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In this paper, we present an extensive performance evaluation of a novel source localization algorithm,
Champagne. It is derived in an empirical Bayesian framework that yields sparse solutions to the inverse prob-
lem. It is robust to correlated sources and learns the statistics of non-stimulus-evoked activity to suppress the
effect of noise and interfering brain activity. We tested Champagne on both simulated and real M/EEG data.
The source locations used for the simulated data were chosen to test the performance on challenging source
configurations. In simulations, we found that Champagne outperforms the benchmark algorithms in terms of
both the accuracy of the source localizations and the correct estimation of source time courses. We also
demonstrate that Champagne is more robust to correlated brain activity present in real MEG data and is
able to resolve many distinct and functionally relevant brain areas with real MEG and EEG data.

© 2011 Elsevier Inc. All rights reserved.
Introduction

Magnetoencephalography (MEG) and electroencephalography
(EEG) non-invasively detect brain activity by measuring minute mag-
netic fields or electric potentials with an array of sensors positioned
around the head. Videos of brain activity can then be reconstructed
from M/EEG recordings. In order to transform sensor recordings into
videos, both a forward and inverse models must be solved. The for-
ward model relates the underlying electrical/magnetic activity in
the brain to expected sensor measurements. The calculation of the
forward model requires specification of a brain source model, a vol-
ume conductor model, and a model for the measurement system (po-
tentials or gradients of a magnetic field). The field or potential
observed by the sensors are, in part, generated by large ensembles
of neurons firing synchronously within the brain. The synchronous
activation of group of neurons can be modeled as a current dipole,
also called a source. The magnetic (and electric) field of a current di-
pole is fully defined by Maxwell's equations and the forward model
is calculated for a specific location, orientation, volume conductor
type (geometry and conductivity), head model (spherical shell or
realistic-head model), and type of measurement (potential or gradi-
ent of magnetic field). Once these parameters are fixed, we can obtain
a mapping from every candidate source location or voxel to every
sensor, called the lead field. Solving the inverse problem in M/EEG
boratory, Dept. Radiology and
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involves relating the recorded sensor data to brain activations.
This inverse problem is inherently ill-posed as the number of voxels
(typically 3000 to 5000) is much greater than the number of sensors
(typically 275 sensors for MEG systems and 64, 128, or 256 elec-
trodes for EEG systems). Finding a solution to the inverse problem
is also complicated by the presence of correlated sources, sensor
noise, artifacts and biological interference (from sources within and
outside the brain). Obtaining accurate source locations and time
course estimates is central to the validity of M/EEG as a functional
brain imaging method.

Currently, a wide variety of source localization algorithms exists
for estimating source activity. These algorithms can be grouped
into three types: dipole fitting, spatial scanning, and tomographic.
Parametric dipole fitting is a common technique, where a small
number of point dipole sources are assumed to generate the MEG
data, and the problem reduces to determining parameters of the
dipoles, such as the location, orientation, and amplitude, usually
by non-linear optimization or search (Mosher et al., 1992; Uutela
et al., 1998). Spatial scanning techniques estimate the time course
at every candidate location while suppressing the interference
from activity at the other candidate source locations. Some examples
of scanning techniques are minimum-variance adaptive beamform-
ing (MVAB) and other variants of beamformers (Gross et al., 2001;
Sekihara and Nagarajan, 2008; Vrba and Robinson, 2001). The
third class of algorithms are tomographic techniques, which model
the activity at all candidate source locations simultaneously. Tomo-
graphic methods include minimum-norm estimation (MNE)
(Hämäläinen and Ilmoniemi, 1994), dynamic statistical parametric
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mapping (dSPM) (Dale et al., 2000), and standardized low resolu-
tion brain electromagnetic tomography (sLORETA) (Pascual-
Marqui, 2002). Some tomographic methods promote sparseness
in the solution (Gorodnitsky and Rao, 1997; Uutela et al.,
1999), where the majority of the candidate locations do not have
significant activity. Empirical evidence shows that a sparse source
model can improve the accuracy of the localization in a noisy
environment.

Most of the source reconstruction algorithms from the three clas-
ses can be framed in a Bayesian schema. This perspective is useful be-
cause at a high level, the prior distribution implicitly or explicitly
imposed can be used to differentiate and compare the various source
localization methods. Algorithms such as MNE, MCE, sLORETA, and
MVAB (and other beamformers) assume a known, fixed prior. Alter-
natively, the parameters of the prior distribution (hyperparameters)
can be learned from the data, referred to as empirical Bayes. These
ideas are extensively discussed in Wipf et al. (2009). Often empirical
Bayesian algorithms are more robust in that they include a full statis-
tical model (Friston et al., 2008; Kiebel et al., 2008; Mattout et al.,
2006; Nummenmaa et al., 2007; Phillips et al., 2005; Sahani and
Nagarajan, 2004; Zumer et al., 2007).

Recently, we have developed Champagne, a novel source recon-
struction algorithm that is derived in an empirical Bayesian schema
and incorporates deep theoretical ideas about sparse-source recovery
from noisy, constrained measurements. Champagne improves upon
existing methods of source reconstruction in terms of reconstruction
accuracy, robustness, and computational efficiency (Wipf et al., 2009,
2010). Experiments with preliminary simulated and real data, pre-
sented in Wipf et al. (2009, 2010), show that compared to other
commonly-used source localization algorithms, Champagne is more
robust to correlated sources and noisy data. However, the full extent
of the capabilities of Champagne have not been tested with MEG and
EEG data.

In this paper, we present results from both simulated and real
MEG data that more rigorously characterize the performance of
Champagne and better delineate both its strengths and limits. Ulti-
mately an exhaustive performance analysis of a new source localiza-
tion algorithm serves two distinct purposes; the first being to
motivate the use of the algorithm by showing head-to-head perfor-
mance with commonly-used methods. The second is to fully describe
the conditions under which an algorithm is able to provide accurate
localizations and of equal importance, when its performance breaks
down. The conditions under which an algorithm fails motivates fur-
ther development of source localization algorithms to advance be-
yond these shortcomings.

For the simulated data, we have selected a number of challenging
source configurations: a large number of distinct sources, deep
sources, and clusters of sources. In addition to investigating these
challenging source configurations with simulated data, we also pre-
sent an analysis of the effect of lead field modeling errors. We present
the performance of Champagne on EEG data and various EEG mon-
tages. We use real data sets to test the performance of Champagne:
auditory-evoked field (AEF), audio-visual task, and face-processing
data, both with MEG and with EEG recordings. We compare the re-
sults obtained by Champagne to those from three benchmark algo-
rithms, MVAB, sLORETA/dSPM, and MCE, on simulated and real
data. Taken together, the results on simulated and real data give a
rather complete picture of the source localization capabilities of this
novel algorithm, Champagne.

Theory

The Champagne algorithm

This section briefly describes the Champagne algorithm and pro-
vides the necessary update rules to implement the method.
Champagne relies on segmenting the data into pre- and post-
stimulus periods, learning the statistics of the background activity
from the pre-stimulus period, and then applying the statistics of the
background activity to the post-stimulus data to uncover the
stimulus-evoked activity.

We model post-stimulus sensor data (Bpost) as:

Bpost ¼
Xds
r¼1

LrSr þ E; ð1Þ

where Bpost∈ Rdb�dt , where db equals the number of sensors and dt is
the number of time points at which measurements are made in the
post-stimulus period. Lr∈Rdb�dc is the lead field matrix in dc orienta-
tions for the r-th voxel. Each unknown sourceSr∈Rdc�dt is a dc-dimen-
sional neural current-dipole source at dt time points, projecting from
the r-th voxel. There are ds voxels under consideration. E∈Rdb�dt is a
noise plus interference factor that is learned from the pre-stimulus pe-
riod using Stimulus-Evoked Factor Analysis, SEFA, (Nagarajan et al.,
2007), which assumes that the columns (corresponding to sensors)
are drawn independently from N 0;Σεð Þ. Thus the noise is uncorre-
lated over time. Learning the statistics of E is the first step to perform-
ing source localization with the Champagne algorithm.

The second step to the source localization process is to estimate
hyperparameters Γ that govern the statistical model of the post-
stimulus data. We can fully define the probability distribution of the
data conditioned on the sources:

p Bpost

� ���S�∝exp −1
2OBpost−
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This is equivalent to applying independently, at each time point, a
zero-mean Gaussian distribution with covariance Γr to each source Sr.
We define Γ to be the dsdc×dsdc block-diagonal matrix formed by or-
dering each Γr along the diagonal of an otherwise zero-valued matrix.
If the lead field has only one orientation (scalar/orientation-
constrained lead field), Γ reduces to a diagonal matrix. Since Γ is un-
known, we can find a suitable approximation Γ̂≈Γ by integrating out
the sources S of the joint distribution p(S,Bpost|Γ)∝p(Bpost|S)p(S|Γ)
and then minimizing the cost function:

L Γð Þ¼Δ −2log p Bpost

� ���Γ�≡trace CbΣ
−1
b

h i
þ log Σbj j; ð4Þ

where Cb=dt
−1BpostBpost

T is the empirical covariance and Σb is the data
model covariance, Σb=Σε+LΓLT.

Although automatic-relevance determination (ARD) (Mackay,
1992; Wipf and Nagarajan, 2008) is often cited as the origin for spar-
sity in this class of models (Friston et al., 2008; Henson et al., 2010), a
simpler explanation can be seen by inspecting (4). The objective func-
tion consists of two terms, one proportional to Σb

−1 and the other to
Σb. These terms balance each other, and the function is best mini-
mized by setting the majority of the hyperparameters Γ to zero (or
close to zero). As such, only a small fraction of the hyperparameters
(Γ) will have values significantly different than zero.

Minimizing the cost function (4) with respect to Γ can be done in
a variety of ways, including gradient descent or the expectation–
maximization algorithm, but these and other generic methods are
exceedingly slow when ds is large. Instead, we utilize an alternative
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optimization procedure that uses convex bounding techniques (Boyd
and Vandenberghe, 2004). This method expands upon ideas from
Jaakkola (2000); Wipf et al. (2007), handles arbitrary/unknown
dipole-source orientations, and converges quickly because it pro-
vides a better upper bound (Wipf et al., 2011). This optimization pro-
cedure yields a modified cost function:

L Γ;X; Zð Þ ¼ O~B−
Xds
r¼1

LrXrOΣ−1
ε

2

þ
Xds
r¼1

jjXr½ j 2
Γ−1
r

þ trace ZT
r Γr

� ���� i
−h� Zð Þ;

ð5Þ

where by construction L Γð Þ ¼ minXminZL Γ;X; Zð Þ, the matrix
~B∈Rdb�rank Bpostð Þ, ~B~BT ¼ Cb and X and Z are auxiliary variables.

Minimizing this modified cost function yields three update rules,
fully derived in Wipf et al. (2010):

Xnew
r →ΓrL

T
rΣ

−1
b

~B ð6Þ

Znew
r →∇Γr log Σbj j ¼ LTrΣ

−1
b Lr ð7Þ

Γnewr →Z−1=2
r Z1=2

r XrX
T
r Z

1=2
r

� �1=2
Z−1=2
r ; ð8Þ

where Γr comprise the blocks of the block-diagonal matrix of hyper-
parameters Γ.

In summary, the Champagne algorithm estimates Γ by iterating
between (6), (7), and (8), and with each pass we are theoretically
guaranteed to reduce (or leave unchanged) L Γð Þ.

Each Γr was initialized with an identity matrix plus/minus a small
random number, O(1e-5), different for each element of each Γr. We
found that this was the most robust initialization, as opposed to ini-
tializing with the source power of another algorithm, such as MVAB.
When using a vector lead field, as opposed to a scalar/orientation-
constrained lead field, a dc×dc covariance matrix is learned for each
source. This covariance can be thought of as describing a noisy or
unfixed source orientation.

The source time courses can be calculated using the posterior
source distribution p(S|Bpost,Γ)∝p(Bpost|S)p(S|Γ), which is Gaussian.
To estimate the source time courses, we choose the source posterior
mean, i.e. the mean of p(S|Bpost,Γ), given by:

ŝr tð Þ ¼ ΓrL
T
r Σε þ LΓLT
� �−1

Bpost tð Þ; ð9Þ

where ŝr tð Þ∈Rdc�1 (a short vector across lead field components).

Benchmark source localization algorithms

We chose to test the Champagne algorithm against four representa-
tive source localization algorithms from the literature: an adaptive spatial
filtering method, MVAB (Sekihara and Nagarajan, 2008), two non-
adaptive spatial filtering methods, sLORETA and dSPM, and a version
of MCE. The sLORETA and dSPM algorithms are variants of MNE. Details
about the implementation of each of the algorithms can be found in
Appendix A. Our experience has shown that SLORETA and dSPM,
although differing in their theoretical properties, perform similarly
with simulated and experimental data. Thus, we present their results
together and denote their results with SL/dSPM.

Methods

Quantifying performance

In order to quantify performance on simulated data, we used two
features: localization accuracy and time course estimation accuracy.
First, we determined whether sources were correctly localized and
then we determined if the source time courses were accurately recon-
structed for those source locations. There are a variety of methods to
determine detection accuracy from signal detection theory. Typically
these methods take into account the occurrence of both hits and false
positives and a ROC (receiver–operator characteristic) curve can be
obtained for pairs of numbers of hits and false positives. In our simu-
lations, there is more than one simultaneously active brain area (or
source), so the use of the free-response ROC (FROC) curve is applica-
ble as it allows for multiple hits and false positives in a single image
(Darvas et al., 2004). The A′ metric (Snodgrass and Corwin, 1988) es-
timates the area under the FROC curve for one hit rate (HR) and false-
positive rate (FR) pair, or in our case, for each simulation. (If the area
under the FROC curve is large, then the hit rate is high compared to
the false positive rate.)

To determine the accuracy of the time courses, we calculated the
correlation coefficient between the seed and estimated source time
courses for each hit. Then, we averaged the correlation coefficients
for all the hits for each simulation run; this average correlation coef-
ficient is denoted as �R. Detailed equations for HR, A′, and �R are provid-
ed in Appendix B.

We developed a metric that captures both the accuracy of the
location and the time courses of the algorithms, which we call the
Aggregate Performance (AP). It combines the A′, �R, and HR in the fol-
lowing equation:

AP ¼ 1
2

A′ þ HR
�R

� �
ð10Þ

We use the HR as a weight for �R since we compute only the corre-
lation coefficient for the sources that are correctly localized. AP ranges
from 0 to 1. For this paper, we use an AP value of 0.75 as the cutoff for
a successful localization.

MEG simulations

The simulated data in this paper was generated by simulating di-
pole sources, with either fixed or variable orientation. We seeded
the voxel locations with damped sinusoidal time courses and then
projected the voxel activity to the sensors with the lead field. The
brain volume was segmented into 8 mm voxels and a two-
orientation (dc=2) forward lead field was calculated using a single
spherical-shell model (Sarvas, 1987) implemented in NUTMEG
(Dalal et al., 2004) unless where otherwise noted.The parcellation at
this resolution yields approximately 4500 voxels (4578 voxels for
the simulations in this paper). The time course was partitioned into
pre- and post-stimulus periods. The pre-stimulus period (270 sam-
ples) contained only noise and interfering brain activity. The post-
stimulus period (450 samples), the activity of interest, or the
stimulus-evoked activity, was superimposed on the noise and inter-
ference present in the pre-stimulus period. The noise plus interfer-
ence activity consisted of the resting-state sensor recordings
collected from a human subject presumed to have only spontaneous
activity and sensor noise. Each source location was seeded with a dis-
tinct time course of activity and the sources were only present for half
of the post-stimulus period (225 samples). The voxel activity was
projected to the sensors through the lead field and the noise was
added to achieve a desired signal to noise ratio. The simulated data
had 275 sensor recordings.

The specific difficult configurations we tested are:

1. Discriminating two dipoles—We examined the minimum distance
at which two sources can be resolved. The spacing between voxels
on our grid was 8 mm, thus we tested the localization accuracy
when the distance between the two sources (inter-dipole dis-
tance) was 16, 24, 32, or 40 mm. The locations of the two sources
were chosen randomly with the constraint that the minimum dis-
tance from the center of the head was 35 mm (since deeper
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sources are harder to localize). (The maximum distance from the
center of the head in the volume of interest (VOI) is 65 mm.)

2. Detecting multiple sources — In order to examine the ability of
Champagne to localize many individual sources, we performed
extensive simulations with randomly seeded sources. We used a
volumetric (two-component) lead field computed in NUTMEG
(as described above). We randomly seeded 3 to 30 sources
throughout the brain. The locations for the sources were chosen
so that there was some minimum distance between sources (at
least 10 mm) and a minimum distance from the center of the
head (at least 35 mm).

3. Rotating versus fixed dipole model — Altering the correlation be-
tween the lead field components, αintra, changes the degree that
the orientation of a source rotates (see Appendix for more expla-
nation). We wanted to investigate the effect of the αintra on the
ability of Champagne to localize 10, 15, and 20 sources; we chose
intra-dipole correlations of 0.25, 0.75, and 1. If the orientation
was truly fixed, αintra=1, the most probable orientation for the
sources would be normal to the cortical surface (the pyramidal
cells in the cortex that give rise to the majority of the MEG signal
are mostly orientated perpendicular to the surface). In addition
to testing the vector lead field with varying intra-dipole correla-
tions (as described above), we also tested the scalar lead field
when the intra-dipole correlation was 0.25 and 1. In all five cases
a vector lead field was used for the forward model and we changed
the lead field used for solving the inverse problem. Instead of using
a scalar lead field from another software package, which would
have a different voxel grid than the vector lead field from NUT-
MEG, we transformed the vector lead field into a scalar lead field
by assuming an optimal orientation for every voxel (Sekihara and
Nagarajan, 2008). The lead field used for the inverse is referred
to as the inverse model.

4. Effect of cortical surface orientation errors — We extended the
previous experiment to investigate the effect of orientation errors
on the results obtained with the scalar lead field. When using a
scalar lead field, an assumption is being made about the orienta-
tion of the sources in the brain. To test the effect of errors be-
tween the true and assumed orientation, we randomly rotated
the orientation of each voxel after simulating the data and before
performing source localization with Champagne. The maximum
perturbation to the orientation ranged from 0 to π

4. The orienta-
tion of each voxel was not rotated the same amount, rather
every voxel was rotated by a randomly generated angle between
zero and the maximum perturbation angle. We chose to run
these simulations on 10, 15 and 20 sources since this is the re-
gime for which there is a discrepancy in performance for the sca-
lar and vector lead field. The data were generated to have an
SNIR of 10 dB.

5. Deep sources— To assess the ability of Champagne to localize deep
sources, which are typically hard to localize with MEG, we con-
structed three conditions to compare performance with: 1) no
deep sources (or all shallow sources), 2) half deep sources and
half shallow sources, 3) all deep sources. A deep source was de-
fined as less than 35 mm from the center of the head and a shallow
source was defined as above, at least 35 mm from the center of the
head. These conditions were designed to test sensitivity to deep
sources when there are only deep sources and when there is a
combination of deep and shallow sources. The configurations
with only shallow sources were included to give a basis for com-
parison. The total number of sources was 2, 4, 6 and 10, where
each total number of sources had three conditions associated
with it. For example, for 4 total sources, there was one condition
where there were 4 shallow sources, one condition where there
were 2 shallow and 2 deep sources, and one condition where
there were 4 deep sources. We chose the maximum number of
sources to be 10 because that is the largest number of sources
that Champagne was able to localize in the Detecting multiple
sources experiment.

6. Clusters — Given the sparsity of Champagne, we tested its ability to
localize distributed activity by simulating clusters of sources. We
seeded 5, 10, or 15 clusters each with 10 sources in each cluster.
These clusters correspond to 50, 100, and 150 voxels having non-
zero activity. The placement of the cluster center was random
and the clusters consisted of sources seeded in the 9 nearest neigh-
boring voxels. The source time courses within each cluster had an
inter-dipole correlation coefficient of 0.8 and an intra-dipole corre-
lation coefficient of 0.25. The multiple clusters were correlated with
a correlation coefficient of 0.5. We made the correlations within the
clusters higher than between clusters because nearby voxels are
more plausibly correlated than voxels at a distance. For the clusters,
we are both interested in whether the cluster is localized and
whether the extent of the cluster is accurately reconstructed. To as-
sess the localization of the clusters, we use the A′ metric. The A′
metric is calculated for the clusters by testing if there is a local
peak within the known extent of the cluster. To assess the accuracy
of the extent of the clusters, we calculate the fraction of the seeded
voxels with power in or above the 80th percentile of all the voxels.
We call this fraction the Cluster Extent Score (CES).

We could adjust both the signal-to-noise-plus-interference ratio
(SNIR), the correlations between the different voxel time courses,
inter-dipole correlation (αintra), and the correlation between the
orientations of the dipolar sources, intra-dipole correlation (αinter).
Details of these parameters are described in Appendix C. We provide
two examples of the simulated sensor data at 0 dB and 10 dB in
Fig. 1. The red line indicates the start of the post-stimulusperiod
(effectively the stimulus onset) at 0 ms. In this example, there are
5 sources seeded throughout the brain. If not indicated otherwise,
each of the experiments above were conducted with the following
settings: SNIR=0,10dB, αinter=0.5, and αintra=0.25.

The results we obtained using simulated data are presented in two
forms. First, we show the plots of mean A′, �R, mean HR, and/or mean
AP, our Aggregate Performance metric. For each configuration, the re-
sults are averaged over 50 simulations and we have plotted these av-
eraged results with standard error bars.

For some of the experiments, we also show examples of the local-
ization results from single simulations, which complement our aggre-
gate results. We compute the source power at every voxel and project
the activity to the surface of a rendered MNI-template brain. These
plots contain a projection of the true source power, called Ground
Truth.

EEG simulations

We tested Champagne on simulated EEG data using a scalar,
cortically-constrained lead field computed in SPM (http://www.fil.
ion.ucl.ac.uk/spm) by selecting the coarse resolution. This resulted
in approximately 5000 voxels at approximately 5 mm spacing. The
EEG data was simulated in the same way as the MEG data, described
above, only there was no αintra and we repeated the Detecting
multiple sources experiment with this lead field. In addition to run-
ning on the maximum number of sensors (128), we also investigated
the effect of subsampling the number of sensors on the ability to
localize sources. We subsampled the 128 sensor lead field to 64, 32,
and 16 sensors, while preserving coverage, because many EEG
researchers use as few as 10 electrodes for a standard 10–20 montage
or 16 sensors for clinical EEG systems.

Real data

All MEG data was acquired in the Biomagnetic Imaging Laboratory
at UCSF with a 275-channel CTF Omega 2000 whole-head MEG

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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Fig. 1. Simulated data at 10 dB and 0 dB. The red line indicates the start of the post-stimulus period (or the stimulus onset) at 0 ms. There are 5 sources seeded in this example and
the noise is real resting-state data.
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system from VSM MedTech (Coquitlam, BC, Canada) with a 1200 Hz
sampling rate. The lead field for each subject was calculated in NUT-
MEG (Dalal et al., 2004) using a single-sphere head model (two-ori-
entation lead field) and an 8 mm voxel grid. The data was digitally
filtered from 1 to 160 Hz to remove artifacts and the DC offset was
removed.

We ran Champagne and the benchmark algorithms on three real
MEG data sets:

1. Auditory evoked field (AEF) — The neural responses of seven sub-
jects to an AEF stimulus were localized. The AEF response was eli-
cited with single 600 ms duration tones (1 kHz) presented
binaurally. The data were averaged across 120 trials (after the tri-
als were time-aligned to the stimulus). The pre-stimulus window
was selected to be −100 ms to 5 ms and the post-stimulus time
window was selected to be 5 ms to 250 ms, where 0 ms is the
onset of the tone.

2. Audio-visual—We analyzed a data set designed to examine the in-
tegration of auditory and visual information. We presented single
35 ms duration tones (1 kHz) simultaneous with a visual stimulus.
The visual stimulus consisted of a white cross at the center of a
black monitor screen. The data were averaged across 100 trials
(after the trials were time-aligned to the stimulus). The pre-
stimulus window was selected to be −100 ms to 5 ms and the
post-stimulus time window was selected to be 5 ms to 450 ms,
where 0 ms is the onset of the simultaneous auditory and visual
stimulation.

3. Face processing — A MEG data set from a subject for which faces
and scrambled faces were presented in a random order with an
interstimulus interval of 1 s was used as the third data set. For
the face stimulus, the pre-stimulus window was −200 ms to
5 ms and the post-stimulus time window was from 5 ms to
450 ms, where 0 ms is the appearance of the visual stimulus. In ad-
dition to running Champagne on the face processing data, we also
constructed a contrast dataset to localize the brain areas more ac-
tive when the faces were presented than when scrambled faces
were presented. The pre-stimulus period of this data set consisted
of the trial-averaged post-stimulus period (5 ms to 450 ms) from
the scrambled-face data and the post-stimulus period consisted
of the trial-averaged post-stimulus period (5 ms to 450 ms) from
the face data. There were 40 trials of both the face and scrambled
data; the data (for each condition) were averaged (after the trials
were time-aligned to the stimulus).

For the real MEG data plots, we show coronal sections through the
voxel with the maximum power. If the coronal section does not ade-
quately demonstrate the localization, we included the sagittal slice.
The crosshairs on the MRI images show the location of the voxel
whose time course is plotted.
The EEG data (128-channel ActiveTwo system) was downloaded
from the SPM website (http://www.fil.ion.ucl.ac.uk/spm/data/
mmfaces) and the lead field was calculated in SPM8 using the coarse
resolution. The EEG data paradigm involved randomized presentation
of at least 86 faces and 86 scrambled faces, although we did not use
the scrambled face data. We averaged the time-aligned trials to the
presentation of the face and created an averaged data set. The pre-
stimulus window was selected to be −200 ms to 5 ms and the post-
stimulus time window was selected to be 5 ms to 250 ms. For this
real data set we found that using the three-component (vector) lead
field in SPM was more robust than the orientation-constrained lead
field (we selected the coarse tessellation for our grid resolution).
The power was plotted on a 3-D brain and the time courses for the
peak voxels are plotted (the arrows point from a particular voxel to
its time course).

Computational considerations

The Champagne algorithm typically converged in 75 to 100 itera-
tions. The lead field we used for the majority of the simulations had
approximately 5500 voxels, which results in the estimation of ap-
proximately 16,500 hyperparameters, and took approximately
10 min to run on a lead field of that size (and trial-averaged data)
on an Intel(R) Core(TM)2 Quad CPU @ 3.00 GHz, with 8 GB of memo-
ry. The number of hyperparameters Champagne estimates is depen-
dent on the number of lead field orientations. Fora scalar (or fixed-
orientation) lead field, ds hyperparameters are estimated. For a 2 or
3 component lead field, 3×ds or 6×ds unknown hyperparameters
are estimated, respectively. (Each precision matrix Γr is a symmetric
matrix.)

Results

MEG simulations

Discriminating two dipoles
The first column of Fig. 2 shows the hit rate (HR) plotted against

inter-dipolar distance at 10 dB and 0 dB. The HR results show that at
10 dB Champagne is able to localize two sources at any inter-dipole
distance and at 0 dB Champagne is able to distinguish two sources if
there is 32 mm (or 3 voxels width) between the sources. The bench-
mark algorithms do not perform as well. A′, in the second column,
echoes the HR plots across SNIR and algorithm.

Champagne is able to reconstruct the time courses at all inter-
dipole distances at 10 dB and at 0 dB, Champagne is successful
when there is at least 32 mm between the sources, while the other al-
gorithms have more difficulty reconstructing the time courses at both
SNIR levels and all inter-dipole distances.

http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces
http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces
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Fig. 2. Simulations with two dipoles seeded with inter-dipole distances of: 16 mm, 24 mm, 32 mm, or 40 mm. The inter-dipole correlation is 0.5 and the intra-dipole correlation is
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equation is used: AP ¼ 1

2 A′ þ HR
�R

� �
. The results are averaged over 50 simulations at each data point and the error bars show the standard error.
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The three values presented in the first three columns of Fig. 2, HR,
A′, and �R, are combined to compute Aggregate Performance (AP)
shown in the fourth column. For Champagne, the AP results look
very similar to the plots in the previous three columns since Cham-
pagne tended to perform well across metrics (or perform poorly as
is the case at 0 dB and the smaller inter-dipole distances). Likewise,
MCE shows similar performance across the first three metrics (or col-
umns) and yields similar trends in the AP metric. MCE performs most
similarly to Champagne at large interdipole distances and performs
like MVAB at smaller inter-dipole distances at 10 dB. At 0db, however,
Champagne and MCE have similar trends across the inter-dipole dis-
tances, but Champagne performs better than MCE at the lower SNIR
level. The AP results for MVAB at 10 dB demonstrate that MVAB was
penalized for having poor time course reconstruction in spite of hav-
ing good localization results. SL/dSPM does poorly across all of the
first three metrics at both noise levels and thus, does poorly in
terms of the AP metric.
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Fig. 3. Results from simulations to test localization on multiple dipoles (3 to 30) with a
volumetric lead field (2 components). AP is plotted against number of dipoles for
SNIR=10 dB and SNIR=0 dB (inset plot). The inter-dipole correlation is 0.5 and the
intra-dipole correlation is 0.25. The results are averaged over 50 simulations at each
data point and the error bars show the standard error.
Detecting multiple sources
In Fig. 3, we plot number of sources versus AP at SNIR levels of

10 dB and 0 dB (inset plot). At both SNIR levels, Champagne outper-
forms the other source localization algorithms. Champagne is able
to accurately reconstruct up to 10 sources at 10 dB and up to 5
sources at 0 dB. For both SNIR levels and across number of sources,
the three other source localization algorithms perform at almost the
same level.

We also show single simulation examples at 10 dB and 0 dB for
both 5 (Fig. 4) and 10 sources (Fig. 5). The 5 source examples dem-
onstrate that Champagne is able to recover 5 sources at both SNIR
levels. Both MCE and MVAB are able to recover most of the 5
sources, but also have some false positives and blur around the
sources. At 0 dB, MVAB and MCE do not successfully localize the
sources, there is a peak at the center of the head (which gets pro-
jected to the surface), and one successful source for MVAB. SL/
dSPM did not localize any of the 5 sources at either SNIR level.
These results show a peak at the center of the head and while this
peak does extend out to where the sources were seeded, there are
no distinct peaks at the seeded locations. The 10 source examples
demonstrate that Champagne is able to recover 9 out of 10 sources
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Fig. 4. A single example of the localization results with the vector lead field for 5 dipoles at SNIR=10 dB (right columns) and SNIR=0 dB (left columns). The ground truth location
of sources are shown for comparison. We project the source power to the surface of a template brain.
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at a SNIR of 10 dB. At 0 dB, Champagne is able to recover over half
the sources, but also has some false positives, including a peak at
the center of the head. Both MVAB and MCE are able to localize
some of the 10 sources at 10 dB, but at 0 dB these algorithms are un-
able to resolve more than one source. As in the 5 source example,
SL/dSPM is not able to recover any of the 10 sources at 10 dB or
0 dB; there is only a peak at the center of the head.

Rotating versus fixed dipole model
In Fig. 6, AP is plotted against five conditions: 1) αintra=1 and

vector inverse model, 2) αintra=0.75 and vector inverse model, 3)
αintra=0.25 and vector inverse model, 4) αintra=1 and scalar in-
verse model, and 5) αintra=0.25 and scalar inverse model for 10,
15, and 20 sources. The performance using a vector inverse model
(the first three conditions) demonstrates that the presence of
intra-dipole correlations makes the localization problem more diffi-
cult and that the weaker the correlation, the easier it is to localize
multiple sources. The results using a scalar inverse model show
that if the sources' orientations are truly fixed, it is advantageous
to use a scalar lead field for the inverse problem. The performance
on 15 and 20 sources is better with the scalar lead field than the
performance obtained using the vector lead field if the orientation
is fixed. On the other hand, if the orientation is rotating and a scalar
inverse model is used for the reconstruction the performance is
drastically reduced as compared to the experiments where a vector
inverse model is used.

Effect of cortical surface orientation errors
In Fig. 7, AP is plotted against the maximum orientation error for

10, 15, and 20 sources. The trend in performance across the perturba-
tions is consistent for 10, 15 and 20 sources. The performance drops
by approximately 10% immediately with the smallest maximum per-
turbation, π

64. The performance stays the same for maximum perturba-
tions of π

32 and
π
16, and then starts falling off more rapidly for maximum

perturbations of π
8 and

π
4.

We conducted an additional experiment to assess the effect of
lead-field errors that may occur due to errors in coregistration. We
used a vector lead field to generate data at 10 dB and then we solved
the inverse problem with Champagne with a lead field shifted diago-
nally the distance of about half the diagonal of a voxel (approximately
5 mm). We tested Champagne with 3 to 30 sources and found that
the AP metric was reduced, at worst, 10% for each number of sources
(figure not shown).

Deep sources
The results on deep sources are shown in Fig. 8. We have plotted

AP against total number of sources (2, 4, 6, or 10) for the three source
configurations described above (rows of Fig. 8), at 0 and 10 dB
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Fig. 5. A single example of the localization results with the vector lead field for 10 dipoles at SNIR=10 dB (right columns) and SNIR=0 dB (left columns). The ground truth location
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Fig. 8. Localization results in the presence of deep sources at SNIR=10 dB (left column) and SNIR=0 dB (right column). AP is plotted against total number of sources in each panel.
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(columns of Fig. 8). Across all the source configurations, noise levels,
and numbers of sources, Champagne outperforms the other source lo-
calization algorithms. As we saw in the Detecting Multiple Dipoles ex-
periment, Champagne is able to reconstruct 10 sources at 10 dB and 4
to 6 sources at 0 dB. MCE consistently does better than MVAB and SL/
dSPM for the conditions where there are all shallow sources or half
shallow (and half deep) sources. The presence of deep sources
(whether they constitute half or all the sources) degrades perfor-
mance for all of the methods. This decrease in performance is espe-
cially marked for MCE at both noise levels and SL/dSPM at 0 dB.

Clusters
The results from the experiment with clusters are shown in Fig. 9.

In the first row, we show A′ metric results for 10 dB and 0 dB. In the
second row, we show the CES results for 10 dB and 0 dB. For 5 clus-
ters, Champagne and MVAB perform equally for both metrics at
both SNIR levels, but at 10 and 15 clusters Champagne performs bet-
ter than MVAB and the other algorithms both in terms of localizing
the clusters and reconstructing their extent. MCE does a fairly good
job at localizing the clusters at 10 dB as seen in the A′ plot, but is
not able to reconstruct the extent of the clusters as seen in the CES
plot. At 0 dB, MCE and SL/dSPM perform similarly in terms of A′ and
CES and in general, SL/dSPM is not successful in localizing or recon-
structing the extent of the clusters. A single-simulation experiment
with 10 clusters is presented in Fig. 10. Champagne is able to localize
all 10 clusters in this example. MVAB and MCE are able to localize a
fair number of clusters (7 and 5 respectively) and SL/dSPM is only
able to localize one cluster (the cluster in the occipital lobe).
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Fig. 9. Performance on 5, 10 and 15 clusters of dipoles (each cluster has 10 contiguous active voxels) using a vector lead field. Cluster A′ is plotted against number of clusters in the
top row, showing the localization accuracy and Cluster Extent Score (CES) is plotted against number of clusters in the bottom row, showing the algorithms' ability to correctly
model the extent of the clusters. The inter-dipole correlation within the cluster is 0.8, the inter-dipole correlation between clusters is 0.5, and the intra-dipole correlation is
0.25. The results are averaged over 50 simulations at each data point and the error bars show the standard error.
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EEG simulations

In Fig. 11 we present the EEG simulation results. The left column
shows the results at 10 dB and the results at 0 dB are shown in the
right column. The results obtained with the full 128-sensor lead
field are shown in the top row, and the number of sensors in the
lead field decrease in the subsequent rows. At almost every SNIR
level and number of sources and sensors, Champagne outperforms
the other algorithms. In the one-source case, only MCE is able to local-
ize that source better than Champagne with 128 and 64 sensors at
both 10 dB and 0 dB. The performance of MCE after one source
drops off quickly in these plots. In general, the performance of Cham-
pagne is the same for 128 and 64 sensors, we do not see a degradation
in performance until 32 sensors. This is true for the other localization
algorithms as well.

Performance on real data

Auditory evoked field
The localization results from the AEF data from seven subjects are

shown in Fig. 12. In each subplot, we show the power at each voxel in
a 50–75 ms window around the M100 peak. Champagne is able to lo-
calize bilateral auditory activity for all seven subjects (shown in the
first column of Fig. 12). The activity is in Heschel's gyrus, which is
the location of primary auditory cortex. SL/dSPM is able to localize bi-
lateral auditory activity in five of the seven subjects. In these five sub-
jects, the activations are diffuse and in most cases biased to one side.
MVAB is only able to localize bilateral activity in one subject (Subject
5) and in the other six cases it localizes the activity to the center of
the head. MCE is only able to localize the auditory activity on one
side in most subjects. In Subjects 4 and 6, MCE is able to localize bilat-
eral activity, but the activity is more lateral than Heschel's gyrus. The
MCE algorithm favors voxels on the edge of the voxel grid, and often
does not accurately localize cortical areas.

Audio-visual task
The results Champagne yields for the audio-visual task are pre-

sented in Fig. 13. In the first and second rows,we show the brain activa-
tions associated with the auditory stimulus. Champagne is able to
localize bilateral auditory activity in Heschel's gyrus in the window
around the M100 peak, shown in Figs. 13(a) and (c). The time courses
for the left and right auditory sources are shown in Figs. 13(b) and
(d), along with the window used around the M100 peak. The two audi-
tory sources had themaximum power in the window around theM100
peak. Second, we present the early visual response in Figs. 13(e) and (f).
Champagne is able to localize a source in medial, occipital gyrus with a
peak around 150 ms. We plot the power in the window around this
peak in Fig. 13(e) and the time course of the source marked with the
crosshairs in Fig. 13(f). Using a later time window, shown in
Fig. 13(g), we can localize a later visual response with a time course
(Fig. 13(h)) that has power extending past 200 ms.

The benchmark algorithms were run on this data set, the results
can be found in the supplementary materials (Figs. S1 to S3). In
brief, MVAB and SL/dSPM are able to localize some of the auditory
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and visual areas found with Champagne, but do not provide focal lo-
calizations and the time courses are not as distinct for the auditory
and visual sources. MCE provides results similar to Champagne,
though it favors the voxels on the periphery of the volume.
Face-processing task: MEG
The face processing results are shown in Figs. 14 and 15. First, we

examine the brain areas involved in the processing of the faces.
Fig. 14(a) shows an early visual response to the presentation of the
face visual stimulus in medial occipital cortex with time course in
Fig. 14(b). Fig. 14(c) shows a later visual response more lateral to
the early response with the time course in Fig. 14(d). In Figs. 14 (e)
and (g) we show a bilateral activation in the fusiform gyrus with
time courses shown in Figs. 14 (f) and (h) that show peaks around
170 ms. Second, in the contrast condition, we can see a bilateral acti-
vation in the fusiform gyrus Figs. 15 (a) and (c) with a peak around
170 ms (time courses shown in Figs. 15 (b) and (d)). The activations
in the fusiform gyrus are the maximum in the window shown in
Figs. 15 (b) and (d), around 170 ms. The results concur with those
from the literature (Kanwisher et al., 1997). An area in fusiform
gyrus (on the ventral surface of the occipital lobe), called the fusiform
face area (FFA), has been shown to be an area preferentially activated
by the presentation of faces versus other visual stimuli, such as
scrambled faces.

The benchmark algorithms were also applied to this face proces-
sing data set; the results can be found in the supplementary materials
(Figs. S4 to S6). In brief, SL/dSPM and MCE are able to localize a visual
activation and bilateral FFA. MVAB localizes a visual area, but the peak
in the time course does not correspond to early visual activity.

Face-processing task: EEG
In Fig. 16, we present the results from using Champagne on the

face-processing EEG data set. In Fig. 16(a), we see that Champagne
is able to localize early visual areas that have a peak around 100 ms.
In Fig. 16 (b), the ventral surface of the brain is shown. There are a
few activations in and around fusiform gyrus. These activations are
larger in extent and have peaks around 170 ms corresponding to
the N170 seen in the sensor data. These results are consistent with
those obtained in (Henson et al., 2010) using the same EEG data set.

The benchmark algorithms were applied to the EEG data set; these
results can be found in the supplementary materials (Fig. S7). In sum-
mary, the benchmark algorithms are able to localize visual and in the
case of MCE, fusiform activations. However, the time courses for all
the peak locations have a similar shape and cannot be used to differ-
entiate the activations.

Discussion and conclusion

In this paper, we present the results from a rigorous battery of
performance tests of Champagne, our novel source-localization algo-
rithm. We have compared the performance of Champagne to
commonly-used source localization algorithms, MVAB, SL/dSPM, and
MCE. The tests use simulated and real data; the simulated data ex-
plores performance with difficult source configurations and the real
data demonstrates the ability of Champagne localize real brain activ-
ity in the face of source correlations and real noise, interference, and
signal-to-noise ratios.

The experiments with simulated data exemplify that Champagne
provides robust localization and time course estimation with complex
source configurations and noisy, correlated sensor data. Champagne
is able to distinguish two neighboring, correlated sources, which
could have real implications when analyzing real M/EEG data with
brain areas activated in close proximity to one another, such as audi-
tory and secondary somatosensory cortex or visual cortical areas V1/
V2/V3/V4.

We also found that Champagne is able to successfully localize up
to 10 sources at high SNR with vector fields, and up to 20 sources
with scalar lead fields with accurate orientation estimates. However,
even slight inaccuracies in orientation can cause performance to de-
grade with scalar lead fields below the performance of vector lead-
fields.

Interestingly, Champagne is able to provide accurate localization
of deep sources even when there is a mix of deep and shallow sources
and only deep sources. Champagne produces the largest improve-
ment when localizing only deep sources at both noise levels as com-
pared to the other algorithms. Localizing the individual clusters and
capturing the cluster extent is also done most accurately by Cham-
pagne at both SNIR levels. MVAB does nearly as well as Champagne;
the localization of the clusters is most likely aided by the increase in
the signal at the cluster locations and accurately modeling the extent
of the sources is likely aided by the inherent blur in beamformer so-
lution. MCE does well at localization, but does not accurately model
the extent, due to its sparsity profile. Thus, it is notable that Cham-
pagne is able to both get the location and the extent of the clusters
despite its sparsity profile. Champagne is sparse, but not so sparse
that it cannot model a total of 50 to 150 active voxels at one time.
(We also tried clusters of smaller and larger source extents, for
which the results were similar.)
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Fig. 11. Results for EEG simulations with a scalar EEG lead field, AP is plotted against number of dipoles (1 to 50). Also shown is the effect of downsampling the number sensors on
performance (shown in each row). The inter-dipole correlation between clusters is 0.5. The results are averaged over 50 simulations at each data point and the error bars show the
standard error.
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Fig. 12. Auditory evoked field (AEF) results for 7 subjects. The results from using Champagne are shown in the right-most column and the results from using the benchmark algo-
rithms are shown the other three columns.
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This paper is the first evaluation of the performance of Champagne
on EEG data. We found that Champagne performed similarly on the
EEG data with 128 sensors to the MEG results with 275 sensors. The
results were not drastically affected by reducing the number of sen-
sors by half, i.e. going down to only 64 sensors. With even fewer sen-
sors, 32 or 16, performance is still superior to benchmarks.

Using simulated data to assess the performance of a source locali-
zation algorithm is necessary as one must know the true locations
and time courses of the sources in order to definitively recognize a
successful localization. But, while simulated data can be generated
in a realistic fashion, it is still artificial data. Also, the way in which
data is simulated can be biased towards a particular algorithm. The
experiments in this paper use simulated data that has been generated
in a manner that best replicates key aspects of real M/EEG data. We
have also tried to generate data that does not favor Champagne by
making the following choices. We have chosen realistic signal-to-
noise ratios and number of time points to best model true experimen-
tal data. We use real brain noise instead of Gaussian noise; the noise
models in both SEFA and Champagne assume Gaussian distributions.
The source time courses are damped sinusoids, while the Champagne
model assumes Gaussian time courses. Also, the inter- and intra-
dipole correlations make the source localization problem more diffi-
cult, but more closely model the complexity of brain activity.

When simulations are drawn from the generative model for
Champagne, i.e. when the source time courses are Gaussian, the
SNIR level is 100 dB, and the inter-dipoles correlation is zero, we
have found that Champagne is able to localize on the order of 100
sources.

There are aspects of brain activity that we have not explored in
this work, such as sources that move over the course of the post-
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Fig. 13. Audio-visual data localization results from Champagne. Champagne localizes a bilateral auditory response at 100 ms after the simultaneous presentation of tones and a vi-
sual stimulus. Champagne localized bilateral auditory activity, (a) and(c), with time courses shown in (b) and (d). Champagne localizes an early visual response at 150 ms after the
simultaneous presentation of tones and a visual stimulus. The time course in (f) corresponds to the location indicated by the crosshairs in the coronal sections (e). Champagne lo-
calizes a later visual response later than 150 ms after simultaneous presentation of tones and a visual stimulus. The time course in (h) corresponds to the location indicated by the
crosshairs in the coronal sections (g).
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Fig. 14. Results for Champagne run on the face-processing data set. Champagne localizes an early visual response 100 ms after the presentation of a face stimulus, shown in (a). The
time course for this source is shown in (b) and corresponds to the location indicated by the crosshairs in the coronal section (a). Champagne localizes a later visual response around
200 ms after the presentation of a face stimulus, seen in (c), with the time course shown in (d). Champagne localizes a bilateral activation in fusiform gyrus that is thought to be in
FFA, shown in (e) and (g). The peak for these sources is around 170 ms after the presentation of a face stimulus, time courses shown in (f) and (h).
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stimulus period, referred to as dynamic sources. This issue is particu-
larly pertinent when localizing epileptic activity; we plan to investi-
gate the performance of Champagne on dynamic sources in the
future.

The experiments with real data highlight the source localization
abilities of Champagne. It is harder to evaluate localization accuracy
with real data since the ground truth is not known. For this reason,
we have chosen real data sets that have well-established patterns of
brain activity; AEF, audio-visual, and face-processing data. For each
of the seven AEF data sets presented, Champagne is able to localize bi-
lateral auditory activity in the physiologically accepted region. The
other source localization algorithms are not able to provide equally
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Fig. 15. Results for the face versus scrambled contrast. Champagne localizes a bilateral activation in face-fusiform area (FFA) seen in (a) and (b). The peak is around 170 ms after the
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focal, bilateral activations. Historically, AEF is a difficult data set to ob-
tain accurate activations due to the highly correlated sources. Vari-
ants of beamforming have been developed in order to handle the
correlated sources, such as coherent suppression beamformers and
dual-core beamformers (Dalal et al., 2006; Diwakar et al., 2010).
Champagne is able to localize correlated activity without any modifi-
cations and it provides a robust solution to this long-standing deficit
in source localization. The results from the more complicated data
sets, the face processing and the audio-visual task, demonstrate that
Champagne is able to localize many distinct, functionally-relevant
brain activations. The benchmark algorithms are able to localize
some of the sources that Champagne uncovers, but they cannot local-
ize every source nor do they provide focal peaks, as is the case with
MVAB and SL/dSPM. A major point of divergence between Cham-
pagne and the benchmark algorithms is the estimation of the time
courses. In general, Champagne is able to produce time courses that
tease apart brain areas, while the other algorithms tend to have
very similar time courses at all locations in the brain. The results
from the EEG data set shows that Champagne is an effective source lo-
calization method for EEG data, localizing activity in both visual areas
and in the fusiform gyrus. The benchmark algorithms have better suc-
cess at localizing the visual activity than the face-specific activations
in fusiform gyrus with the EEG data set.

The generative model for Champagne is related to the multiple
sparse priors model (MSP) (Friston et al., 2008). Both are covariance
component analysis algorithms with some key differences. First,
while MSP assumes a set of hundreds of covariance components
that represent activity correlated across voxels, Champagne assumes
thousands of covariance components representing uncorrelated ac-
tivity in each voxel. Second, Champagne uses flat hyperpriors for var-
iances and computes MAP estimates for variances with convergent
update rules, whereas MSP assumes a Gamma-distribution for hyper-
priors for variances, and computes a posterior distribution under a La-
place approximation. Finally, the noise is simultaneously estimated in
the MSP algorithm, rather than separately estimated with the pre-
stimulus data, as in Champagne. Given both the similarities and
points of divergence, we plan to investigate the comparison of the
MSP model to Champagne in future research.

Applying SEFA to the pre- and post-stimulus period can also en-
able Champagne to be run on “cleaned” post-stimulus data with
low-noise covariance. We have found that using SEFA to remove
noise can improve the performance of Champagne, particularly on
real data. This is an extension of the Champagne algorithm that we
plan to explore further. Additionally, Champagne does not make as-
sumptions about the smoothness of sources, nor does it consider un-
certainties in the lead field. We are currently investigating the use of
spatial- and temporal-smoothness priors, either in the form of basis
functions, as in (Zumer et al., 2008), or in the form of auto-
regressive smoothness priors. Incorporating spatial priors and better
noise models, which also model spatiotemporal correlations in the
background noise, could potentially improve performance. These ex-
tensions of the Champagne method hold promise for improving upon
an already robust source localization algorithm.

Although Champagne is embedded in deep theoretical ideas, the
resulting algorithm essentially iterates between four simple steps.
We believe that the results presented in this paper demonstrate
that Champagne makes a significant breakthrough in the reconstruc-
tion of brain activity with M/EEG data.
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Appendix A . Benchmark source localization algorithms

For all the algorithms, we localize sources only in the post-
stimulus period, referring to as Bpost.

The estimate for the source-time course ( ŝr tð Þ) at a particular
voxel (r) and time point (t) for MVAB is:

ŝr tð Þ ¼ LTr R
−1Lr

� �−1
LTr R

−1Bpost tð Þ; ð11Þ

where R=BpostBpost
T is the covariance of the sensor data.

The estimate for the source-time course for sLORETA is:

ŝr tð Þ ¼ trace LTr G
−1Lr

� �−1
2

� 	
LTr G

−1Bpost tð Þ; ð12Þ

where G is called the Gram matrix, G=LLT; it gives an indication of
the spatial correlation or overlap between the sensitivity profile of
the sensors. Since neighboring sensors have similar sensitivities, this
Gram matrix is too close to singular to invert stably. Tikhonov
regularization is needed to invert G, which involves adding a small
number to the diagonal entries of the Gram matrix prior to inversion:
G−1=(LLT+σλI)−1, where σ is a scalar that is chosen empirically,
ranging from .001 to 100, and λ is the maximum eigenvalue of the
data covariance matrix (R).

Similar to sLORETA, the source-time course estimate for dSPM is:

ŝr tð Þ ¼ trace LTr G
−2Lr

� �−1
2

� 	
LTr G

−1Bpost tð Þ: ð13Þ

We used a version of MCE that is specially tailored to handle mul-
tiple time-points and unconstrained source orientations (Wipf et al.,
2009). This method extends standard MCE by applying a l2 penalty
across time. In this version there is an l1-norm over space and an
l2-norm over time, sometimes called an l1;2-norm in signal processing.
The source orientation components are also included within the l2
penalty. Similar to Champagne, MCE favors sparse/compact source
reconstructions.
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The MCE cost function is expressed as:

ŝ tð Þ ¼ arg min
ŝ ZOB−

Xds
r¼1

LrŝrOΣ−1
ε

2
þ
Xds
r¼1

OŝrOF x; ð14Þ

whereOŝrOF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr ŝTr ŝr

 �q

and Σε
−1 is either set to be the inverse noise

covariance learned with SEFA from the pre-stimulus period (as in
Champagne) or it is set to be Σε

−1=σI, where σ is a scalar that is em-
pirically selected and I is an identity matrix of size ds×ds.

The estimate for the source time course ( ŝr tð Þ) at a particular
voxel (r) and time point (t) is obtained by iterating the following
equations:

ŝ kþ1ð Þ
r tð Þ→α kð Þ

r LTr Σε þ
Xds
r¼1

α kð Þ
r LrL

T
r

 !−1

Bpost tð Þ; ð15Þ

where α kð Þ
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

dcdt
∑dt

t¼1jjŝ r; tð Þ kð Þjj22
q

and k is the iteration number.

Appendix B. Details of performance metrics calculation

Given a power map (the power of the time course for each voxel)
for a given simulation, we determined the value of the Aggregate Per-
formance metric (AP) for that simulation, which combines HR, A′ and
�R. In order to calculate the A′ metric, we determined HR and FR for
each run of the simulation in the following way. First, we found all
the “local peaks” in the power map of the sources. A local peak is de-
fined as a voxel that is greater than its 20 three-dimensional nearest
neighbors and is at least 10% of the maximum activation of the
image. (This thresholding at 10% is designed to filter out any spurious
peaks or ripples in the image that are much weaker than the maxi-
mum peak.)

After all the local peak locations were obtained, we tested
whether each local peak is within 10 mm of a true source location.
If a particular peak was within 10 mm of a seeded source, that seed-
ed location gets labeled as a hit and if there was not a local peak
within 10 mm, that seeded location gets labeled as a false positive.
HR is then calculated by dividing the number of hits by the true
number of seeded sources. Determining FR is more tenuous, as
there is not a clear maximum number of possible false positives, as
there is with hits. (Note, that a rate is a ratio between the actual
amount and the maximum amount.) We empirically determined
the maximum number of false positives for each algorithm, for
each given experiment. Since the spatially filtering techniques
(MVAB, sLORETA, and dSPM) are inherently smoother than the
sparse solutions obtained from Champagne and MCE, the maximum
number of false positives was determined empirically across all SNIR
levels and 50 simulations for each algorithm. Then, the number of
false positives was divided by this maximum false positive number
in order to calculate FR for each simulation and SNIR level. Lastly,
the A′ metric was calculated for each HR/FR pair with the following
equations:

A′ ¼
1
2
þ HR−FRð Þ 1þ HR−FRð Þ

4HR 1−FRð Þ for HR≥FR

1
2
þ FR−HRð Þ 1þ FR−HRð Þ

4FR 1−HRð Þ for FR > HR

8>><
>>: ð16Þ

To assess the accuracy of the time course estimates, we used the
correlation coefficient between the true and estimated time courses.
Note that we only computed the time course correlation if a local
peak is deemed a hit. For a particular simulation, we average the cor-
relation coefficients to obtain one number that reflects the time
course reconstruction. The correlation coefficient also ranges from
0 to 1, with 1 implying perfect time course estimation. The equation
used to obtain the average correlation coefficient ( �R) between the
true source time course Si
true(t) and the estimated source time course

Si
est(t) for the ith correctly localized source is as follows:

�R ¼ 1
N

XN
i¼1

C Struei tð Þ; Sesti tð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C Struei tð Þ; Struei tð Þ
 �

C Sesti tð Þ; Sesti tð Þ
 �q ð17Þ

where C(xi,xj) is the covariance of xi and xj and N is the total number
of correctly localized sources.

With the values for HR, A′ and �R, we can calculate AP for the run of
the simulations. For most of the simulations, we ran 50 trials of each
configuration of the parameters, i.e. source configuration, SNIR, inter/
intra-dipole correlations, and then averaged the AP values to obtain
one value for each configuration.

Appendix C. Simulated data parameters

For our purposes, SNIR is defined as:

SNIR¼Δ 20log
jjLSjjF
jjEjjF

; ð18Þ

where L is the lead field matrix, S are the source time courses, E is the
noise or non-stimulus evoked activity, see (1) and F denotes the
Froebenius norm or the l2-norm.

We simulated data to replicate the signal-to-noise ratios of real
stimulus-evoked data (trial-averaged data). We chose 10 dB and
0 dB as the upper and lower bound for typical trial-averaged, real
M/EEG data.

The inter-dipole correlations allow us to test the algorithms' per-
formance when disparate areas of the brain have correlated activity.
The intra-dipole correlations allow us to model deviations in the ori-
entation of a dipole; a correlation of 1 would imply a fixed orientation
and a correlation of 0 would model a dipole that is fully rotating and
not stable in orientation. Another interpretation of the intra-dipole
correlation is that the brain volume within a single voxel might con-
tain two or more current sources, and these sources might be aligned
in different directions. This would be true of voxels that fall on a 90
degree fold of the cortical surface. We impose intra- and inter-
dipolar correlations (for a two-orientation lead field) for n dipoles
in the following manner.

First we generate the time courses for the two orientations of each
dipole: Sn1(t), the time course of the nth dipole and the first orientation
and Sn

2(t), the time course of the nth dipole and the second orientation.
Then we correlate the two orientations of each individual dipole. If
the intra-dipolar correlation coefficient is αintra, then Sn

2(t) is defined
to be:

S2n tð Þ→αintraS
1
n tð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α 2

intra

q
S2n tð Þ ð19Þ

After we set the intra-dipolar correlation, we correlate all the
dipoles (n in number) to the first dipole, S1(t). Sn(t) is a vector
formed by concatenating the time courses for each orientation for

the nth dipole: Sn tð Þ ¼ S1n tð Þ
S2n tð Þ

" #
, for a two-component lead field. If

the inter-dipolar correlation coefficient is αinter, then Sn(t) (for n≠1)
is defined to be:

Sn tð Þ→ αinter 0
0 αinter

� 
S1 tð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α 2

inter

q
0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α 2

inter

q
2
4

3
5Sn tð Þ ð20Þ

Appendix D. Supplementary data

Supplementary data to this article can be found online at doi:10.
1016/j.neuroimage.2011.12.027.
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