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Abstract—This paper proposes a novel prewhitening eigenspace
beamformer suitable for magnetoencephalogram (MEG) source
reconstruction when large background brain activities exist. The
prerequisite for the method is that control-state measurements,
which contain only the contributions from the background in-
terference, be available, and that the covariance matrix of the
background interference can be obtained from such control-state
measurements. The proposed method then uses this interference
covariance matrix to remove the influence of the interference in
the reconstruction obtained from the target measurements. A
numerical example, as well as applications to two types of MEG
data, demonstrates the effectiveness of the proposed method.

Index Terms—Adaptive beamforming, brain noise, magnetoen-
cephalography, prewhitening, source reconstruction.

I. INTRODUCTION

ONE MAJOR problem with magnetoencephalogram
(MEG) measurements is that measured MEG signal

generally contains interfering magnetic fields generated from
spontaneous brain activities. Such background interference de-
grades the quality of the source reconstruction results, and often
make interpreting the reconstruction results difficult. Therefore,
the background interference is sometimes referred to as brain
noise or physiological noise. The degradation is particularly
severe in adaptive beamformer source reconstruction methods
[1], [2] because the high-rank nature of the background sponta-
neous activity [3], [4] may invalidate the underlying low-rank
signal assumption necessary for formulating the adaptive
beamformers. We show in Section III that the background brain
activity can cause a significant reduction in the source intensity
and severe spatial blur in adaptive-beamformer reconstruction
results.

This paper proposes a novel prewhitening eigenspace beam-
former, which can attain the source reconstruction free from the
influence of background interference when a large amount of
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background activity exists. The prerequisite for the proposed
method is that control-state measurements, which contain only
the contributions from the background interference, be avail-
able, and that the covariance matrix of the background inter-
ference can be obtained from such control-state measurements.
The proposed method then uses this interference covariance ma-
trix to remove the influence of the interference in the reconstruc-
tion results obtained from the target measurements where both
signal and interference exist.

The proposed beamformer is particularly useful for recon-
structing source activities that are stimulus-evoked but not
time-locked to the stimulus. Since signals from such non-
time-locked activities are generally averaged out through the
epoch-averaging process, the beamformer weight should be de-
rived using a covariance matrix obtained from nonaveraged raw
epochs. However, the nonaveraged epochs generally contain
a large amount of background interference whose amplitude
is usually considerably larger than that of the evoked activity.
Therefore, the successful reconstruction of nontime-locked
activities requires removing the influence of the background
interference. In Section IV-B, we show one such example in
which primary hand-motor activation is clearly reconstructed as
a result of applying the method to the motor-evoked field with
a frequency band of 15–25 Hz. The result of this application
demonstrates the effectiveness of the proposed method for
reconstructing MEG source activities using nonaveraged raw
epochs.

In this paper, we first present the analysis regarding the
influence of the background interference on the adaptive
beamformer source reconstruction in Section III. Then, the
prewhitening eigenspace beamformer is proposed in Section IV.
The proposed method is validated first by our computer sim-
ulation in Section V and then by applications to auditory and
motor responses in Section VI. Throughout this paper, plain
italics indicate scalars, lower-case boldface italics indicate
vectors, and upper-case boldface italics indicate matrices. The
eigenvalues are numbered in decreasing order.

II. ADAPTIVE-BEAMFORMER FOR NEUROMAGNETIC

RECONSTRUCTION

A. Definitions

We define the magnetic field measured by the th
detector coil at time as , and a column vector

as a set of measured data
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where is the total number of detector coils and superscript
indicates the matrix transpose. The spatial location is repre-

sented by a three-dimensional (3-D) vector .
The covariance matrix of the measurement is denoted as ,
i.e., where indicates the ensemble average,
which is replaced with the time average over a certain time
window in practice. The moment magnitude of a source at

is denoted as . The orientation of the source at is
defined as a 3-D vector whose
component, (where equals , , or ), is equal to the cosine of
the angle between the direction of the source moment and the
direction. We define as the output of the th sensor; the
output is induced by a unit-magnitude source located at and
directed in the direction. The column vector is defined

as . The lead field matrix,
which represents the sensitivity of the whole sensor array at
, is defined as . The lead-field

vector in the source-moment direction is defined as where
.

B. Adaptive Beamformer Source Reconstruction

To solve neuromagnetic source reconstruction problems, we
focus on the class of methods referred to as the adaptive beam-
former, which was originally developed in the field of array
signal processing [5]. The beamformer estimates the source cur-
rent density by computing where is
the estimated source magnitude. The column vector ex-
presses a set of filter weights. The weight vector of the min-
imum-variance beamformer, which is the best-known adaptive
beamformer, is expressed as

(1)

where is defined as 1. Here, is
the optimum direction determined as the direction that gives the
maximum beamformer outputs [7], [8]. Using the above weight,
the reconstructed source power is expressed as

(2)
because

The minimum-variance beamformer can be extended to the
eigenspace-projection beamformer, which is known to be tol-
erant of errors in the forward modeling or the estimation of the
data covariance matrix [9]. The extension is attained by pro-
jecting the weight vector in (1) onto the signal subspace of the
measurement covariance matrix. That is, redefining the weight
vector in (1) as , the weight vector for the eigenspace-
projection beamformer is obtained using

(3)

1In practice, the normalized lead field lll(rrr)=klll(rrr)k is often used in (1) to avoid
artifacts caused by the variation of the lead field norm klll(rrr)k [6]. We use the
normalized lead field in our experiments in Sections V and VI.

In this equation, is a matrix whose columns consist of the
signal-level eigenvectors of , and is the projection ma-
trix that projects a vector onto the signal subspace of .

III. INFLUENCE OF BACKGROUND BRAIN ACTIVITY ON

ADAPTIVE-BEAMFORMER RECONSTRUCTION

We use a model for the measurements expressed as

(4)

where is the magnetic field generated from the signal
sources of interest, is the magnetic field generated by the
background activity, and is the additive sensor noise. The
spatial-filter outputs are then expressed as

(5)

For nonadaptive spatial filters, the influence of the interference
is simply the overlap of onto the reconstruc-

tion of the signal of interest, . For adaptive beam-
formers, however, the interference affects the source re-
construction results in a more complex manner because
also affects the beamformer weight through the covari-
ance matrix . In this section, we derive the resolution kernel
of the minimum-variance beamformer, taking the background
interference into account. Numerical examples of the resolu-
tion kernel are presented in Section V-A. These numerically-ob-
tained kernels clearly show that the background activity can
cause a significant source-intensity reduction as well as severe
spatial blur in the adaptive-beamformer reconstruction results.

We define the background interference activity at the location
and time as , and assume that the background sources

are continuously distributed. Thus, we have

(6)

where the integral is taken over the whole source space. Let us
also assume that only a single target source exists at with an
orientation equal to . The magnitude of the target source is
denoted . Then, defining such that , the
measurement is expressed as

(7)

The sensor noise can be modeled as white Gaussian noise
uncorrelated between different sensor channels, and we can gen-
erally assume that the relationship holds
where is the variance of the sensor noise and is the identity
matrix. Therefore, the covariance matrix of the measurements
is given by

(8)
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where the signal power is defined such that .
We also assume that the background source activity is spatially
uniform and incoherent, i.e.,

(9)

where is the power of the background source activity. Sub-
stituting (9) into (8), we obtain

(10)

where is the gram matrix defined as

(11)

The resolution kernel of the minimum-variance beamformer
for a point source at is expressed as [6]

(12)

Therefore, substituting (10) into (12), we can finally derive the
explicit form of the kernel such that

(13)

where and .
In (13), the normalized lead field vector is used as and
the explicit notation of is omitted for simplicity. The
generalized cosine in the metric is defined such that

. In
Section V-A, we present numerical examples of the resolution
kernel obtained using (13). These numerical examples show
that when large background activities exist, significant reduc-
tion in source intensity, as well as the subsequent degradation
of the spatial resolution, arises in source reconstruction results.

IV. PROPOSED PREWHITENING EIGENSPACE BEAMFORMER

A. Definitions

Here, we present the proposed eigenspace beamformer,
which can attain the source reconstruction free from the influ-
ence of background interference. To describe the method, we
first make several definitions. We define the spatio-temporal
matrix of the measurement as such that

(14)

where indicate the time points at which the
measurements are performed. The spatio-temporal matrices for

and are defined in exactly the same manner as in
(14), i.e.,

(15)

and

(16)

Then, corresponding to (4), the relationship

(17)

holds where is the noise matrix defined as
.

We define the covariance matrix of the signal magnetic field
generated from the target sources only as , such that

(18)

We also define the signal-plus-sensor-noise covariance matrix
, such that

(19)

and the interference-plus-sensor-noise covariance matrix ,
such that

(20)

We further assume that the background interferences are un-
correlated with the target activity. Under this assumption, the
relationship

(21)

holds. The fundamental assumption in this paper is that control-
state measurements, which contain only the contributions from
the background interference and sensor noise, are available, and
the interference-plus-noise covariance matrix can be ob-
tained from such control-state measurements. Under this as-
sumption, we have developed a novel beamformer method, the
prewhitening eigenspace beamformer, to extract the target ac-
tivities from the background interference.

B. Prewhitening Eigenspace Beamformer

The proposed beamformer uses the prewhitened mea-
surement covariance matrix , which is defined as

. Thus, from (21), we have the relationship

(22)

We define the eigenvalues and eigenvectors of as
and . Because we assume that target sources
exist, according to (22), the largest eigenvalues
are greater than 1 and associated with the signal part

; and the other eigenvalues
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are equal to 1 and are associated with the interference and noise
part. That is, is expressed as

(23)

and, thus, we have

(24)
Using these signal-level eigenvectors, we define a matrix as

, and calculate , which is the projec-
tion matrix that project vectors onto the signal subspace of .
Thus, a reasonable estimate of the signal-only covariance ma-
trix, , can be obtained using

(25)
An estimate of the signal-plus-sensor-noise covariance matrix,

, can be obtained from

(26)

where is the regularization constant that should be set close
to the variance of the sensor noise . The source power recon-
struction free from the influence of the background activity can
be obtained from

(27)

A reasonable estimate of the spatio-temporal matrix of the
signal magnetic field can also be obtained in the same
manner as described above. The prewhitened version of is
defined as such that

(28)

The singular value decomposition of the is expressed as

(29)

where indicates the th temporal singular vector. Here,
again, the first singular values are greater than 1 and they are
associated with the signal part . The other singular
values are close to 1 and they are associated with the interfer-
ence and noise part . Therefore, by applying
the projector to , we have

(30)

Fig. 1. The coordinate system used in the numerical experiments. The coordi-
nate origin was set at the center of the sensor coil located at the center of the
array. The plane at x = 0 cm is shown. The coordinate of the upper left, the
upper right, and the lower sources are (0, �1, �6), (0, 1, �6), and (0, �1.6,
�7.2) cm, respectively. The circle indicates the boundary of the sphere used for
the forward calculations. The center of the sphere was set to (0, 0, �12).

Thus, we can extract the spatio-temporal matrix of the signal
magnetic field such that

(31)

Defining such that , we have the
relationship,

(32)

and the weight vector of the prewhitening eigenspace beam-
former is expressed as

(33)

and the interference-free spatio-temporal source reconstruction
is obtained using this , i.e.,

(34)

V. NUMERICAL EXPERIMENTS

A. Numerical Examples of Resolution Kernel

A sensor alignment of the 148-sensor array from Magnes
2500 (4D Neuroimaging Inc., San Diego) neuromagnetometer
is used in our experiments. Three signal sources were assumed
to exist on a single plane . The source-sensor con-
figuration and the coordinate system are illustrated in Fig. 1,
and the spherical homogeneous conductor model is used for the
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Fig. 2. (a) Resolution kernels of the upper-left source located at (0,�1,�6) cm. Five values of � were used: � = 0, � = 0:05� , � = 0:1� , � = 0:2� ,
and � = 0:5� . The SSNR, which is defined as (� kfffk)=(� pM), was set to 2. (b) Plot of the peak value of the kernel, (rrr ; rrr ) = fff DDD fff , with respect
to � for three SSNR values. (c) The same resolution kernels as shown in (a) in which each kernel is normalized with its peak value. (d) Plot of the FWHM of the
resolution kernel with respect to � for three SSNR values.

forward calculation. We here assume that only the upper-left
source is active; the source is located 6 cm below the center
of the sensor array . We calculated the
resolution kernel using (13) for five values of . Here,
the signal-to-sensor-noise ratio (SSNR), which is defined as

, was set equal to 2. Also, in this calculation,
the gram matrix is approximated as

where and are the lead field vectors in the direc-
tions of the two tangential components, and is the coordi-
nate of the th voxel. Here, the voxel grid has 0.5-cm interval
within a volume defined as , , and

.
The results plotted in Fig. 2(a) show that, when the power of

the background activity, , is increased, the reconstructed in-
tensity of the source rapidly decreases. The peak value of the

resolution kernel was plotted with re-
spect to in Fig. 2(b) for the three values of SSNR. These
plots show that large background activities such as those with

can cause a more than 70% decrease in the recon-
structed intensity, and that this decrease is more significant when
the SSNR is greater. The same resolution kernels in Fig. 2(a)
are plotted in Fig. 2(c) where each kernel was normalized with

its peak value. These normalized kernels clearly show that the
full-width at half-maximum (FWHM) of the kernels becomes
greater when is increased. The FWHM of the resolution ker-
nels is plotted with respect to for three different values
of the SSNR. The results show that, compared to a case where
background interferences are negligibly small, a large spatial
blur can be caused by background activities such as those with

.

B. Source Reconstruction Experiments

We then performed source reconstruction experiments to vali-
date the effectiveness of the prewhitening beamformer proposed
in Section IV. Simulated magnetic recordings were calculated
from 1200 to 1200 time points by assigning the three time
courses shown in Fig. 3(a) to the three sources. We use the spher-
ically homogeneous conductor model [10] for the forward cal-
culation. In these numerical experiments, we consider the data
portion between 1200 and 0 to be the prestimulus period and
that between 0 and 1200 to be the poststimulus period. A small
amount of white Gaussian noise that simulates the sensor noise
was added to the generated recordings, resulting in a SSNR
equal to 12, where the SSNR is estimated using the ratio be-
tween the Frobenius norms of the signal and noise matrices, i.e.,

. The generated magnetic recordings are
shown in the upper panel of Fig. 3(b). We then generated the
magnetic field due to the background interference . In this
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Fig. 3. (a) Waveforms of the three sources assumed for the numerical experiments. The waveforms in the top to the bottom panels were assigned to the first to
third sources, respectively. (b) Generated magnetic recordings obtained when no background sources exist (upper panel), and when 100 background sources exist
(lower panel).

Fig. 4. Results of the power reconstruction hs(rrr; t) i. (a) Conventional eigenspace beamformer was applied to the recordings with no background interference.
(b) Conventional eigenspace beamformer was applied to the recordings with background interference. (c) Prewhitening beamformer reconstruction [see (27)] was
applied to the recordings with background interference. In these results, the reconstruction grid has 0.1-cm intervals in the y and z directions.

generation, 100 background sources with random locations and
orientations had the same power and random time courses. The
background magnetic field was added to and the re-
sultant simulated magnetic recordings are shown in the lower
panel of Fig. 3(b). Here, the resultant interference-to-signal ratio

was set equal to 2.
The conventional eigenspace beamformer mentioned in

Section II-B was first applied to these two sets of simulated
recordings in Fig. 3(b). Here, was obtained using the

whole poststimulus period, and (2) was used to obtain the
source-power reconstruction . Fig. 4(a) shows the
results for the case with no background interference, and
Fig. 4(b) shows the results for the case with the background
interference present. Here, the comparison between these two
sets of results again confirms that the background interference
causes a severe blur in the reconstruction results. We then
applied the prewhitening beamformer in (27) to the data with
the background interference. The results are shown in Fig. 4(c).
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Fig. 5. (a) Averaged auditory-evoked field measured using the 275-channel sensor array. Among the 275 sensor recordings, the recordings from 132 sensors
covering the subject’s left hemisphere are displayed. Two vertical broken lines indicate the time instants 44 and 90 ms. (b) The source reconstruction results
obtained using the conventional eigenspace beamformer. (c) Those from the proposed prewhitening beamformer. The left, middle, and right columns show the
maximum intensity projections of the 3-D reconstruction onto the axial, coronal, and sagittal planes, respectively. The upper case letters L and R show the left and
the right hemispheres, respectively. The upper and lower panels indicate the reconstruction results at 44 and 90 ms, respectively. In these reconstruction results,
the reconstruction grid has 0.5-cm intervals in the x, y, and z directions.

In this application, was obtained using the whole prestim-
ulus period. In the results in Fig. 4(c), the blur due to the back-
ground activity is significantly reduced, and these results clearly
demonstrate the effectiveness of the proposed beamformer.

VI. EXPERIMENTS

We applied the proposed prewhitening beamformer to
two sets of MEG data, measured using the 275-channel

Omega-275 (VSM MedTech Ltd., Port Coquitlam, BC, Canada)
whole-cortex biomagnetometer installed at the Biomagnetic
Imaging Laboratory, University of California, San Francisco.
The first data set is the auditory evoked response, and we
applied the proposed prewhitening beamformer to demonstrate
its capability of spatio-temporal reconstruction free from the
influence of background interference. The second data set is the
movement-related desynchronization induced by button-press
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Fig. 6. (a) The power spectra P (f) and P (f) for the frequency band between 15 and 25 Hz. P (f) is indicated by the broken line and P (f) by the solid line.
(b) The maximum-intensity projection of the power reconstruction hs(rrr; t) i obtained using the prewhitening beamformer in (27). (c) The MRI overlay of the
reconstruction results in (b).

finger movements, and we show that the method can reconstruct
a clear, localized activity near the hand-motor area, demon-
strating that the proposed method is effective for reconstructing
nontime-locked brain activities.

A. Application to Auditory-Evoked Data

The auditory-evoked field was measured with a 1-kHz pure
tone presented to the subject’s right ear. The average inter-stim-
ulus interval was 2 s, with the interval randomly varied between
1.75 and 2.25 s. The sampling frequency was set at 4 kHz, and
an on-line filter with a bandwidth from 1 to 2 kHz was used. A
total of 400 epochs were measured and averaged to produce the
averaged auditory recordings shown in Fig. 5(a). Here, although
clear P50m and N100m peaks can be observed, we can see
that these averaged recordings contain a considerable amount
of quasi-periodic background activity.

The reconstruction experiments were performed using the
conventional eigenspace-projected beamformer and the pro-
posed prewhitening beamformer. In these experiments, the left
hemisphere was reconstructed using the averaged recordings
from 132 sensors covering the left hemisphere. [Only the
recordings from these 132 sensors are displayed in Fig. 5(a).]
A portion of the averaged recordings between 0 to 200 ms was
used to estimate the measurement covariance matrix , and the
interference-plus-noise covariance was obtained from the
whole prestimulus portion between 400 and 0 ms. Two time
points, 44 and 90 ms, are selected for the result comparison.
These time points are shown in the two vertical broken lines in

Fig. 5(a), and as indicated, one is near the peak vertex of P50m
and the other is near the peak vertex of N100m.

The conventional eigenspace-projected beamformer in (1)
and (3) was first applied to these averaged recordings. The
source reconstruction results at the two time points are shown
in Fig. 5(b). The results from the prewhitening beamformer,
obtained using (34), are shown in Fig. 5(c). The dimension of
the signal subspace was set to 2 for the both cases. At 90–ms
latency, which is close to the peak vertex of N100m, both
methods can reconstruct a clear localized source in the left
temporal lobe probably near the primary auditory area. How-
ever, at 44 ms, the reconstruction results of the conventional
eigenspace beamformer contain a strong diffuse source, prob-
ably caused by the background brain activity. The results from
the prewhitening beamformer are free from this diffuse source
and clearly detect a localized source in the left temporal lobe,
demonstrating the effectiveness of the proposed prewhitening
beamformer.

B. Application to Movement-Related Desynchronization Data

Here, a subject was asked to press a button with his right-
index finger every 3–4 s. The onset of movement was indicated
by a button press and defined as the time-origin. MEG data
for200 button presses were continuously acquired at a 1 kHz
sampling rate. Because movement-induced magnetic fields are
not precisely phase locked to the movement, we estimated the
covariance matrices from the raw epoched data. Since, the raw
epoch data will be contaminated by background interferences,
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Fig. 7. Comparison between the point spread functions in (36) and (37). The solid lines indicate the point spread function in (36) and the broken lines indicate
that in (37). The value of � in (36) and the value of � in (37) were set equal. (a) These values were set to 1, and (b) 0.5. (c) Plot of cos(lll; fff) (solid line) and
cos(lll; fff jGGG ) (broken line). These generalized cosines were calculated on the line x = 0, z = �6 and �1 � y � 1 cm.

we applied our proposed prewhitening beamformer. It is well-
known that the spectrum of the magnetic field decreases in the
beta-band (15–25 Hz) preceding movement [11]. Therefore, co-
variance estimates were obtained in the frequency domain.

We set two time windows for covariance matrix estimation:
the first from 1200 to 600 ms, and the second from 600
to 0 ms, both preceding the button press. Fourier transforms of
the th nonaveraged epoch data in the first and the second time
windows are, respectively, denoted and , and the
frequency-domain sample covariance matrices for the first and
the second time windows, and , are obtained using

(35)

where and 2. In this equation, the notation indi-
cates the summation over a specific frequency band , and
was set to the -band region between 15 and 25 Hz in our exper-
iments. The power spectra averaged across channels, and

, were also calculated for the first and the second time win-
dows such that where ,
2. The power spectrum for the frequency band

is plotted by the broken line and by the solid
line in Fig. 6(a). These plots indicate that is larger than

in this frequency band, confirming the movement-related
desynchronization. Consequently, is used as the target co-
variance matrix, and as the interference-plus-noise covari-
ance matrix.

We applied the prewhitening beamformer to obtain the source
power reconstruction . The reconstruction results are
shown in Fig. 6(b). We can see that the proposed method recon-
structs a clear, localized source in the left temporal region. The

MRI overlay of the results in Fig. 6(b) is shown in Fig. 6(c). The
overlay shows that the center of the reconstructed activity is lo-
cated in contralateral hand-motor cortex. The results in Fig. 6(b)
and (c) demonstrate the capability of the proposed beamformer
to successfully reconstruct the nontime-locked source activity
by eliminating the influence of background interference.

VII. DISCUSSION AND CONCLUSION

The analysis and numerical experiments in Sections III and
V-A show that the background interference causes blurred re-
construction. On the other hand, the sensor noise is known to
cause the degradation in the spatial resolution [12]. Let us com-
pare the effects of these two types of noise on the spatial res-
olution. When the background interference is negligibly small,
substituting (10) with into (12), we derive the kernel in
this case as

(36)

where is defined such that , and
is denoted . The SSNR is expressed

using as . In (36), a multiplicative constant is omitted
and the peak value is normalized to 1. When the power of
background interference is much larger than the power of
sensor noise, substituting into (13), we derive

(37)
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where is defined such that . We
define the signal-to-interference ratio (SIR) as , and a
multiplicative constant is again omitted in (37).

The results of plotting the point spread functions in (36) and
(37) are shown in Fig.7(a) and (b). Here, in (36) and in
(37) were set equal; these values were set to 1 in Fig.7(a) and to
0.5 in Fig.7(b). These calculated results show that the FWHM
of the point spread function in (36) is approximately twofold
greater than that for the point spread function in (37). That
is, the blur caused by the sensor noise is twofold greater than
that caused by the interference. The difference between the
two point spread functions is caused by the difference between

and . The decay properties of these
generalized cosines are shown in Fig. 7(c), and we can see that

decays twice as fast as , thus explaining
the difference in these two types of point spread functions.

In summary, this paper proposes a novel prewhitening beam-
former, which can achieve source reconstruction free from the
influence of background brain activities. The prerequisite for the
method is that control-state measurements, which contain only
the contributions from the background interference, be avail-
able, and that the covariance matrix of the background inter-
ference can be obtained from such control-state measurements.
The proposed method uses this interference covariance matrix
to suppress the influence of the interference in the source re-
construction results. The proposed method is validated by our
computer simulation, as well as by applications to two kinds of
MEG data.
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