Fig. 1. (a) Waveform of the generated magnetic field from one representative
channel located approximately above the sources. (b) Power spectrum of
the waveform shown in (a). (c) Power spectrum of the generated magnetic
field obtained by averaging the spectra from all channels. The frequency is
normalized such that the Nyquist frequency is equal to 0.5.

Fig. 2. Spectrogram obtained by averaging the spectrograms from all channel
recordings. The two quadrangular areas denoted by
 and
 , are the target
regions used for the source-estimation experiments.

ented sensor lead field and the noise-level eigenvec-
tors.

Therefore, the localizing function can be calculated in the
following manner:

(15)

Fig. 3. Results of calculating the MUSIC localizer on the planex = 1 cm. The
time-frequency MUSIC algorithm was used with the target region set as: (a)


and (b)
 . (c) The conventional MUSIC algorithm was used. The contours
show the relative values of the MUSIC localizer.

Fig. 4. Thex, y, andz coordinates used to express the estimated results in
Figs. 6, 8, 12, and 14. The midpoint between the left and right preauricular points
is defined as the coordinate origin. The axis directed away from the origin toward
the left preauricular point is defined as the+y axis and that from the origin to
the nasion is the+x axis. The+z axis is defined as the axis perpendicular to
both these axes and is directed from the origin to the vertex.

where the matrix is defined as .
The only difference between the proposed and the conventional
MUSIC algorithms is that the proposed algorithm uses this
instead of the used in (4), and that since the matrix is
complex-valued, we use the Hermitian conjugate. Equation
(15) was obtained under the assumption that dipole sources do
not change their orientations during the time period of interest.
It can easily be shown that this localizer in (15) is effective even
when this assumption does not hold and the source orientations
change during the measurement [5].
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Fig. 5. MEG waveforms from two kinds of auditory measurements. (a)
Regular auditory N1m measurement. (b) Auditory gamma-band measurement.
The recordings from 60 sensors covering the subject’s right hemisphere are
overlapped.

3) Summary of the Algorithm:The procedure of imple-
menting the time-frequency MUSIC algorithm is summarized
as follows.

Step 1) The time-frequency matrix is calculated
with an appropriate choice of the time-frequency
representations. The th diagonal term of this ma-
trix is given by the auto-time-frequency distribution
of the th-channel recording, and its th
off-diagonal term is given by the cross-time-frequency
distribution between the th and th channels.

Step 2) The matrix is obtained by averaging
over the predetermined target region, and the noise-
level eigenvectors are obtained by applying the eigen-
decomposition of .

Step 3) The localizer defined by (15) is calculated throughout
the source space, and each location where reaches
a peak is determined to be the location of one dipole
source.

III. N UMERICAL EXPERIMENTS

We performed numerical experiments to test the validity of
the arguments in Section II. We used the coil configuration of a
148-channel whole-head Magnes 2500 WH biomagnetic mea-
surement system (Biomagnetic Technologies Inc., San Diego,
CA). The coordinate origin was defined at the center of the coil
array. The direction was defined as the direction perpendic-
ular to the plane of the detector coil located at this center. The
direction was defined as that from the posterior to the anterior,
and the direction was defined as that from the left to the right
hemisphere. Two signal sources were assumed to exist on the
same plane ( cm) with their coordinates equal to

and .

(a)

(b)

(c)

Fig. 6. Results of applying the conventional time-domain MUSIC algorithm to
the data shown in Fig. 5(a). The time window ranging from 0–130 ms was used
to calculateRRR . The contours show the relative values of the localizer in (4);
the projections of the localizer values onto the transverse, coronal, and sagittal
planes are shown. The circles depicting a human head represent the projections
of the sphere used to calculate the forward solution.

The simulated magnetic field was calculated at
351 time points. To generate the simulated neuro-
magnetic field, the components of the two sources

were amplitude- and frequency-mod-
ulated; i.e.,

. The values for were set at
, for the first

source and , for
the second source where the unit ofis timepoint. Their
components were set to zero.

Gaussian noise uncorrelated between different sensor record-
ings was added to make the final signal-to-noise ratio (SNR)
equal to 0.85. The SNR was defined as the ratio of the Frobe-
nius norm of the signal-magnetic-field data matrix to that of
the noise matrix. The waveform of the generated magnetic field
from one representative channel located approximately above
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Fig. 7. Spectrogram for the frequency range above 15 Hz obtained from
the MEG data in Fig. 5(b). The spectrogram was calculated using the first
singular temporal vector, which was obtained by applying the singular value
decomposition to the 60-channel spatio–temporal matrix of the averaged data.
The windowing function was set equal to a 255-point Hanning window.

the two sources is shown in Fig. 1(a). Its power spectrum is
shown in Fig. 1(b), and the power spectrum averaged across all
sensor channels is shown in Fig. 1(c). The spectrograms were
calculated from all channel recordings, and the results obtained
by averaging all these spectrograms are shown in Fig. 2. Here, a
Hanning window with a size of 77 data points was used [19].
Figs. 1 and 2 indicate that the signals from the two sources
cannot be separated in either the time domain or in the frequency
domain, but they are clearly separated in the time-frequency do-
main.

The time-frequency MUSIC algorithm was then applied by
setting the target time-frequency region as the regions indicated
by and in Fig. 2. The results are shown in Fig. 3. The con-
tours in Fig. 3(a) and (b) shows the relative value of the MUSIC
localizing function in (15) on the plane cm, and each
area where the localizing function reaches a peak is considered
to be the location of one dipole source. The () coordinates
of the peak locations in Fig. 3(a) and (b) are and

, respectively. These results show that the time-fre-
quency MUSIC algorithm accurately localized these two signal
sources, and these results verify the validity of our argument
in Section II. The conventional time-domain MUSIC algorithm
was also applied to the same computer-generated data, but the
conventional algorithm was not able to resolve the two sources
[Fig. 3(c)].

IV. EXPERIMENTSUSING MEG DATA

The MEG data presented in this section was recorded by
using a 148-channel whole-head biomagnetometer (Magnes
2500WH) that was installed at the Communications Research
Laboratory, Tokyo, Japan. We use the head coordinates ex-
plained in Fig. 4 to express the estimated source locations.

(a)

(b)

(c)

Fig. 8. The results of calculating time-frequency MUSIC localizer [(15)] with
the target region set at the gamma-band region marked as the square in Fig. 7.

A. Source Localization for Auditory Gamma-Band Activity

Two kinds of auditory measurements were conducted with a
healthy male volunteer (age 39, right-handed). First, we mea-
sured the regular auditory magnetic response by using a 1-kHz
pure-tone stimulus applied to the subject’s left ear. The sam-
pling interval in the data acquisition was 1 kHz, the average
inter-stimulus interval was 2 s, and an on-line bandpass filter
ranging from 1–400 Hz was applied. A total of 100 epochs were
averaged, and this averaged data is shown in Fig. 5(a). Here we
selected recordings from 60 sensors covering the subject’s right
hemisphere and the waveforms for those recordings are over-
lapped in this figure. The peak for the N100m (the peak located
around the latency of 100 ms) is clearly visible. Second, we
measured the gamma-band auditory activity using a click sound
with a duration of 1 ms. The click sound was applied to the sub-
ject’s left ear; the inter-stimulus interval was 1 s and a total of
400 epochs were averaged. In this measurement, to maintain the
subject’s attention to the stimulus, the subject was asked to move
his right index finger when he heard the tone. The waveforms
from the same 60 sensors are shown in Fig. 5(b).
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(a) (b)

Fig. 9. MRI overlay of the gamma-band source and the N1m source both obtained from three separate measurement sessions. The white and the black triangles
indicate the locations of the gamma-band and the N1m sources, respectively. The coronal (left) and the sagittal (right) cross sections are shown.

Fig. 10. Spectrograms calculated from the temporal singular vectors of the 148-channel recordings of the spontaneous MEG. (a) The first singular vector is used.
(b) The second singular vector is used. The windowing function was set equal to a 127-point Hanning window. The regions denoted as
 , 
 , and
 were
chosen as the target regions in the time-frequency MUSIC analysis.

We applied the conventional time-domain MUSIC algorithm
to the auditory N100m shown in Fig. 5(a). The covariance ma-
trix was calculated using this averaged response with a time
window ranging from 0–130 ms. The MUSIC localizer plot is
shown in Fig. 6. In this figure, the MUSIC localizing function
in (4) was calculated with an interval of 0.5 cm over a volume
in the subject’s right hemisphere, and the projections onto the
transverse, the coronal, and the sagittal planes are displayed.
The figure shows that the algorithm detected the source for the
N100m response, which is believed to be located in the primary
auditory cortex area in the right hemisphere.

To extract a representative time-course of the 60-channel
recordings shown in Fig. 5(b), we applied the singular value
decomposition to the spatio–temporal data matrix of these
averaged recordings. The spectrogram was then calculated
using the first temporal singular vector, which corresponds
to the largest singular value. The windowing function was
set equal to a 255-point Hanning window. The results are
shown in Fig. 7. The stimulus-locked gamma-band activity

is clearly observed in the latency range from 0–0.1 s. The
MUSIC localizer plot obtained using (15) is shown in Fig. 8.
Here, the procedure described in Section II-C-3 was applied
to the averaged data in Fig. 5(b). That is, the averaged data
was used as in (5). The square in Fig. 7 indicates the
target region; i.e., only the gamma-band portion within this
square was used to obtain the plot in Fig. 8. In this figure,
the time-frequency MUSIC method clearly detected a single
localized source for the auditory gamma-band activity in the
right temporal area.

With this subject, we repeated the same measurements three
times; each measurement session was separated by approxi-
mately one week. The three sets of localized results for the
gamma-band activity were overlayed onto the subject’s mag-
netic resonance image (MRI). The results are shown in Fig. 9.
The three locations of the gamma-band source were all medial
to the N100m source but differed somewhat: One was located
nearly 1 cm medial to the N100m source, but the other two were
close to the N100m source.
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B. Source Localization for Spontaneous MEG

The subject was a healthy male volunteer (age 27,
right-handed) who was asked to lie down quietly with his
eyes closed during the measurements. The spontaneous MEG
was recorded continuously for a total of six seconds with a
sampling frequency of 677~Hz. An on-line bandpass filter
ranging from 1~Hz to 200~Hz was applied. Singular-value
decomposition of the 148-channel spatio-temporal data matrix
was performed, and spectrograms were obtained from the first
and the second temporal singular vectors. The windowing
function was set equal to a 127-point Hanning window. The
resultant spectrograms are shown in Fig. 10. A part of the
148-channel recordings of the spontaneous MEG is shown in
Fig. 11. A couple of the alpha spindles can be observed in this
figure.

Two distinct alpha bursts are clearly observed in Fig. 10(a),
which was obtained from the first singular vector. The regions
including these components are denoted asand as shown
in Fig. 10(a). Then, the time-frequency MUSIC algorithm was
applied with the target region set at and . The MUSIC
localizer plots are shown in Fig. 12(a) and (b). Fairly localized
sources were detected and the locations of the sources from
and were found in the occipital region. The region marked
by in Fig. 10(b) was also analyzed by the time-frequency
MUSIC algorithm. The resultant MUSIC localizer plot is shown
in Fig. 12(c) A single source is clearly detected in the left tem-
poral area.

The peak locations in Fig. 12(a)– (c) were overlayed onto the
subject’s MRI; the results for sagittal cross sections are shown
in Fig. 13. The two sources for the alpha bursts inand
are, respectively, localized near the parieto-occipital sulcus and
in the occipital visual area [Fig. 13(a) and (b)]. Several previous
investigations reported that the source for the alpha rhythm was
localized near the parieto-occipital sulcus and near the calcarine
sulcus in the visual area [10]–[12]. It was also reported that each
alpha burst (spindle) has its own location [20], [21]. Our results
here are in good agreement with the results from these previous
investigations. Fig. 13(c) shows that the source for a component
in was localized in the motor area, and this indicates that
this component is a part of the mu-rhythm [10], [12]. These
results show that the time-frequency MUSIC algorithm is so
sensitive that it was able to detect the mu-rhythm source from
the alpha-rhythm-dominant spontaneous MEG.

V. DISCUSSION

In the results presented in Section IV-A, the three locations
of the gamma-band source were all medial to the N100m
source but differed somewhat. A previous investigation [8],
[9] reported that the source of the gamma-band activity was
localized slightly medial and anterior to the N100m source.
Our results are in fairly good agreement with these previous
results. Several factors could have caused the fluctuation in
the estimated source locations of the auditory gamma-band
activity. Such factors include errors in registering the head
coordinates to the MRI pixel coordinates, the subject’s head
motion during the measurement, and the noise contained in the

Fig. 11. The measured spontaneous MEG. Twenty-six representative
channel recordings were selected. (The selection was made with no particular
preference, and these 26 channel sensors are fairly uniformly located on a head
surface.) This spontaneous MEG was measured for 6 s with a subject lying
down quietly with his eyes closed.

target time-frequency region. Even fluctuations in the subject’s
internal conditions, such as his attention to the stimulus [9] or
his general vigilance level, may have caused fluctuation of the
estimated source locations. Further investigation using multiple
subjects is needed to draw clearer conclusions about the location
of the source of the gamma-band activity.

We also applied the conventional time-domain MUSIC algo-
rithm to the spontaneous MEG data in Section IV-B for com-
parison. The results are shown in Fig. 14. Here, data from the
whole 6 s was used to obtain . The results indicate that the
conventional MUSIC algorithm can resolve none of the sources
detected by the time-frequency MUSIC algorithm, and the con-
ventional MUSIC algorithm only detected a large activated area
in the occipital region. This comparison demonstrates the effec-
tiveness of the proposed time-frequency MUSIC algorithm for
selectively localizing sources having different time-frequency
signatures.

In Section II, the time-frequency MUSIC algorithm was de-
rived from the matrix equation [(12)] with the assumption that
there are no perfectly correlated sources. The MUSIC algo-
rithm has a well-known problem in that it tends to mis-localize
sources when they are highly correlated. It is, therefore, worth
noting that the developed method can be modified to incorpo-
rate non-MUSIC-type multidipole estimation. It can be shown
that the optimum estimates of the source locations can be ob-
tained by directly minimizing the least-squares-error cost func-
tion given by

(16)

where is the projection operator defined as

(17)

and and are the estimated values of and . This min-
imization can be done using conventional nonlinear optimiza-
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(a) (b)

(c)

Fig. 12. The results of applying the time-frequency MUSIC algorithm to the spontaneous MEG data. The target region was set at (a)
 , (b)
 , and (c)
 .

tion methods [19]. Thus, if it is suspected that correlated mul-
tiple sources exist in the time-frequency ROI, we can apply this
direct minimization procedure although we need information
about the number of sources and a good initial guess concerning
the source locations.

The most computationally intensive part of implementing
the time-frequency MUSIC algorithm is the calculation of

, which contains times calculations of the cross-

or auto-time-frequency distribution of channel recordings. In
Section IV, we used the STFT because of its computational
efficiency. For the case presented in Section IV-A, it took
approximately one hour1 to calculate , but we estimated

1This calculation was done by using Pentium III (450 MHz)-based PC with
MATLAB (Mathworks, Natick, MA).
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Fig. 13. MRI overlay of the peak locations in Fig. 12. The results in (a), (b), and (c), respectively, show the peak locations obtained in Fig. 12(a)–(c).

that it would have taken 3–4 h to calculate this matrix if we had
used the smoothed pseudo Wigner distribution, which is a typ-
ical Cohen-class quadratic representation. The current computer
routine, however, is not optimized to obtain the highest perfor-
mance in the computational speed, and it is possible to attain a
considerable speedup, for example, by programing it using the
C code. For analyzing MEG data such as those presented in Sec-
tion IV, any time-frequency representations could be used with
the time-frequency MUSIC algorithm because high time-fre-
quency resolution is not needed to analyze such MEG data.
However, when analyzing other kinds of MEG data, such as
some types of sleep spindles or epileptic spikes, it may be neces-
sary to use more sophisticated time-frequency representations,
since analyzing such data may require higher time-frequency
resolution. Computer routine that calculates with a res-
onable computational speed should be developed in such cases.

A time-frequency representation of multichannel MEG
recordings provides space, time, and frequency information,
and many time-frequency maps whose number equals the
number of sensor channels are obtained. Such information
may be excessive for extracting the time-frequency char-
acteristics of the signal of interest, and we need to obtain
fewer time-frequency maps that appropriately represent the
whole time-frequency properties of the multichannel data. To
extract such representative time-frequency maps, we applied
singular-value decomposition to the measured spatio–temporal

data matrix in Section IV, and calculated the time-frequency
maps of the temporal singular vectors corresponding to signif-
icantly large singular values. Other method can also be used,
for example, one that calculates the time-frequency distribution
averaged over the channels [this is equivalent to calculating the
trace of the matrix ]. A simpler method such as this
may suffice in some cases such as our numerical experiment in
Section III.

In summary, we have developed a method that incorporates
the time-frequency characteristics of neural sources into mag-
netoencephalographic (MEG) source estimation. The method,
which we refer to as the time-frequency MUSIC algorithm, al-
lows the locations of neural sources to be estimated from any
time-frequency ROI. The algorithm was applied to two types
of nonstationary MEG data: auditory gamma-band activity data
and spontaneous MEG data. The effectiveness of the time-fre-
quency MUSIC algorithm was assessed by comparing the re-
sults of these applications with the results from previous investi-
gations on the same types of nonstationary MEG data. As a next
step, we plan to apply the proposed time-frequency MUSIC al-
gorithm to MEG data whose origin is difficult to analyze with
existing methods. Possible candidates include some types of
sleep spindles, epileptic spikes, and spontaneous waves with
pathologic origins. The results of these investigations will be
reported in the near future.
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(a)

(b)

(c)

Fig. 14. The results of applying the conventional time-domain MUSIC
algorithm (4) to the spontaneous MEG data. Data from the whole 6 s was used
to calculate the covariance matrixRRR .
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