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Abstract—This paper proposes a novel spatial filter for biomag-
netic source imaging. The proposed spatial filter is derived based
on a modified version of the minimum-norm spatial filter and
is designed to have a performance close to that of the adaptive
minimum-variance spatial filter through the use of an estimated
covariance matrix. In this method, the theoretical form of the mea-
surement covariance matrix is estimated as an updated gram ma-
trix in a recursive procedure. Since the proposed method does not
use the sample covariance matrix, it is free of the well-known weak-
nesses of the minimum-variance spatial filter, namely, the proposed
spatial filter does not require a large number of time samples, and
it can even be applied to single-time-sample data. It is also robust
to source correlation. We have validated the method’s effectiveness
by our computer simulations as well as through experiments using
auditory-evoked magnetoencephalographic data.

Index Terms—Biomagnetic source reconstruction, magne-
toencephalography (MEG), minimum-norm method, minimum-
variance spatial filter, source reconstruction, spatial filter.

I. INTRODUCTION

THE SPATIAL filter is a popular method used to reconstruct
a source distribution from bioelectromagnetic data [1]. It is

a linear operator that applies a set of linear weights to measured
data to obtain a source reconstruction. When the weight of a
spatial filter only depends on the geometry of the measurements,
such a spatial filter is referred to as a nonadaptive spatial filter,
which includes the minimum-norm-based filters discussed in
Section II-B. In contrast to nonadaptive spatial filters, the weight
of an adaptive spatial filter depends not only on the measurement
geometry but also on the measurement covariance matrix. A
representative adaptive spatial filter is the minimum-variance
spatial filter described in Section II-C.

It is generally true that a nonadaptive spatial filter has a large
source location bias, particularly when applied to 3-D volume
reconstruction [1], [2]. In contrast, the source location bias of an
adaptive spatial filter is generally small and can provide reason-
able 3-D source reconstruction [1], [2]. The spatial resolution

Manuscript received July 31, 2009; revised November 15, 2009; accepted
December 16, 2009. Date of publication February 17, 2010; date of current
version May 14, 2010. This work was supported by Grants-in-Aid from the
Ministry of Education, Science, Culture and Sports in Japan (C20500394). As-
terisk indicates corresponding author.

I. Kumihashi is with the Department of Systems Design and Engineering,
Tokyo Metropolitan University, Tokyo 191-0065, Japan (e-mail: kumihashi136_
ac@yahoo.co.jp).

∗K. Sekihara is with the Department of Systems Design and Engineering,
Tokyo Metropolitan University, Tokyo 191-0065, Japan (e-mail: ksekiha@
cc.tmit.ac.jp).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBME.2010.2040735

of an adaptive spatial filter is significantly higher than that of
nonadaptive spatial filters [1], [2].

However, adaptive spatial filters have well-known weak-
nesses. First, since the computation of their weights requires
a sample covariance matrix of the measured data, a large num-
ber of time samples are needed to obtain an accurate sample
covariance matrix. In many cases of bioelectromagnetic mea-
surements, however, it is rather difficult to obtain a large number
of time samples. Second, the adaptive spatial filter is known to
be sensitive to the source correlation, and it generally fails to re-
construct source activities when they are highly correlated [3],
[4]. Typical cases include the bilateral activation of auditory
cortices [5].

In this paper, we propose a novel spatial filter based on a
modified version of the minimum-norm filter, called the array-
gain constrained minimum-norm filter. The proposed method is
designed to estimate the theoretical form of the measurement
covariance matrix through recursively updating the gram ma-
trix. Thus, the proposed method is termed “array-gain constraint
minimum-norm filter with recursively updated gram matrix”
abbreviated as the AGMN-RUG spatial filter in this paper. The
proposed AGMN-RUG method is able to provide 3-D volume
reconstruction with a spatial resolution considerably higher than
that of existing minimum-norm-based methods. Nonetheless,
the method is free of the aforementioned weaknesses occur-
ring with adaptive spatial filters, because it does not depend
on the sample covariance matrix. The method is also robust
to the source correlation, and this robustness can be seen in
our computer simulation as well as in our experiments using
auditory-evoked magnetoencephalographic (MEG) data.

After presenting reviews of the nonadaptive minimum-norm
filters and the adaptive minimum-variance filters in Section II,
this paper proposes a novel AGMN-RUG spatial filter in
Section III. The proposed spatial filter is validated by our com-
puter simulation in Section IV and by applications to auditory-
evoked MEG data presented in Section V. Throughout this
paper, plain italics indicate scalars, lower case boldface ital-
ics indicate vectors, and upper case boldface italics indicate
matrices.

II. FORMULATION OF REPRESENTATIVE SPATIAL FILTERS

A. Spatial Filter Source Reconstruction

Let us define the biomagnetic field measured by the mth sen-
sor at time t as bm (t), and the measured data as the column vector
b(t) = [b1(t), b2(t), . . . , bM (t)]T . Here, M is the total number
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of sensors and the superscript T indicates the matrix transpose. A
spatial location is represented by a 3-D vector r, as r = (x, y, z).
A source vector at r and time t is defined as a 3-D column vec-
tor s(r, t), where s(r, t) = [sx(r, t), sy (r, t), sz (r, t)]T , and
sx(r, t), sy (r, t), and sz (r, t) are the x, y, and z components
of the source vector s(r, t).

We denote the outputs of the mth sensor as lxm (r), lym (r), and
lzm (r) when the unit-magnitude source at r is directed in the
x, y, and z directions, respectively. Then, the column vectors
lx(r), ly (r), and lz (r) are defined as

li(r) = [li1(r), li2(r), . . . , liM (r)]T (1)

where i = x, y or z. The vectors, lx(r), ly (r), and lz (r), express
the sensor array sensitivity for a source at r directed in the x,
y, and z directions. The lead-field matrix is expressed as the
M × 3 matrix:

L(r) = [lx(r), ly (r), lz (r)]. (2)

This matrix L(r) represents the sensitivity of the whole sen-
sor array for a source at r. The relationship between the mea-
surement vector b(t) and the 3-D source vector s(r, t) is then
expressed as

b(t) =
∫

Ω
L(r)s(r, t) d3r (3)

where d3r indicates the volume element, and the integral is
performed over the entire space within which sources may exist.
This space is referred to as the source space and denoted Ω in
this paper.

Using the measurement vector b(t), the spatial filter recon-
structs the source vector s(r, t) using

ŝ(r, t) = [ŝx(r, t), ŝy (r, t), ŝz (r, t)]T = W T (r)b(t). (4)

where ŝ(r, t) is the estimated source vector at r and time t. In
(4), the weight matrix W (r) is an M × 3 matrix defined as

W (r) = [wx(r),wy (r),wz (r)] (5)

where M × 1 weight vectors wx(r), wy (r), and wz (r),
respectively detect ŝx(r, t), ŝy (r, t), and ŝz (r, t). This weight
matrix characterizes the properties of the spatial filter. Com-
bining (3) and (4), we derive (omitting explicit time notation t)

ŝ(r) =
∫

Ω
W T (r)L(r′)s(r′) d3r′. (6)

Here, W T (r)L(r′) is called the resolution kernel, and
expresses the relationship between the true source distribution
s(r) and the estimated source distribution ŝ(r). One way of
interpreting the resolution kernel is to consider it as a function of
r′ using a fixed r. In such a case, W T (r)L(r′), called the beam
response, expresses the sensitivity of the spatial filter pointing
at r to a source located at r′. In other words (when r �= r′), the
beam response represents the gain on unwanted leakage signals
from sources located elsewhere from the filter pointing location.

B. Minimum-Norm-Based Spatial Filters

Next, we show that the minimum-norm-based spatial filters
can be derived using optimization formulations that force their

beam responses to have an ideal delta-function-like shape [1],
i.e, the weight matrix of the minimum-norm spatial filter is
derived using

W (r) = arg min
W (r)

F(W ) (7)

where

F(W ) =
∫

Ω
tr{

[
W T (r)L(r′) − δ(r − r′)I

]
[
W T (r)L(r′) − δ(r − r′)I

]T } d3r′. (8)

Here, I is the identity matrix, tr{·} indicates the matrix trace,
and δ(r) is the delta function. The cost function F(W ) in (8)
indicates the total power of the leakage signals. Therefore, using
the previous optimization, we wish to derive a spatial filter that
passes the signal from the pointing location r but minimizes the
total power of the leakages from all other locations.

To find the W (r) that minimizes this F(W ), we calculate
the derivative ∂F(W )/∂W (r) and set it to zero, i.e.,

∂F(W )
∂W (r)

= 2
∫

Ω

[
L(r′)LT (r′)W (r) − L(r′)δ(r − r′)

]
d3r′

= 2
[∫

Ω
L(r′)LT (r′) d3r′

]
W (r) − 2L(r)

= 2 [GW (r) − L(r)] = 0 (9)

where G, called the gram matrix, is an M × M matrix defined
as

G =
∫

Ω
L(r)LT (r) d3r. (10)

From (9), we can derive the weight matrix given by

W (r) = G−1L(r). (11)

The spatial filter in (11) is equal to the well-known minimum-
norm spatial filter [6].

Several variants of the minimum-norm filter can be derived
by adding some constraints to the optimization formulation in
(7). An example of such constraint is one on the filter gain at
the pointing location. We first consider the unit-gain constraint
expressed as W T (r)L(r) = I. The constrained optimization
is explicitly formulated, in this case, as

W (r) = arg min
W (r)

F(W ),

subject to W T (r)L(r) = I (12)

where F(W ) is defined in (8). The weight matrix satisfying
(12) is known to have the following form:

W (r) = G−1L(r)[LT (r)G−1L(r)]−1 . (13)

This spatial filter is called the unit-gain constraint minimum-
norm filter reported in [7].

The constrained optimization,

W (r) = arg min
W (r)

F(W ), subject to

∫
Ω

[
W T (r)L(r′)

] [
W T (r)L(r′)

]T
d3r′ = I (14)
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leads to the weight matrix expressed as

W (r) = G−1L(r)[LT (r)G−1L(r)]−1/2 . (15)

This spatial filter is known as standardized low-resolution elec-
tromagnetic tomography (sLORETA) [8].

C. Minimum-Variance Spatial Filter

The minimum-variance spatial filter is a representative adap-
tive spatial filter, whose weight matrix is formulated using the
measurement covariance matrix R. Using the unit-gain con-
straint, W T (r)L(r) = I , the weight matrix is derived using
the optimization,

W (r) = arg min
W (r)

tr{W T RW },

subject to W T (r)L(r) = I. (16)

The resultant weight matrix is expressed as [3],

W (r) = R−1L(r)[LT (r)R−1L(r)]−1 . (17)

This minimum-variance spatial filter is known to have signifi-
cantly higher spatial resolution and much smaller source loca-
tion bias, compared to the minimum-norm-based spatial filters
mentioned in the preceding subsection [2].

For biomagnetic imaging, the norm of the lead field ‖L(r)‖
is spatially nonuniform and the minimum-variance spatial filter
is affected by this nonuniformity of the lead-field norm, as can
be seen in the weight expression in (17). Particularly when the
spherical homogeneous conductor model [9] is used for com-
puting the lead field, the source reconstruction results contain
a false intensity increase around the center of the sphere [1],
because ‖L(r)‖ becomes zero and the weight becomes infinity
at the center.

When ‖L(r)‖ is spatially nonuniform, instead of using the
unit-gain constraint W T (r)L(r) = I , it is more reasonable to
use the constraint W T (r)L(r) = Λ, where

Λ =

 ‖lx(r)‖ 0 0
0 ‖ly (r)‖ 0
0 ‖lz (r)‖

 . (18)

In this case, the weight matrix is expressed as

W (r) = R−1L̃(r)[L̃
T
(r)R−1L̃(r)]−1 (19)

where L̃(r) is the lead-field matrix consisting of the normalized
columns, i.e.,

L̃(r) =
[

lx(r)
‖lx(r)‖ ,

ly (r)
‖ly (r)‖ ,

lz (r)
‖lz (r)‖

]
. (20)

In (19), the weight is independent of the norm of the lead field,
and we can avoid the artifacts due to the nonuniformity of the
lead-field norm. Since ‖lx(r)‖, ‖ly (r)‖, and ‖lz (r)‖ represent
the gains of the sensor array for a source directed in the x-, y-,
and z-directions, the constraint W T (r)L(r) = Λ is called the
array-gain constraint, and the spatial filter in (19) is called the
array-gain (constraint) minimum-variance filter.

The weight matrices of the minimum-variance filters in (17)
and (19) contain the covariance matrix R. When computing

these weights, a sample covariance estimate R̂ is used for R,
and a large number of time samples are generally needed to
obtain an accurate sample covariance matrix. However, in many
bioelectromagnetic applications, it is difficult to obtain a large
number of time samples. In the following section, we develop
a spatial filter that outperforms the minimum-norm-based fil-
ters without using the sample covariance matrix. We derive an
expression for R needed in our arguments in the next section.
Using (3), the measurement covariance matrix is expressed as

R = 〈b(t)bT (t)〉 =
∫

Ω
L(r)〈s(r, t)sT (r, t)〉LT (r)dr (21)

where 〈·〉 indicates averaging. This expression for R is used in
deriving the spatial filter proposed in the next section.

III. PROPOSED AGMN-RUG SPATIAL FILTER

The proposed spatial filter is based on the array-gain-
constraint minimum-norm filter, which is derived using the fol-
lowing optimization:

W (r) = arg min
W (r)

F(W ),

subject to W T (r)L(r) = Λ (22)

where Λ is the gain matrix defined in (18), and the cost function
F(W ) is defined, in this case, as

F(W ) =
∫

Ω
tr{

[
W T (r)L(r′) − δ(r − r′)Λ

]
P (r′)

[
W T (r)L(r′) − δ(r − r′)Λ

]T } d3r′ (23)

where P (r′) is a 3 × 3 positive semidefinite matrix. This P (r′)
is a matrix weighting function that controls location-dependent
weighting when the resolution kernel is optimized. The resultant
spatial filter is derived as

W (r) = Ḡ
−1

L̃(r)[L̃
T
(r)Ḡ−1

L̃(r)]−1 (24)

where

Ḡ =
∫

Ω
L(r)P (r)LT (r) d3r. (25)

If we compare (24) with (19), it is the weight equation for the
array-gain constraint minimum-variance filter. The only differ-
ence between (24) and (19) is the use of Ḡ, instead of R. We
may then compare Ḡ [see (25)] and R [see (21)] and find that
these two matrices are very similar and differ only in the man-
ner of weighting in the integral, i.e., the covariance matrix R is
expressed as the integral of L(r)LT (r), with the weighting of
the source power matrix 〈s(r, t)sT (r, t)〉. On the other hand,
the gram matrix Ḡ is given by the integral of L(r)LT (r), with
the weighting of an arbitrary matrix function P (r).

Therefore, if we could use a P (r) that is similar to the
source power matrix 〈s(r, t)sT (r, t)〉, the gram matrix Ḡ
could approximate the covariance matrix R, and consequently,
the performance of the array-gain minimum-norm filter would
approach the performance of the minimum-variance filter.
However, since the true source distribution s(r) is unknown,
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we propose using the estimated source distribution ŝ(r) for
computing P (r).

The proposed recursive algorithm is described in the follow-
ing manner.

1) By setting an initial P (r) to be the identity matrix I , the
weight W (r) is derived using (24) and (25).

2) The estimated source distribution ŝ(r, t) is obtained using
(4).

3) This ŝ(r, t) is then used to compute Ḡ at each time point
such that

Ḡ =
∫

Ω
L(r)

[
ŝ(r, t)ŝT (r, t)

]
LT (r) d3r (26)

whereupon the weight matrix is updated using (24).
4) Finally, the updated source distribution is obtained using

the updated weight matrix with (4).
This procedure is repeated until a stopping criterion is

satisfied.
One important problem in practical applications is the in-

fluence of measurement noise. In biomagnetic measurements,
the condition number of the gram matrix obtained in (26) is
generally significantly large and the spatial filter in (24) is not
robust to the measurement noise. Since the norm of the filter
weight ‖W (r)‖ is the noise power gain of the spatial filter [1],
one way to derive a spatial filter that is relatively tolerant to the
measurement noise is to add an additional constraint that makes
‖W (r)‖ not greater than a certain bound, i.e., we derive such a
spatial filter using

W (r) = arg min
W (r)

F(W ), subject to W T (r)L(r) = Λ,

and ‖W (r)‖ ≤ WB (27)

where the noise gain of the resultant spatial filter is not greater
than the bound WB [1]. This formulation leads to the weight
expressed as

W (r) = Ĝ
−1

L̃(r)[L̃
T
(r)Ĝ

−1
L̃(r)]−1 (28)

where

Ĝ =
∫

Ω
L(r)P (r)LT (r) d3r + γI = Ḡ + γI. (29)

The scalar parameter γ works as the regularization parameter
determined based on the SNR in the measurements. We use
this regularized version of the proposed spatial filter in the ex-
periments in the following sections. In these experiments, we
determine γ to be equal to the noise floor of the eigenvalue
spectrum of the measurement covariance matrix, R̂, i.e., we use
γ that is equal to the mean of the noise-level eigenvalues of R̂.
Actually, considering the difference of the scaling between R̂
and Ḡ, we derive γ such that

γ =

[
1

Kn

∑
noise

λi

]
‖Ḡ‖
‖R̂‖

(30)

where
∑

noise λi indicates the summation over the noise eigen-
values, and Kn is total number of those eigenvalues.

Fig. 1. Coordinate system and source-sensor configuration used in the com-
puter simulation. The coordinate origin was set at the center of the sensor coil
located at the center of the array. The plane at x = 0 cm is shown. The large
circle shows the cross-section of the sphere used for the forward calculation,
and the small circles show the locations of the three sources. The square shows
the region for displaying the reconstruction results in Figs. 2– 7.

IV. COMPUTER SIMULATION

A. Reconstruction From Single-Time-Sample Data

A computer simulation was conducted to check the perfor-
mance of the proposed AGMN-RUG spatial filter. In this com-
puter simulation, we used a sensor alignment of the Magnes
2500 (4-D Neuroimaging, Inc., San Diego, CA) whole-head
sensor array, in which 148 sensors were arranged on a helmet-
shaped surface. Three sources were assumed to exist on the
vertical single plane: (x = 0 cm); their (y, z) coordinates cho-
sen as (−3.5,−6.5) cm, (1.0,−5.0) cm, and (4.0,−8.75) cm,
respectively. The source-sensor configuration and the coordi-
nate system are depicted in Fig. 1. The spherical homogeneous
conductor model [9], with the sphere origin set at (0, 0,−12)
cm, was used for the forward calculation. First, the sensor data
at a single time sample was calculated. Here, the intensities of
the three sources were set equal in the sensor domain. Gaussian
noise was added, and the SNR of the data was set to 16 where
the SNR was defined as the ratio of the norm of the signal vector
to the norm of the noise vector.

The source reconstruction was performed using sLORETA,
and the proposed AGMN-RUG spatial filter. Here, sLORETA
was chosen for comparison, because it is a method representa-
tive of existing nonadaptive methods and is able to perform 3-D
volume reconstruction. The source space Ω was defined as the
3-D region between −4 ≤ x ≤ 4 cm, −5 ≤ y ≤ 5 cm, and
−11 ≤ z ≤ −3 cm. The 3-D reconstruction was performed on
Ω with a 1-cm voxel interval. The squared source intensity
|ŝ(r)|2 was plotted on the plane x = 0 cm on which the three
sources were presumed to exist. The results from sLORETA
and the proposed spatial filter are shown in Fig. 2(a) and (b).
It can be clearly seen that the proposed spatial filter recon-
structs the three sources at approximately correct locations. On
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Fig. 2. Results of source reconstruction for single-time-sample data. (a) Re-
sults when the sLORETA spatial filter was applied. (b) Results when the pro-
posed AGMN-RUG spatial filter was applied. The contours show the relative
values of the squared source intensity |̂s(r)|2 on the plane x = 0 cm on which
three sources exist.

Fig. 3. Results of the source reconstruction obtained using the proposed
AGMN-RUG spatial filter with four different iteration numbers. (a) Number
of iterations was set to 4. (b) Number of iterations set to 16. (c) Number of iter-
ations set to 256. (d) Number of iterations set to 1024. The contours show the
relative values of the squared source intensity |̂s(r)|2 on the plane x = 0 cm.

the contrary, sLORETA produces blurred results, and fails to
reconstruct the first and the second sources.

In this implementation of the proposed AGMN-RUG spatial
filter, we set the number of iterations to eight. Since this num-
ber was empirically determined, we checked how the proposed
method is sensitive to the number of iterations by using the same
single-time-sample data with four different iteration numbers.
The results obtained with iteration numbers of 4, 16, 256, and
1024 are shown in Fig. 3(a), (b), (c), and (d), respectively. It
can be seen that these four sets of results are nearly identical,
suggesting that the method is rather stable with regard to the
number of iterations. We present a brief discussion regarding
this stability of the proposed method in Section VI.

B. Reconstruction From Spatiotemporal Dataset

Next, we performed experiments on the reconstruction based
on a spatiotemporal dataset. The three time courses shown in
Fig. 4 were assigned to the three sources, and the spatiotemporal
data were generated over 200 time samples. These three time
courses are denoted s1(t), s2(t), and s3(t). These time courses

Fig. 4. (Top to bottom) Time courses s1 (t), s2 (t), and s3 (t), used for gen-
erating the spatiotemporal dataset. The dataset was generated over 200 time
samples. The abscissa indicates the time samples and the ordinate indicates the
relative amplitudes.

Fig. 5. Results of source reconstruction for the spatiotemporal data. (a) Results
when the sLORETA spatial filter was applied. (b) Results when the proposed
AGMN-RUG spatial filter was applied. (c) Results when the minimum-variance
spatial filter was applied. The contours show the relative values of the squared
source intensity 〈|̂s(r, t)|2 〉 on the plane x = 0 cm, where 〈·〉 indicates the
average over the 200 time samples. (d) Reconstructed time courses of the three
sources obtained using the proposed AGMN-RUG spatial filter. The three time
courses are the time courses at voxels that give the three maxima in (b).

are largely uncorrelated and the correlation coefficients between
any pair of the three are less than 0.1. The SNR was set equal
to 16 (where the SNR was defined as the ratio of the Frobenius
norm of the signal matrix to that of the noise matrix).

We applied sLORETA, the proposed spatial filter, and the
minimum-variance spatial filter, to this spatiotemporal dataset.
The source-power distribution 〈|ŝ(r, t)|2〉 (where the notation
〈·〉 indicates the average over the 200 time samples), was recon-
structed over the source space Ω with a voxel interval of 1 cm,
and the results for the plane x = 0 cm are displayed in panels (a),
(b), and (c) of Fig. 5. When implementing the proposed spatial
filter, the number of iterations was set to eight. The sample co-
variance matrix was computed using all 200 time samples when
implementing the minimum-variance filter reconstruction.
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Fig. 6. Results of source reconstruction from the spatiotemporal data in which
the first and the second sources are highly correlated. (The correlation coefficient
was set to 0.98.) (a) sLORETA spatial filter was used. (b) Proposed AGMN-
RUG spatial filter was used. (c) Minimum-variance spatial filter was used. The
contours show the relative values of the squared source intensity 〈|̂s(r, t)|2 〉 on
the plane x = 0 cm, where 〈·〉 indicates the average over the 200 time samples.

It can be seen that sLORETA again produces rather blurred
results and fails to reconstruct the second source. The proposed
spatial filter and the minimum-variance spatial filter, however,
are successfully able to reconstruct the three sources. The re-
sults of the proposed method have a spatial resolution interme-
diate to those of sLORETA and of the minimum-variance filter.
The reconstructed time courses of the three sources appear in
Fig. 5(d). These time courses are the reconstructed voxel time
courses obtained by the proposed AGMN-RUG spatial filter; the
voxels are those that give the three maxima seen in Fig. 5(b).
The results demonstrate that the method is capable of providing
considerably accurate time-course reconstruction.

We then performed experiments in which sources were highly
correlated. Without changing the time courses of the second and
the third sources, we assigned the time course s′1(t) to the first
source, obtained using s′1(t) = (1 − α)s1(t) + αs2(t), where
α controls the degree of correlation between the first and the
second sources. This α was set to 0.8, and the correlation co-
efficient between s′1(t) and s2(t) turned out to be 0.98. The
results of the source reconstruction, in this case, are shown in
Fig. 6. The results of the minimum variance filter show a severe
influence from the source correlation known as signal cancella-
tion [4], i.e., the intensities of the first and second sources are
significantly diminished. On the other hand, the results of the
proposed AGMN-RUG spatial filter show nearly no influence
of the source correlation, thereby demonstrating the robustness
of the proposed spatial filter to highly correlated sources.

We finally checked the performance of the proposed spatial
filter when SNR is considerably low. Here, other conditions
for data generation were the same as those for Fig. 5. The
reconstruction results from the proposed spatial filter for four

Fig. 7. Results of source reconstruction for four cases of SNR. Other data-
generation conditions were the same as those for Fig. 5. (a) Results when SNR
was set at eight. (b) Results when SNR set at four. (c) Results when SNR set
at two. (d) Results when SNR set at one. The contours show the relative values
of the squared source intensity 〈|̂s(r, t)|2 〉 on the plane x = 0 cm, where 〈·〉
indicates the average over the 200 time samples.

cases of SNR are shown in Fig. 7. Results when SNR was set at
eight, four, two, and one are, respectively, presented in Fig. 7(a),
(b), (c), and (d). These results show that the spatial resolution is
affected by the measurement SNR. When SNR is equal to one,
the second and the third sources, which are approximately 5-cm
apart, are not resolved.

V. EXPERIMENTS USING AUDITORY-EVOKED MEG DATA

The effectiveness of the proposed spatial filter was further
tested using auditory-evoked MEG. Measurements were per-
formed using the 160-channel MEG-VISION whole-cortex bio-
magnetometer (Yokogawa Electric, Inc., Tokyo, Japan). Here, a
1-kHz pure tone of 500 ms duration was delivered to the sub-
ject’s left ear, and the auditory-evoked field was measured at a
sampling rate of 10 kHz. The average interstimulus interval was
2 s. An online low-pass filter with a cutoff frequency of 2 kHz
was applied. A total of 400 trials were measured and averaged.
The averaged waveforms of the auditory-evoked field are shown
in Fig. 8(a).

A single-time-sample data at the latency of 120 ms was used
for the reconstruction experiments. This time point, indicated
by a vertical broken line in Fig. 8(a), is close to the peak vertex
of the M100, and the auditory cortices in the left and right
hemispheres are expected to be simultaneously active at this
instant. This is confirmed by the contour plots [see Fig. 8(b)] of
the sensor data at this time point, because the dipolar patterns
are visible above the left and right hemispheres. The results
of the reconstruction experiments are shown in Fig. 9. In this
figure, the reconstructed source distributions are overlaid onto
the sagittal, coronal, and axial slices of the subject MRI.

The results of the minimum-variance filter are shown in
Fig. 9(a). To obtain these results, the sample covariance matrix
was computed using a time window between 0 and 300 ms, and
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Fig. 8. (a) Averaged waveforms of the auditory-evoked field used for the
reconstruction experiments. The vertical broken line indicates the latency at
120 ms. (b) Sensor-field map at a latency of 120 ms. The contours show the
relative intensity of the measured magnetic field. The letters, A, P, L, and R,
respectively, show the anterior, posterior, left-hemisphere, and right-hemisphere
directions.

Fig. 9. Results of the source reconstruction for the auditory-evoked field
shown in Fig. 8. The reconstruction results are superimposed onto the sub-
ject’s MRI, and the axial, sagittal, and coronal slices are shown in the left,
middle, and right panels. These slices were chosen as the slices that con-
tained the maximum source intensity. (a) Results obtained from the minimum-
variance spatial filter. The source power distribution obtained by averaging the
squared source intensity over the time window between 0 and 300 ms is shown.
(b) Results obtained from the sLORETA spatial filter. (c) Results obtained from
the proposed AGMN-RUG spatial filter. The two sets of results in (b) and
(c) were obtained using the single-time-sample data at 120 ms.

the source power distribution (obtained by averaging the squared
source intensity over this time window) is shown in Fig. 9(a). In
these results, the minimum-variance spatial filter fails to recon-
struct the sources of the bilateral activation of auditory cortices,
probably because the activities in these cortices are highly cor-
related. The results from sLORETA are shown in Fig. 9(b) and
the results from the proposed spatial filter are shown in Fig. 9(c).
Those in Fig. 9(b) and (c) were obtained using the single-time-
sample data at 120 ms. The results of sLORETA are significantly
blurred and biased. On the contrary, the proposed AGMN-RUG
spatial filter can reconstruct the bilateral activities of the audi-
tory cortices with significantly high spatial resolution.

VI. DISCUSSION

We have mentioned that Eq. (26) is used to compute Ḡ in the
update process. However, instead, we can also use

Ḡ =
∫

Ω
L(r) diag

[
ŝ(r, t)ŝT (r, t)

]
LT (r) d3r (31)

where diag[A] indicates the diagonal matrix whose diagonal
elements are equal to those of a matrix A. In this case, Ḡ
approaches to the model covariance matrix for a case in which at
each source location there are three independent sources whose
powers are equal to 〈sx(r, t)2〉, 〈sy (r, t)2〉, and 〈sz (r, t)2〉. We
found that (31) gives, in most cases, spatial resolution higher
than that from (26), although the difference is generally small.
Therefore, we have used (31) in our experiments in Sections IV
and V.

To derive the proposed spatial filter, we used the optimization
formulation in (22). A slight modification of this formulation is
capable of providing another type of recursively implemented
spatial filter, which is derived using

W (r) = arg min
W (r)

F(W ), subject to

∫
Ω

[
W T (r)L(r′)

]
P (r′)

[
W T (r)L(r′)

]T
d3r′

= P (r) (32)

where the cost function F(W ) is defined as

F(W ) =
∫

Ω
tr{

[
W T (r)L(r′) − δ(r − r′)I

]
P (r′)

[
W T (r)L(r′) − δ(r − r′)I

]T } d3r′. (33)

By setting P (r) = |ŝ(r, t)|2I , the resultant spatial filter is ex-
pressed as

W (r) = |ŝ(r, t)|Ḡ−1
L(r)

[
LT (r)Ḡ−1

L(r)
]−1/2

. (34)

The spatial filter in Eq. (34) is very similar to the method known
as the sLORETA-FOCUSS algorithm [10], [11].1

1Strictly speaking, the sLORETA-FOCUSS algorithm described in [10] and
[11] is different from the recursive spatial filter given in (34), because the
algorithm in [10] and [11] uses the sLORETA method only for the initial
iteration, and uses the weighted minimum-norm method for other iterations.
In contrast, in (34), the sLORETA method is used for all iterations with the
weighting of |̂s(r, t)| obtained in the preceding iteration.
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The difference between the spatial filter derived above and
the proposed AGMN-RUG filter is that the previous spatial
filter explicitly contains the estimated source distribution ŝ(r, t)
in the weight equation. Therefore, the method generally gives
a so-called sparse solution. On the contrary, in the proposed
AGMN-RUG spatial filter, the filter weight is updated in an
indirect manner, only through the updated gram matrix, and
the sparsity is not imposed on the solution. It may probably be
true that the proposed spatial filter is superior in the stability,
for example, the stability to the number of iterations as was
demonstrated in our computer simulation. On the other hand, the
method expressed in (34) can attain the spatial resolution higher
than that of the proposed method. A performance comparison
between these two methods are currently in progress, and results
will be presented in a near future occasion.

It should be pointed out that the weights of spatial filters
derived with the array-gain constraint are unitless and the re-
constructed source vector has the unit of the magnetic field, i.e.,
the intensity of the reconstructed source is equal to the dipole
moment multiplied by the norm of the lead field at the source
location. Therefore, the source dipole moment is retrieved by
multiplying the reconstructed source intensity with the inverse
of the lead-field norm at each source location.

In summary, we have proposed a novel AGMN-RUG spatial
filter, which is developed based on a modified version of the
minimum-norm method. The proposed spatial filter uses the es-
timated theoretical covariance matrix, and is designed to have
a performance close to that of the adaptive minimum-variance
spatial filter. Since the proposed method does not use a sam-
ple covariance matrix, a large number of time samples are not
needed. The method is also robust to the source correlation.
This robustness is demonstrated in our computer simulation and
experiments using auditory-evoked MEG data.

The proposed method, however, cannot generally replace the
minimum-variance spatial filter because the proposed method
attains a spatial resolution only intermediate to those of
sLORETA and of the minimum-variance filter, as was shown in
our experiments. Therefore, in situations where the minimum-
variance spatial filter can attain its full performance, there should
be no advantage of using the proposed method. We are now
in the process of conducting a series of experiments which
will evaluate the method’s performance in various conditions.
The results of those experiments will be published in a future
occasion.
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