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Estimating Neural Sources from
Each Time-Frequency Component of
Magnetoencephalographic Data
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Abstract—We have developed a method that incorporates neural current distributions from the magnetic field measured
the time-frequency characteristics of neural sources into mag- outside a human head. Because this estimation problem is inher-

netoencephalographic (MEG) source estimation. This method, gonyy jl|-posed, the estimation needs to incorporate some prior
referred to as the time-frequency multiple-signal-classification

algorithm, allows the locations of neural sources to be estimated kn_owledge_ regarding th_e source CharaCt_eriStiCS' Such CharaCt_er'
from any time-frequency region of interest. In this paper, we Iistics can include possible source locations, the source spatial
formulate the method based on the most general form of the extent, the total number of sources, or the frequency character-
quadratic time-frequency representations. We then apply it to jstics of source activities.

two kinds of nonstationary MEG data: gamma-band (frequency AT ; ; -
range between 30-100 Hz) auditory activity data and spontaneous Neuronal activities in a human brain are basically nonsta

MEG data. Our method successfully detected the gamma-band tionary. Time.—frequenf:y analysis has, thgrefore, played "?m im-
source slightly medial to the N1m source location. The method Portant role in analyzing and characterizing electrophysiolog-
was able to selectively localize sources for alpha-rhythm bursts ical data such as that from MEG or encephalography (EEG)
at different locations. It also detected the mu-rhythm source [2]-[4]. We have developed a method thatincorporates the time-

from the alpha-rhythm-dominant MEG data that was measured aq,ency characteristics of the source activity into the source
with the subject’s eyes closed. The results of these applications

validate the effectiveness of the time-frequency MUSIC algorithm ?St'm"’.‘t'on' The m_ethc.)d’ referred to as the time-frequency mul-
for selectively localizing sources having different time-frequency tiple-signal classification (MUSIC) algorithm, allows us to es-
signatures. timate the locations of neural sources from any time-frequency
Index Terms—Biomagnetism, biomedical signal processing, rggio_n of interest (RQI)' We have reported, in a short commu-
functional brain imaging, inverse problems, time-frequency Nication, the formulation of a method based on the Cohen-class
analysis. guadratic time-frequency representations [5]. The present paper
presents a formulation based on the most general form of the
guadratic time-frequency representations. It also presents the re-
sults of applying the developed method to two types of nonsta-
HE NONINVASIVE measurement of magnetic fields gentionary MEG data: stimulus-locked auditory gamma-band data
erated from human cortical neural activities, referred to agd spontaneous MEG (alpha and mu rhythm) data.
magnetoencephalography (MEG) [1], has been found to be aA recent study investigated the possibility of incorporating
powerful tool in studies of human neurophysiology and neurgburce estimation with time-frequency analysis in the form of a
information processing. One major problem with MEG meawo step procedure [6]. They first synthesize a signal that only
surements is the inverse problem [1], a problem of estimatiggntains the target time-frequency components of interest, and
then apply a single-dipole localization procedure to this synthe-
sized signal. This method relies on a technique referred to as
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then apply the time-frequency MUSIC algorithm to auditory3. Conventional Time-Domain MUSIC Algorithm

gamma-band evoked-field data and spontaneous MEG (alpherhe MEG inverse problem is the problem of estimating
and mu rhythm) data. These data were used because the fygirgqrce locations, ..., zp» and the source activity()

origins have bggn relativel_y well investigated, and we cafym the measuremerii(t). The conventional way to solve
assess the validity of the time-frequency MUSIC results Ryis inverse problem is to minimize the least-squares error
comparing them with results from previous mvestlgatlonE = |[b(t) — I3(t)|| where@(t) is the estimated measurement.
[8]-{12]. The results of these applications validated the basiGimating the source locations, in this minimization, requires a
effectiveness of the time-frequency MUSIC algorithm whefp gimensional nonlinear search. Generally, for such a highly
analyzing such nonstationary MEG signals as mixtures pfyidimensional search, there is no guarantee of obtaining
various tlme-frequency components. o a correct solution unless we can set the initial estimate very
Throughout this paper, a lower-case boldface fontindicateg@se to the true solution. The MUSIC algorithm approach
vector, and an upper-case boldface font indicates a matrix. Thes peen introduced [14], [15] in order to avoid this highly

superscriptl” indicates the matrix transpose and the superscrigl, igimensional search. A distinct advantage of this algorithm
H indicates the Hermitian conjugate transpose of a matrix. g that regardless of the number of dipole sources, it gives a

suboptimal estimate of the source locations by using only a
three-dimensional search in the solution space.
A. Definitions We define the measured-data covariance matriasnd the
ovariance matrix of the dipole-source activitiesias Using

2) and assuming that the noise and signal are uncorrelated, we
have

Il. METHOD

Let us define the magnetic field measured by th
mth detector coil at timet as b,(t) and a vector
b(t) = [bi(t), ba(t), ..., bs(¥)]F as a set of measured
data whereM is the total number of detector coils. A total

o T
of P current-dipole sources are assumed to generate the bio- R, = <b(t)b (t)>

magnetic field, and the locations of these sources are denoted =(L.®)(s(t)s"()) (FTL]) + (n(t)n” ()

as(xzi, x2, ..., xp). The magnitude of theth dipole-source = (L®)R, ($TLY) + 021 (3)
moment is defined as,(¢). The source magnitude vector is

defined ass(t) = [s1(?), s2(¢), ..., sp(t)]*. The spherical \yhere(.) indicates the ensemble average, and it is assumed that

homogeneous conductor model [13] is used, so we Consigigé noise is white Gaussian noise with varian€e This equa-

two tangential components, the and ¢ components, of the tjon shows the relationship between the covariance matrices
source moment while its radial component is assumed to §emeasurement and source activities; this relationship is the
zero. The dipole orientation is defined as its normal vectggsis of deriving the MUSIC algorithm. We denote the eigen-

n,(t) = [n5(2), n ()], where||n, (¢)|| = 1. We also define a vectors ofR, as {e;}, wherej = 1,2,..., M (the eigen-
2P x P matrix that expresses the orientations of2ltlipole  ya|yes are numbered in decreasing order), and define niggrix
sources a®(t) such that asEyx = [epy1, ..., en]. The eigenvector$ep, s, ..., ey}
. () 0 o 0 are those corresponding to the noise-level eigenvalues, and the
) span of the columns in the matriy; is called the noise sub-
() = 0 m@) - e (1) Space. _
: ) " 0 To estimate the locations of the sources, the MUSIC algo-
0 o 0 np(t) rithm takes advantage of the fact that the sensor lead-field with

_ S . an optimum orientatio.(x)n,,,., in whichq, . represents the
In this paper, for simplicity, we assume that no dipole sourc@grmal vector in the optimum orientation, is orthogonal to the
change their orientation during the time period of interest, af@ise subspace @t at the true source locations. This orthog-
we use time-independeHt to express the dipole-source orienpnality can be evaluated by the following function [15], which

tations. is called the MUSIC localizer
The lead-field vectors for the¢ and 6 compo-
nents of the source moment ax are defined as J(®) = 1/ Amin [L (£)ENEL L(z), LY (z)L(z)] (4)
Pr) = [{=),5x),.. . 57 ad =) = [ ) ]
[{(z), B(x), ..., §;(x)]". Here, I} (z) and [}, (x) express where\,,.[-, | indicates the generalized minimum eigenvalue

the mth sensor output induced by the unit-magnitude sourggthe matrix pair given in parenthesis. Equation (4) is calculated
directed in thep and ¢ directions, respectively. We define thein a volume where sources can exist, and each location where

lead-field matrix for the source atasL(z) = [I(z), I’()],  J(z) reaches a peak is chosen as the location of one source.
which represents the sensitivity of the sensor array at location

z. The composite lead-field matrix for the entire set Bf C. Time-Frequency Domain MUSIC Algorithm
dipole sources is defined ds = [L(x1), L(z2), ..., L{zp)].

. . X 1) Covariance-Matrix Relationship in the Time-Frequency
Then, the relationship betweé(t) ands(t) is expressed as

Domain: Here, we describe the time-frequency domain
b(t) = [L.¥]s(t) +n(t) ) MUSIC algorithm, Whlch makes it possible to estimate neural

sources from each time-frequency component of MEG data.

wheren(t) is the additive noise. Time-frequency signal representations are generally classified
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into two groups: linear and quadratic representations [1&ind

Although the linear representations include the weII—known // o(t, f, v, £) /°° n(v +7/2)
short-time Fourier transform (STFT) and the wavelet transform, Cnl ’ oo
quadratic time-frequency representations are known to provide n" (v = 7/2)e” 2T dr dy de. (10)

better performance, and thus many modern time-frequency

representations have quadratic forms [17]. We thus usel & us introduce the target time-frequency regidwhich con-
general quadratic time-frequency representation to formulagns the signal ofinterest whose source configuration is to be in-
the method, but it can also be easily formulated using linegéstigated. We assume that the noise and signal are uncorrelated
time-frequency representations. in the target region, and that the noise is white Gaussian and is
Let us denote the time-frequency representation matrix of thacorrelated between channels. Then, we obi@in (¢, f)) =
vector signab(t) asCy(t, f) and thatok(t) asCs (¢, f).Inthe (¢ (¢, £)) = 0and(C,(t, f)) = 021 where(-) again indi-

most general quadratic form, they are expressed as cates the ensemble average aBds the noise-power density in
o the time-frequency domain. We also assume that the noise has
W(t, f) = // ®(t, f, v, &) / b(v+ 7/2) the ergodic property, so the ensemble average can be approxi-
Jeo mated with the average over the target region, i.e.,
b (v — 7/2)e” T dr dy de (5) .
o [ Cutt Dtir (€0t 1) =
and Q
1
= g [ Gt Dt dr =(Cuntt 1) =
s(t, f) = // O, f, v, & / s(v+7/2) q Q
an

ade o)

l/— 7_/2) —2miéT dr dl/d£ (6) % //Q Cn(t’ f) %<Cn(t’ f)> =

The matrixCy(t, f) is an M x M matrix. Its diagonal ele- We also define the matricé&6, andY , obtained by averaging

ments are the auto-time-frequency distributions of the channel
recordings and its off-diagonal elements are the cross-time- f?’g (t, £) andC;(t, f) over the target time-frequency region

guency distributions between different channel recordings. The
matrixC,(t, f)is aP x P matrix. Its diagonal elements are the =5 / Cu(t, f)dtdf
auto-time-frequency distributions of the source activities ang, *
its off-diagonal elements are the cross-time-frequency distribu- 1
tions between different source activities. T.=3 /Q C,(t, f)dtdf. (11)

In (5) and (6), (¢, f, v, &) is a kernel, which de-
termines the characteristics of the resultant quadraiitien, we finally derive the relationship
time-frequency distributions [17]. When this kernel has
the form &(t, f, v, &) = (v — t, & — f), the resultant Yy = (L®)Y(PTLY) + 041 (12)
time-frequency representations are called the Cohen class.
When the kernel has a form of the affine smoothing, i.eThis equation shows the relationship between the measurement
O, f,v, &) = C{f/fo)v — 1), (fo/)E), where f, is and source-activity covariance matrices in the time-frequency
a constant that converts scale to frequency, the quadrat@gmain [its conventional time-domain counterpart is shown in
time-frequency representations are called the affine class. 8%, and is the basis of deriving the time-frequency MUSIC
relationship between several specific choices of the kernel adlgorithm.
the properties of the resultant time-frequency distributions has2) Deriving the Time-Frequency MUSIC Localizewe
been well studied in the field of time-frequency analysis. Aenote the noise-level eigenvectors of, as u; (j =

detailed discussions on such studies are found in [16]-[18]. £2 + 1, ..., M), where Fy is the number of sources whose
Using (2), (5), and (6), we can derive activity has time-frequency components in the target region.
Then, since the noise-level eigenvectors satisfy the relationship,
Cu(t, f) = (L®)C,(t, f) (¥7LY) + Can(t, f) Yyu; = opuy, (12) leads to
+ Cns(tv f) + Cn(tv f) (7) (—rb _ O_QDI) u; = (LC‘I’)TS (‘I’TLZ) u; = 0
where j=FPao+1,..., M. (13)
> > The matriced., and¥ are full-column-rank matrices. There-
ot f) = // b ] 6 /_Oo (L®)s(+7/2)  fore, when the matrigt, is a full-rank matrix, we get
) —27iéT
—7/2)e dr dv dg ®) OTL ;=0 for j=Po+1,...,M. (14
Coalt. f) = // ot £ ) [ alotrr)
—o0 The above equation indicates that source locations can be ob-

s"(v—7/2) (¥TL]) ™" drdvd¢ (9) tained by checking the orthogonality between the optimally-ori-
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Fig. 1. (a) Waveform of the generated magnetic field from one representative (o) y (em)

channel located approximately above the sources. (b) Power spectrum of

the waveform shown in (a). (c) Power spectrum of the generated magnetic . .

field obtained by averaging the spectra from all channels. The frequency™#8. 3. Results of calculating the MUSIC localizer onthe plare 1 cm. The

normalized such that the Nyquist frequency is equal to 0.5. time-frequency MUSIC algorithm was used with the target region set a3;(a)
and (b)22. (c) The conventional MUSIC algorithm was used. The contours
show the relative values of the MUSIC localizer.
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Fig. 4. Thex, y, andz coordinates used to express the estimated results in

Figs. 6,8, 12, and 14. The midpoint between the left and right preauricular points

is defined as the coordinate origin. The axis directed away from the origin toward

the left preauricular point is defined as thes axis and that from the origin to

50 100 150 200 250 300 350 the nasion is the-z axis. The+z axis is defined as the axis perpendicular to
time point both these axes and is directed from the origin to the vertex.

Fig. 2. Spectrogram obtained by averaging the spectrograms from all chai ; i ; =
recordings. The two quadrangular areas denotef2 bynd(2., are the target "Were the matrixz y is defined aszy [urar1, - .

regions used for the source-estimation experiments. The only difference between the proposed and the conventional
MUSIC algorithms is that the proposed algorithm uses#ns
) ) ) instead of thel - used in (4), and that since the matéxy is
ented sensor lead fielll(x)n,,,, and the noise-level e'genvec'complex-valued, we use the Hermitian conjugafé. Equation
tors. . _ . (15) was obtained under the assumption that dipole sources do
Therefore, the localizing function can be calculated in the,"change their orientations during the time period of interest.
following manner: It can easily be shown that this localizer in (15) is effective even
when this assumption does not hold and the source orientations
J(@) =1/ Amin (LT (2)ZNZ{ L(z), L" (z)L(z))  (15) change during the measurement [5].
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Fig. 5. MEG waveforms from two kinds of auditory measurements. (a)
Regular auditory N1m measurement. (b) Auditory gamma-band measurement.
The recordings from 60 sensors covering the subject’s right hemisphere are
overlapped.

3) Summary of the AlgorithmThe procedure of imple-
menting the time-frequency MUSIC algorithm is summarized
as follows.

Step1) The time-frequency matri&, (¢, f) is calculated
with an appropriate choice of the time-frequency
representations. Thexth diagonal term of this ma-
trix is given by the auto-time-frequency distribution
of the mth-channel recording, and it&n;, ms)th

z (em)

off-diagonal term is given by the cross-time-frequency ° OX (cm)S 10
distribution between the:; th andmsth channels.
Step2) The matriXY', is obtained by averaging,(¢, f) ©

over the predetermined target reginand the noise- Fig.6. Results of applying the conventional time-domain MUSIC algorithm to
level eigenvectors are obtained by applying the eigetfpe data shown in Fig. 5(a). The time window ranging from 0-130 ms was used

decomposition offs. to calculateR,. The contours show the relative values of the localizer in (4);

. : . the projections of the localizer values onto the transverse, coronal, and sagittal
Step 3) Thelocalizer defined by (15) is calculated throughopihnes are shown. The circles depicting a human head represent the projections

the source space, and each location leéne reaches of the sphere used to calculate the forward solution.

a peak is determined to be the location of one dipole

source. The simulated magnetic field was calculated at

351 time points. To generate the simulated neuro-

magnetic field, the¢ components of the two sources

w)(t), (j = 1,2) were amplitude- and frequency-mod-
We performed numerical experiments to test the validity eflated; i.e.,wi(t) = exp[—(t — ¢;)?/(2p3)] cos2m(a;t? +

the arguments in Section 1. We used the coil configuration of@t¢ + ¢;)]. The values for{¢;, p;, v, B;, €;} were set at

148-channel whole-head Magnes 2500 WH biomagnetic mga#0, 300, 1.0 x 1075, 5.2 x 107%, 0.105} for the first

surement system (Biomagnetic Technologies Inc., San Diegource and210, 280, 1.6 x 10~¢, —1.3 x 10=%, 0.077} for

CA). The coordinate origin was defined at the center of the cdiie second source where the unitfofs timepoint. Theiré

array. Thez direction was defined as the direction perpendiomponents were set to zero.

ular to the plane of the detector coil located at this centerzThe Gaussian noise uncorrelated between different sensor record-

direction was defined as that from the posterior to the anteriimgs was added to make the final signal-to-noise ratio (SNR)

and they direction was defined as that from the left to the rightqual to 0.85. The SNR was defined as the ratio of the Frobe-

hemisphere. Two signal sources were assumed to exist on ties norm of the signal-magnetic-field data matrix to that of

same plane« = 1.0 cm) with their(y, ) coordinates equal to the noise matrix. The waveform of the generated magnetic field

(5.0, —8.0) and(5.5, —9.5). from one representative channel located approximately above

I1l. NUMERICAL EXPERIMENTS
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Fig. 7. Spectrogram for the frequency range above 15 Hz obtained from

the MEG data in Fig. 5(b). The spectrogram was calculated using the first

singular temporal vector, which was obtained by applying the singular value

decomposition to the 60-channel spatio—temporal matrix of the averaged data.
The windowing function was set equal to a 255-point Hanning window.

the two sources is shown in Fig. 1(a). Its power spectrum is
shown in Fig. 1(b), and the power spectrum averaged across all
sensor channels is shown in Fig. 1(c). The spectrograms were
calculated from all channel recordings, and the results obtained
by averaging all these spectrograms are shown in Fig. 2. Here, a
Hanning window with a size of 77 data points was used [19].
Figs. 1 and 2 indicate that the signals from the two sources
cannot be separated in either the time domain or in the frequency
domain, but they are clearly separated in the time-frequency do-
main. ©
The time-frequency MUSIC algorithm was then applied byjg g The resuits of calculating time-frequency MUSIC localizer [(15)] with
setting the target time-frequency region as the regions indicateeltarget region set at the gamma-band region marked as the square in Fig. 7.
by 2 and2; in Fig. 2. The results are shown in Fig. 3. The con-
tours in Fig. 3(a) and (b) shows the relative value of the MUSI
localizing function in (15) on the plane = 1 cm, and each
area where the localizing function reaches a peak is consideredwo kinds of auditory measurements were conducted with a
to be the location of one dipole source. The £) coordinates healthy male volunteer (age 39, right-handed). First, we mea-
of the peak locations in Fig. 3(a) and (b) &9, —8.1) and sured the regular auditory magnetic response by using a 1-kHz
(5.6, —9.5), respectively. These results show that the time-fr@ure-tone stimulus applied to the subject’s left ear. The sam-
quency MUSIC algorithm accurately localized these two signgling interval in the data acquisition was 1 kHz, the average
sources, and these results verify the validity of our argumenter-stimulus interval was 2 s, and an on-line bandpass filter
in Section II. The conventional time-domain MUSIC algorithnfanging from 1-400 Hz was applied. A total of 100 epochs were
was also applied to the same computer-generated data, buta#eraged, and this averaged data is shown in Fig. 5(a). Here we
conventional algorithm was not able to resolve the two sourcéglected recordings from 60 sensors covering the subject’s right
[Fig. 3(c)]. hemisphere and the waveforms for those recordings are over-
lapped in this figure. The peak for the N100m (the peak located
around the latency of 100 ms) is clearly visible. Second, we
IV. EXPERIMENTS USING MEG DATA measured the gamma-band auditory activity using a click sound
with a duration of 1 ms. The click sound was applied to the sub-
The MEG data presented in this section was recorded jegt's left ear; the inter-stimulus interval was 1 s and a total of
using a 148-channel whole-head biomagnetometer (Magr) epochs were averaged. In this measurement, to maintain the
2500WH) that was installed at the Communications Researsibject’s attention to the stimulus, the subject was asked to move
Laboratory, Tokyo, Japan. We use the head coordinates bis right index finger when he heard the tone. The waveforms
plained in Fig. 4 to express the estimated source locations. from the same 60 sensors are shown in Fig. 5(b).

z (em)

g. Source Localization for Auditory Gamma-Band Activity
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(@) (b)

Fig. 9. MRI overlay of the gamma-band source and the N1m source both obtained from three separate measurement sessions. The white and thesblack triangl
indicate the locations of the gamma-band and the N1m sources, respectively. The coronal (left) and the sagittal (right) cross sections are shown.

frequency (Hz)
- - N N w
(631 o 4] o

o o O

(@) time (s) (b) time (s)

Fig. 10. Spectrograms calculated from the temporal singular vectors of the 148-channel recordings of the spontaneous MEG. (a) The firsttsingulaedec
(b) The second singular vector is used. The windowing function was set equal to a 127-point Hanning window. The regions d@poted, and(2. were
chosen as the target regions in the time-frequency MUSIC analysis.

We applied the conventional time-domain MUSIC algorithris clearly observed in the latency range from 0-0.1 s. The
to the auditory N10Om shown in Fig. 5(a). The covariance m8USIC localizer plot obtained using (15) is shown in Fig. 8.
trix R, was calculated using this averaged response with a titdere, the procedure described in Section II-C-3 was applied
window ranging from 0-130 ms. The MUSIC localizer plot igo the averaged data in Fig. 5(b). That is, the averaged data
shown in Fig. 6. In this figure, the MUSIC localizing functionwas used a®(¢) in (5). The square in Fig. 7 indicates the
in (4) was calculated with an interval of 0.5 cm over a volumiarget region; i.e., only the gamma-band portion within this
in the subject’s right hemisphere, and the projections onto teguare was used to obtain the plot in Fig. 8. In this figure,
transverse, the coronal, and the sagittal planes are displaybd. time-frequency MUSIC method clearly detected a single
The figure shows that the algorithm detected the source for tloealized source for the auditory gamma-band activity in the
N100m response, which is believed to be located in the primaight temporal area.
auditory cortex area in the right hemisphere. With this subject, we repeated the same measurements three

To extract a representative time-course of the 60-chantiehes; each measurement session was separated by approxi-
recordings shown in Fig. 5(b), we applied the singular valuaately one week. The three sets of localized results for the
decomposition to the spatio—temporal data matrix of thegamma-band activity were overlayed onto the subject’'s mag-
averaged recordings. The spectrogram was then calculatetic resonance image (MRI). The results are shown in Fig. 9.
using the first temporal singular vector, which correspondshe three locations of the gamma-band source were all medial
to the largest singular value. The windowing function wat® the N100m source but differed somewhat: One was located
set equal to a 255-point Hanning window. The results amearly 1 cm medial to the N100m source, but the other two were
shown in Fig. 7. The stimulus-locked gamma-band activitglose to the N100m source.
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B. Source Localization for Spontaneous MEG

The subject was a healthy male volunteer (age 27, MWWWWW

right-handed) who was asked to lie down quietly with his W
(]
0

. NS e e R N
eyes closed during the measurements. The spontaneous MEG ”M“ ”M m'm M " WW"M
was recorded continuously for a total of six seconds with a ‘Wﬁ”’m H” o mm 2 Y

e e e g
: : . b TN v i e YO S
ling f f 677~Hz. An on-line bandpass fil L et
ranging from 1-+42 to 200-+z was appied. Singularvaive LG ie LGRSO
decomposition of the 148-channel spatio-temporal data matrix MWMW{W ’)“w i "“ H |

was performed, and spectrograms were obtained from the first T

and the second temporal singular vectors. The windowing WUV Ay o v e
function was set equal to a 127-point Hanning window. The
resultant spectrograms are shown in Fig. 10. A part of the IS

148-channel recordings of the spontaneous MEG iS SNOWN N bttt Mgt hdamien e, isap oo dotip A0l
Fig. 11. A couple of the alpha spindles can be observed in this Ly bsisshnmmpisdidisaserynims lnahrtimiipupt o

figure.
0
Two distinct alpha bursts are clearly observed in Fig. 10(a), time (6)
which was obtained from the first singular vector. The regions
including these components are denotef2aand(?, as shown Fig. 11. The measured spontaneous MEG. Twenty-six representative

: : T : annel recordings were selected. (The selection was made with no particular
in Fig. 10(a)' Then, the time frequency MUSIC algorlthm Wag:eference, and these 26 channel sensors are fairly uniformly located on a head

applied with the target region set &, and{2,. The MUSIC  surface.) This spontaneous MEG was measured for 6 s with a subject lying
localizer plots are shown in Fig. 12(a) and (b). Fairly localizedpwn quietly with his eyes closed.
sources were detected and the locations of the sourcesirom

E;dQQbixvlirig fig?g) I\?v;zea?scglggg:;;géogy 1;22 :ﬁ:?rergireknecgarget time-fr(_eguency region. !Even qu_ctuations in fche subject’s
MUSCIC algo}ithm. The resultant MUSIC localizer plot is showr'ﬁé.ternal cond.m-ons, such as his attention to the stlmu_lus [9] or
in Fig. 12(c) A single source is clearly detected in the left ten@s'general vigilance Igvel, may havg cau;ed _fluctugnon of 'the
poral area estl_mate(_j source locations. Further mvest!gatlon using mult|p_le
. subjects is needed to draw clearer conclusions about the location

The peak locations in Fig. 12(a)- (c) were overlayed onto t% the source of the gamma-band activity.

_subj_ect’s MRI; the results for sagittal cross sectiqns are shown, . -1so applied the conventional time-domain MUSIC algo-
in Fig. 13. The two sources for the alpha burst$inand2,  yithm 1o the spontaneous MEG data in Section IV-B for com-
are, respectively, localized near the parieto-occipital sulcus ghgkison. The results are shown in Fig. 14. Here, data from the
in the occipital visual area [Fig. 13(a) and (b)]. Several previoyghole 6 s was used to obtaR,. The results indicate that the
investigations reported that the source for the alpha rhythm washventional MUSIC algorithm can resolve none of the sources
localized near the parieto-occipital sulcus and near the calcardetected by the time-frequency MUSIC algorithm, and the con-
sulcus in the visual area [10]-[12]. It was also reported that eaegntional MUSIC algorithm only detected a large activated area
alpha burst (spindle) has its own location [20], [21]. Our resul§ the occipital region. This comparison demonstrates the effec-
here are in good agreement with the results from these previdy§ness of the proposed time-frequency MUSIC algorithm for

investigations. Fig. 13(c) shows that the source for a compon&fitectively localizing sources having different time-frequency

in §2. was localized in the motor area, and this indicates thagnatures. . .
) In Section I, the time-frequency MUSIC algorithm was de-

hi [ f th -rhythm [10], [12]. Th
this component is & part of the mu-rhythm [10], [12] es‘%/:d from the matrix equation [(12)] with the assumption that
L

results show that the time-frequency MUSIC algorithm is s toctl lated The MUSIC al
sensitive that it was able to detect the mu-rhythm source fro pre are no periectly correlaled sources. The Vit ago-
ithm has a well-known problem in that it tends to mis-localize

the alpha-rhythm-dominant spontaneous MEG. sources when they are highly correlated. It is, therefore, worth
noting that the developed method can be modified to incorpo-
V. DiISCUSSION rate non-MUSIC-type multidipole estimation. It can be shown
that the optimum estimates of the source locations can be ob-
In the results presented in Section IV-A, the three locationgined by directly minimizing the least-squares-error cost func-
of the gamma-band source were all medial to the N100gan given by
source but differed somewhat. A previous investigation [8],
[9] reported that the source of the gamma-band activity was F=17,”* (16)
localized slightly medial and anterior to the N100m source.
Our results are in fairly good agreement with these previousherell is the projection operator defined as
results. Several factors could have caused the fluctuation in T -1 T
the estimated source locations of the auditory gamma-band IT = I — (ﬁclil) [(ﬁclil) (ﬁc\il)} (ﬁclil) a7
activity. Such factors include errors in registering the head
coordinates to the MRI pixel coordinates, the subject’s heactidi,c and¥ are the estimated values .bf and®¥. This min-
motion during the measurement, and the noise contained in thrézation can be done using conventional nonlinear optimiza-
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Fig. 12. The results of applying the time-frequency MUSIC algorithm to the spontaneous MEG data. The target region wad et @) @), and (c)2..

tion methods [19]. Thus, if it is suspected that correlated mus auto-time-frequency distribution of channel recordings. In
tiple sources exist in the time-frequency ROI, we can apply th&ection 1V, we used the STFT because of its computational
direct minimization procedure although we need informatioefficiency. For the case presented in Section IV-A, it took

about the number of sources and a good initial guess concernapgroximately one hotito calculateY',, but we estimated
the source locations.

The most computationally intensive part of implementing

the time'frequency MUSIC filgorithm is _the calculation of i1pis cajculation was done by using Pentium Il (450 MHz)-based PC with
C,(t, f), which containsM? times calculations of the cross-MATLAB (Mathworks, Natick, MA).
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(@) (b)

Fig. 13. MRI overlay of the peak locations in Fig. 12. The results in (a), (b), and (c), respectively, show the peak locations obtained in Fig. 12(a)—(c)

that it would have taken 3—4 h to calculate this matrix if we hadlta matrix in Section IV, and calculated the time-frequency
used the smoothed pseudo Wigner distribution, which is a tymaps of the temporal singular vectors corresponding to signif-
ical Cohen-class quadratic representation. The current computantly large singular values. Other method can also be used,
routine, however, is not optimized to obtain the highest perfdier example, one that calculates the time-frequency distribution
mance in the computational speed, and it is possible to attaiaveraged over the channels [this is equivalent to calculating the
considerable speedup, for example, by programing it using ttiace of the matrixC, (¢, f)]. A simpler method such as this

C code. For analyzing MEG data such as those presented in Seay suffice in some cases such as our numerical experiment in
tion IV, any time-frequency representations could be used wilection lIl.

the time-frequency MUSIC algorithm because high time-fre- In summary, we have developed a method that incorporates
quency resolution is not needed to analyze such MEG dafige time-frequency characteristics of neural sources into mag-
However, when analyzing other kinds of MEG data, such agtoencephalographic (MEG) source estimation. The method,
some types of sleep spindles or epileptic spikes, it may be necggyich we refer to as the time-frequency MUSIC algorithm, al-
sary to use more sophisticated time-frequency representatiqggs the locations of neural sources to be estimated from any

since a}nalyzing such datg may require higher ti”_1e'freque'}ﬁ)ﬁe-frequency ROI. The algorithm was applied to two types
resolution. Computer routine that calcula@g, /) withares- of nonstationary MEG data: auditory gamma-band activity data

onable computational speed should be developed in such cases. . .
. putat P u' v p n su éna spontaneous MEG data. The effectiveness of the time-fre-
A time-frequency representation of multichannel ME

. . . . . chuency MUSIC algorithm was assessed by comparing the re-

recordings provides space, time, and frequency informatio S . . . .
. ults of these applications with the results from previous investi-

and many time-frequency maps whose number equals the. .
number of sensor channels are obtained. Such informat@flons on the same types of nonstationary MEG data. As a next
may be excessive for extracting the time-frequency chaileP, We plan to apply the proposed time-frequency MUSIC al-
acteristics of the signal of interest, and we need to obta®rithm to MEG data whose origin is difficult to analyze with
fewer time-frequency maps that appropriately represent f&sting methods. Possible candidates include some types of
whole time-frequency properties of the multichannel data. Teep spindles, epileptic spikes, and spontaneous waves with
extract such representative time-frequency maps, we appligathologic origins. The results of these investigations will be
singular-value decomposition to the measured spatio—tempargorted in the near future.
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