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Performance of an MEG Adaptive-Beamformer
Source Reconstruction Technique in the Presence of

Additive Low-Rank Interference
Kensuke Sekihara*, Srikantan S. Nagarajan, David Poeppel, and Alec Marantz

Abstract—The influence of external interference on neuromag-
netic source reconstruction by adaptive beamformer techniques
was investigated. In our analysis, we assume that the interference
has the following two properties: First, it is additive and uncor-
related with brain activity. Second, its temporal behavior can
be characterized by a few distinct activities, and as a result, the
spatio-temporal matrix of the interference has a few distinctly
large singular values. Namely, the interference can be modeled
as a low-rank signal. Under these assumptions, our analysis
shows that the adaptive beamformer techniques are insensitive to
interference when its spatial singular vectors are so different from
a lead field vector of a brain source that the generalized cosine
between these two vectors is much smaller than unity. Four types
of numerical examples verifying this conclusion are presented.

Index Terms—Adaptive beamformer, biomagnetism, functional
neuroimaging, magnetoencephalography, MEG inverse problems,
neuromagnetic signal processing.

I. INTRODUCTION

NEUROMAGNETIC measurements are often con-
taminated by various types of overlapping external

interference even when the measurements are performed in a
magnetically shielded room. Typical examples of such inter-
ference include magnetic noise from power lines or electric
appliances such as elevators, automobiles or the subway. Small
vibrations in neuromagnetometer hardware can cause large
noises. Cardiac motions, muscle movements, or eye-blinks can
also interfere with neuromagnetic measurements.

Recently developed external noise cancellation techniques
[1] reduce such interference to some extent. However, when the
interference is very large, a significant amount may still remain
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in the recordings. Also, external noise cancellation cannot work
when the interference is sensor-channel specific, i.e., when
it exists only in certain sensor recordings. This can happen,
for example, when some sensors are particularly sensitive to
a certain type of vibration but other sensors are not. When
we estimate source distributions from magnetoencephalogram
(MEG) measurements, the above-mentioned interferences
generally cause severe errors in the final estimations.

A class of source estimation methods called adaptive beam-
former techniques have attracted great interest. Adaptive-beam-
former techniques were originally developed in the fields of
array signal processing [2], and they have been successfully ap-
plied to neuromagnetic source reconstruction problems [3]–[7].
In this paper, we analyze the influence of external interference
on the adaptive beamformer reconstruction results. Our analysis
assumes the following properties: First, the interferences are ad-
ditive and uncorrelated with brain signals. Second, the temporal
behavior of the interference can be characterized by only a few
distinct activities and, as a result, the covariance matrix of the
interference has only a few distinctly large eigenvalues. Namely,
the interference can be modeled as a low-rank signal.

Our analysis shows that adaptive beamformer techniques are
insensitive to such interference when the eigenvectors of the co-
variance matrix are very different from the source lead field vec-
tors. Since many types of interference with artificial (nonbiolog-
ical) origins should have eigenvectors very different from the
lead field of a brain source, we can conclude that the adaptive
beamformer techniques are generally robust to the overlaps of
such interference. In this paper, Section II briefly reviews adap-
tive-beamformer techniques for neuromagnetic reconstruction.
Section III presents our theoretical analysis. Section IV presents
the results of several numerical experiments that validate the ar-
guments in Section III. Throughout this paper, plain italics in-
dicate scalars, lower-case boldface italics indicate vectors, and
upper-case boldface italics indicate matrices. The eigenvalues
are numbered in decreasing order.

II. ADAPTIVE-BEAMFORMER TECHNIQUES FOR

NEUROMAGNETIC RECONSTRUCTION

A. Definitions

We define the magnetic field measured by the th
detector coil at time as , and a column vector

as a set of measured data
where is the total number of detector coils and superscript
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indicates the matrix transpose. The spatial location is rep-
resented by a three-dimensional (3-D) vector : .
The covariance matrix of the measurement is denoted as , i.e.,

. A total of discrete sources are assumed
to generate the neuromagnetic field, and the locations of these
sources are denoted as . The moment magnitude
of the th source is denoted as . The orientation of the th
source is defined as a 3-D vector whose
component (where equals , , or ) is equal to the cosine of
the angle between the direction of the source moment and the
direction. We define as the output of the th sensor. The
output is induced by the unit-magnitude source located at and
directed in the direction. The column vector is defined
as . The lead field matrix,
which represents the sensitivity of the whole sensor array at ,
is defined as . The lead-field vector
in the source-moment direction is defined as where

.

B. Adaptive-Beamformer Source Reconstruction

To solve neuromagnetic source reconstruction problems,
we focus on the class of techniques referred to as the adaptive
beamformer, which was originally developed in the field of
array signal processing [2], [8]. One well-known adaptive
beamformer is the minimum-variance beamformer [9], and
two kinds of extensions have been proposed to incorporate the
3-D vector nature of sources in neuromagnetic reconstruction.
One kind, called the scalar beamformer, uses the following
formulation:

(1)

where is the estimated source-moment time course
obtained as the beamformer output. The weight is de-
rived by minimizing under the constraint that

. The explicit form of the scalar-type weight
is known to be [3]

(2)

Note that the weight in (2) depends not only on the spatial lo-
cation but also on the orientation , and therefore, informa-
tion regarding the source orientation is needed to calculate .
Using this weight, the time-averaged source power is obtained
from [3]

(3)

The other kind of extension, called the vector-type beam-
former, enables the simultaneous estimation of the source ori-
entation and source magnitude. It uses a set of three weight vec-
tors, , , and , each of which estimates the ,

, and components of the source moment. A set of weights
for a vector-extended minimum-variance beamformer is given
by [10], [11]

(4)

The , , and components of the source moment are estimated
from

(5)
where is the estimated source moment in the direction
( , , or ). The magnitude of the source moment is esti-
mated from

(6)

where , and is the esti-
mated source orientation obtained using (5). It can be shown that
the weight is mathematically equivalent to the scalar
beamformer weight in (2) with giving the maximum beam-
former outputs [12]. Therefore, in our following analysis, we
use the scalar beamformer formulation for simplicity, but the
results of the analysis are also valid for the weight ob-
tained from the vector beamformer formulation.

III. BEAMFORMER PERFORMANCE WHEN ADDITIVE

LOW-RANK INTERFERENCE EXISTS

We denote the interference carried by the th sensor
channel at time as . The column vector

represents the interference contained in
the measurements of the whole sensor array. We assume that

is additive, so the measured data is expressed as

(7)

where

(8)

and is the sensor noise that can be modeled using a
white Gaussian random process uncorrelated between sensor
channels. The power of the sensor noise is denoted as ,
and it is assumed to be equal for all channels. We define the
spatio-temporal matrix of the measurement as , such
that . Here, are the time
points where the measurements are taken. The spatio-temporal
matrix of the source signal plus noise, , is defined as :

, and the spatio-temporal matrix
of the interference as : . Then,
relationship holds.

We next define the covariance matrix obtained from , as
, i.e., . We also define the covariance ma-

trix of the interference as , i.e., . Assuming
that interference is uncorrelated with , we derive the
relationship

(9)

and from (1), the output of the beamformer is given by

(10)

where . Here, we omit the explicit notations of
and from the lead field vector for simplicity.
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The key assumption for in our analysis is that is a
low-rank matrix and has only a few distinctly large eigenvalues.
That is, can be expressed as

(11)

where and are the th eigenvalue of and its corre-
sponding eigenvector. Here, is the number of nonzero eigen-
values, and we assume that . In this case, using the
singular value decomposition, the spatio-temporal matrix is
expressed as

(12)

where is the th temporal singular vector of . We first
analyze the simplest case where is a rank-one matrix. In such
cases, omitting the subscript for eigenvalue numbering, is
expressed as . Then, we derive

(13)

where we use the relationship . Because
(the proof is presented in Appendix) and the

power of the interference is equal to , this relationship holds
under the assumption that the power of the interference is much
larger than the power of the sensor noise.

Substituting (13) and into (10), we obtain

(14)

where

(15)

Using (13), the value of is found to be

(16)

Therefore, substituting (16) into (14), we finally derive

(17)

The above equations indicate that the temporal behavior of the
interference represented by the temporal singular vector does
not affect the beamformer output. These equations also indicate

that the interference affects the output through its spatial sin-
gular vector by modifying the lead field vector into ac-
cording to (15).

When the brain sources are well separated from each other,
neglecting the sensor noise, the beamformer output at the th
source location is derived by replacing with
in (17). Denoting as , the time course output is ex-
pressed as

(18)

and its power output is given by

(19)
In the above equations, the generalized cosine with the metric

between two column vectors and is defined as

(20)

Because the definition of the generalized cosine is very similar
to the correlation coefficient, the generalized cosine can quan-
tify the similarity or the difference of the two vectors. Thus,
when any lead field vector in the source space is very different
from the spatial eigenvector of the interference , the relation-
ships and hold.
When these relationships hold, (18) and (19) can be changed
to

(21)

and

(22)

These equations clearly indicate that influence of the interfer-
ence is negligible in such cases.

So far, our analysis assumes that is a rank-one matrix. The
analysis can be extended to the case where is a rank-two ma-
trix. In this case, and are expressed as

and . Substituting these
equations into (10) and assuming the relationships

and (23)

after lengthy calculations, we finally get

(24)
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where

(25)

We can then derive (26) and (27) as shown at the bottom of page.
These equations show that the second eigenvector affects the
beamformer outputs in an additive manner and, therefore, the in-
fluence from this eigenvector is negligible if

. The analysis can be further extended to the general case where
the rank of is equal to , and it can be shown that each
eigenvector influences the beamformer outputs in exactly the
same additive manner.

IV. NUMERICAL EXPERIMENTS

A series of numerical experiments were conducted to check
the validity of the analysis in Section III. A sensor alignment
of the 148-sensor array from Magnes 2500 (4D Neuroimaging
Inc., San Diego, CA) neuromagnetometer was used. The coor-
dinate origin was set at the center of the sensor coil located at the
center of the coil array. The direction was defined as that from
posterior to anterior, the direction was defined as that from the
right to the left hemisphere, and direction was defined as that
perpendicular to the surface of the coil at the origin. Three point
sources were assumed to exist on a plane defined as .
(The values of the spatial coordinates ( , , ) are expressed in
centimeters.) The source-sensor configuration and the coordi-
nate system are illustrated in Fig. 1.

The simulated magnetic recordings were calculated in the fol-
lowing manner. We denote the locations and orientations of the
three sources as and ( , 2, 3), which are listed in
Table I. The lead field vectors of the three sources, ,
were calculated ( , 2, 3) by using the spherically homoge-
neous conductor model [13] with its center set at (1, 0, 11). We
then calculated the simulated magnetic-field recordings such
that , where the time courses

, , and were calculated by using

for and

(28)

In the above equations, , , , and are the numerical
parameters controlling the shapes of the time courses, and their
values are listed in Table II. The three time courses are shown
in Fig. 2(a). The magnetic-field recordings were calculated

Fig. 1. The coordinate system and source-sensor configuration used in the
numerical experiments. The coordinate origin was set at the center of the sensor
coil located at the center of the array. The plane at x = 1:0 cm is shown.
The large circle shows the cross section of the sphere used for the forward
calculation, and the square shows the reconstruction region used for the results
in Figs. 2(c) and 6.

TABLE I
SOURCE PARAMETER VALUES USED FOR THE

NUMERICAL EXPERIMENTS IN SECTION IV

TABLE II
VALUES OF THE PARAMETERS USED FOR CALCULATING s (t),

s (t), AND s (t)

(26)

and

(27)
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Fig. 2. (a) Time courses s (t), s (t), and s (t) (from top to bottom) used for the numerical experiments. (b) The simulated magnetic-field recordings, which
were calculated at 2-ms intervals from zero to 800 ms. White Gaussian noise was added in order for the SNR to equal eight. (c) The average power reconstruction

hs(rrr; t) i obtained using the simulated magnetic field recordings in (b).

at 2-ms intervals from zero to 800 ms. The amplitude of
the white Gaussian noise was set so that the resulting
signal-to-noise ratio (SNR) was eight where the SNR is defined
as and indicates the time average
over 800 ms. The simulated magnetic-field recordings are
shown in Fig. 2(b). The source reconstruction was performed
using (3). In the reconstruction, the covariance matrix was
calculated using .
The results of source-power reconstruction obtained with this

are shown in Fig. 2(c), which shows the reconstruction
when no interference exists.

In our numerical experiments, four types of interference
were simulated. The first was the periodic interference where
the interference for the th sensor recording, , was cal-
culated using for 60 sensors over
the right hemisphere and for other sensors. The
frequency of this periodic interference was set at 13.7 Hz,
which is very close to the 10 Hz-frequency of the third source.
The interference was then added to the signal magnetic
field to generate simulated magnetic-field recordings :

. The resultant simulated recordings are
shown in Fig. 3(a).

The second type of interference was the same periodic in-
terference except that the phase offset varies from sensor to
sensor. That is, the interference for the 60 sensors over the
right hemisphere was calculated using
where each sensor had a different that was determined by
generating the uniform random number between 0 and . The

simulated recordings containing this interference are shown in
Fig. 3(b). It should be pointed out that it is difficult in practice
to filter out such periodic interference as that in Fig. 3(a)–(b),
because the frequency of the interference is very close to the
frequencies of the signal source activities.

The third type of interference was a linear trend whose incli-
nation varies from channel to channel. That is, was calculated
using where each sensor had a different value of .
The parameter was determined by generating the Gaussian
random number whose standard deviation was equal to

, where is the maximum value of . Sim-
ulated recordings containing such a linear trend are shown in
Fig. 3(c). The fourth type of interference was a combination of
this linear trend with a low-frequency noise. In this case,
was calculated by using
where was set at 1.1 Hz and is the same for all sensor
recordings. The simulated recordings containing this interfer-
ence are shown in Fig. 3(d). It should again be pointed out that
it is in practice difficult to filter out such low-frequency inter-
ference because actual MEG signals contain large amounts of
low-frequency components.

The covariance matrix of interference was calculated
numerically using , and the total covariance
matrix was obtained using . The eigenvalue
spectra of for these four types of interference are shown
in Fig. 4. The spectra show that the first and the third inter-
ferences have a single large eigenvalue, indicating that these
interferences are rank-one interferences. The second and the
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Fig. 3. Simulated magnetic-field recordings containing low-rank interferences. (a) A periodic interference with a frequency of 13.7 Hz was superimposed onto
the recordings of 60 sensors located over the right hemisphere. (b) The same periodic noise, except that the phase offset varying from sensor to sensor, was
superimposed onto the 60-sensor recordings over the right hemisphere. (c) A linear trend with its inclination varying from sensor to sensor was superimposed onto
all sensor recordings. (d) A combination of the linear trend in (c) with a low-frequency noise of 1.1 Hz was superimposed onto all sensor recordings.

Fig. 4. Eigenvalue spectrum ofRRR shown up to the 40th eigenvalue. (a) The periodic interference in Fig. 3(a). (b) The periodic interference with a random phase
offset in Fig. 3(b). (c) The linear trend in Fig. 3(c). (d) The linear trend with a low-frequency noise of 1.1 Hz in Fig. 3(d).

fourth interferences have two distinctly large eigenvalues, indi-
cating that they are rank-two interferences. The contour plots of
the first spatial eigenvectors of the four kinds of interferences

are shown in Fig. 5(b)–(e). The lead field vector of the second
source is also shown in Fig. 5(a) as a typical lead field from a
brain source.
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Fig. 5. (a) The contour plot of the lead field vector for the second source, lll(rrr ; ��� ). (b) The contour plots of the first eigenvector of RRR . The periodic interference
shown in Fig. 3(a) was applied. (c) The first eigenvector of RRR . The periodic interference with a random phase offset shown in Fig. 3(b) was applied. (d) The first
eigenvector of RRR . The linear trend shown in Fig. 3(c) was applied. (e) The first eigenvector of RRR . The linear trend with a low-frequency noise of 1.1 Hz shown in
Fig. 3(d) was applied. The dots represent locations of sensors. (The locations are slightly distorted.) The anterior, posterior, left and right directions are indicated
by A, P, L, and R, respectively.

Fig. 6. Results of the square root of the average power reconstruction, hs(rrr; t) i, obtained from the simulated magnetic-field recordings in Fig. 3. (a) The
simulated magnetic-field recordings in Fig. 3(a) used. (b) Those in Fig. 3(b) used. (c) Those in Fig. 3(c) used. (d) Those in Fig. 3(d) used. The reconstruction was
performed by using (3).
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Fig. 7. The source time-course estimates s(rrr ; t) (where j = 1, 2, and 3) obtained from the simulated magnetic-field recordings in Fig. 3. (a) The simulated
magnetic-field recordings in Fig. 3(a) used. (b) Those in Fig. 3(b) used. (c) Those in Fig. 3(c) used. (d) Those in Fig. 3(d) used. The reconstruction was performed
by using (1) and (2).

It can be seen that the spatial eigenvectors for all four cases
are very different from this lead field. The values of the gen-
eralized cosine are less than for all
four cases. These very small values of the generalized cosine
confirm our visually obtained interpretation that the eigenvec-
tors in Fig. 5 are very different from the lead field vector of a
brain source. The value of was also
calculated for the rank-two interferences. This value was on the
order of for these cases. The generalized cosine between
the lead field vector and the second eigenvector was less than

for the cases in Fig. 3(b)–(d). These numerical evalu-
ations suggest that the influence of the interferences should be
very small, according to our analysis in Section III. The beam-
former reconstruction was applied to the four cases in Fig. 3.
The results of source power reconstruction are shown in Fig. 6.
The source-activity time courses are shown in Fig. 7. No ob-
servable influence exists in any of the results in Figs. 6 and 7. In
the results shown in Fig. 7, the correlation coefficients between
the reconstructed and the original time courses were found to
be greater than 0.99 for all the three time courses in any of the
four cases. These results clearly demonstrate the validity of our
analysis in Section III.

V. DISCUSSION

In deriving (14), we assume that the power of the interference
is much larger than the power of the sensor noise. Because the
power of the interference is equal to and is approx-
imately equal to (as shown in Appendix), this assumption
leads to the condition . When the power of the
interference is comparable to the power of the sensor noise, this
condition is not satisfied and (14) should be changed to

(29)
The second term of the right-hand side of the above equation
represents the time course of the interference contained in the
beamformer output. The amplitude of this interference time
course is proportional to .

To evaluate the amplitude, we consider a simple case where
a single source exists. Its lead field vector and its power are de-
noted as and , respectively. Assuming that the beamformer
is exactly tuned to this source, i.e., , we can derive

(30)
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where and . There-
fore, when the lead field vector of a brain source is so different
from that the relationship holds, the ampli-
tude of the interference time course in the beamformer output
is nearly equal to zero. This conclusion can be extended to a
case where multiple sources exist and to a case where no source
exists.

Because the square of the weight norm is the white-
noise power gain in the beamformer reconstruction process, the
quantity is approximately proportional to
the SNR in the beamformer output. This quantity, defined as

, is sometimes used for evaluating the statistical significance
of the reconstructed results [3]. The value is expressed as

(31)

In a manner similar to deriving (16), we can derive

(32)

where

(33)
Therefore, when the assumptions that and

hold, the influence of the interference on the value
is also negligible. The value is small when and are very
different because only the numerators in (33) contain the cross
products of and . In the numerical experiments in Section IV,

is always less than for all four interference cases.
The minimum-variance beamformer is known to be very sen-

sitive to errors in the forward modeling or errors in estimating
the measurement covariance matrix [14]. The eigenspace-pro-
jection beamformer provides an output SNR higher than that of
the minimum-variance beamformer when such errors exist [15].
Redefining the weight vector obtained from (2) as , the
extension to the eigenspace-projection beamformer is defined
as [15]

(34)

where is a matrix whose column vectors are the eigenvectors
of that correspond to the eigenvalues from the signal (and in-
terference). Therefore, using (10), the output of the eigenspace-
projection beamformer is given by

(35)

Since the source lead field vector and the eigenvector
exist in the signal-plus-interference subspace, they are

unaffected by the signal-plus-interference-subspace projector
, i.e.,

(36)

Therefore, the same discussion as that for (14) can be applied to
this case, leading to the conclusion that the time course estimate

from the eigenspace-projected beamformer is not affected
by the interference .

In summary, we analyzed the influences of additive low-rank
interference on the reconstruction results of MEG adaptive
beamformer techniques. We found that the influence is negli-
gible when the eigenvectors of the covariance matrix obtained
from such interference are very different from any of the lead
field vectors in the source space. The results of our numerical
experiments confirmed this conclusion. The assumptions that
interference is low rank and its spatial eigenvectors are different
from the lead field of a brain source are generally satisfied for
many types of artificial (nonbiological) interference, and the
adaptive beamformer techniques are generally robust to the
overlaps of such interference.

These assumptions, however, may not hold for some inter-
ference with biological origins. Several investigations have
pointed out the possibility that background cortical activities
are caused by a large number of randomly activated sources
[16], [17]. Also, some biological interference such as that
caused by eye blinks or cardiac motions may invalidate the
assumption that because the lead fields
for an eye blink source or a cardiac source may not be very
different from the lead field for a brain source. Therefore,
the analysis presented in this paper cannot generally apply to
interference with biological origins. Thus, methods should be
developed to reduce the influence of such interference, with the
possible application of preprocessing with independent-com-
ponent-analysis techniques toward these ends [18].

APPENDIX

This appendix derives the relationship . The
assumption to derive it is that any lead field vector in the source
space is so different from the spatial eigenvector of the inter-
ference that their generalized cosine is approximately equal
to zero. We first consider a simplest case where a single source
exist whose lead field vector and the power are, respectively, de-
noted as and . Then, is expressed as
and is expressed as

where . Thus, using , we de-
rive

(37)

When two sources exist, the power and the lead field vector of
the second source are denoted as and , and a matrix is
defined as . Here, because is equal
to the covariance matrix for the single-source case presented
above, the relationship holds. We define as

. Using and
, we can finally derive

(38)
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It can be shown that the argument presented above is extended
to a case where more than two sources exist.
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