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This paper proposes a simple statistical method for extracting target

source activities from spatio-temporal source activities reconstructed

from MEG measurements. The method requires measurements in a

control condition, which contains only non-target source activities. The

method derives, at each pixel location, an empirical probability

distribution of the non-target source activity using the time course

reconstruction obtained from the control period. The statistical

threshold that can extract the target source activities is derived from

the empirical distributions obtained from all pixel locations. Here, the

multiple comparison problem is addressed with a two-step procedure

involving standardizing these empirical distributions and deriving an

empirical distribution of the maximum pseudo T value at each pixel

location. The results of applying the proposed method to auditory-

evoked measurements are presented to demonstrate the method’s

effectiveness.
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Introduction

Among the various technologies for noninvasive neural

measurement, the major advantage of magnetoencephalography

(MEG) is its ability to provide fine temporal resolution on the order

of milliseconds (Hämäläinen et al., 1993). Neuromagnetic imaging

can therefore visualize neural activities with such a fine time

resolution and provide functional information about brain dyna-

mics. One major problem is that the measured MEG signal

generally contains not only a magnetic field associated with the

signal sources of interest but also contains interference magnetic

fields generated from non-target activities. Such non-target

activities include spontaneous brain activities or some evoked
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activities that are not the interest of the current investigation. These

non-target activities generally overlap with the target signal

activities in the source reconstruction, and they often make

interpreting the reconstruction results difficult.

In most studies using positron emission tomography (PET) or

functional magnetic resonance imaging (fMRI), the experiments

are carefully designed to extract only target activities. A common

example of such experimental design contains two kinds of stimuli:

a task stimulus and a control stimulus. The task stimulus generally

elicits the target cortical activities as well as other activities

associated with the target activities. The control stimulus is

designed to elicit only the latter activities. Then, by calculating

the statistical difference between the images measured with the two

kinds of stimuli, the target activities can be revealed. Both

parametric (Friston et al., 1995; Worsley et al., 1996) and

nonparametric statistics (Nichols and Holmes, 2001) have been

used to calculate such statistical differences.

This paper proposes a simple method of statistical subtraction

between task and control measurements. The method is applicable

to spatio-temporal source reconstruction from MEG/EEG measure-

ments. It assumes neural activities to be quasi-stochastic, and it

uses nonparametric statistics to derive an empirical probability

distribution of these activities using the time course reconstruction

in the control period. This empirical distribution is then used for

deriving an appropriate value for the statistical thresholding. The

thresholding can extract the target activities that exist only in the

task measurements by eliminating other non-target activities that

exist both in the task and control measurements.

In this paper, we present the proposed statistical thresholding

method using spatial filter source reconstruction (Sekihara and

Nagarajan, 2004). This is because the formulation of the spatial

filter is relatively simple and the spatial filter techniques have been

successfully applied to MEG source analysis (Hashimoto et al.,

2003; Ishii et al., 2003). However, the applicability of the proposed

method is not limited to the spatial filter formulation and it can be

used with any type of source estimation method that can provide

the spatio-temporal source reconstruction, i.e., that can reconstruct

source time courses at all pixel locations.

http://www.sciencedirect.com
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Spatial filter formulation for MEG source reconstruction

Definitions

We define the magnetic field measured by the mth detector coil

at time t as b(t) and a column vector b(t) = [b1(t), b2(t),. . ., bM(t)]
T

as a set of measured data whereM is the total number of sensor coils

and superscript T indicates the matrix transpose. The spatia1

location is represented by a three-dimensional vector r: r = (x, y, z).

The second-order moment matrix of the measurement is denoted

R, i.e., R = bb(t)bT(t)� where bI� indicates the ensemble average,

which is replaced by the time average over a certain time window

in practice. (When bb(t)� � 0 holds, R is also equal to the

covariance matrix of the measurement.) The magnitude of the

source moment is denoted s(r, t). The source orientation is

defined as a three-dimensional column vector h(r) = [gx(r), gy(r)

gz(r)]
T whose f component (where f equals x, y, or z) is equal to

the cosine of the angle between the direction of the source and the

f axis.

We define lm
f (r) as the output of the mth sensor; the output is

induced by the unit-magnitude source located at r and pointing in

the f direction. The column vector lf (r) is defined as lf (r) = [l1
f

(r), l2
f (r), . . ., lM

f (r)]T. We define the lead field matrix, which

represents the sensitivity of the whole sensor array at r, as L(r) =

[lx(r), ly(r), lz(r)].

Typical non-adaptive and adaptive spatial filters

Spatial filter techniques estimate the source current density by

applying a simple linear operation to the measured data, i.e.,

ŝs r; tð Þ ¼ wT rð Þb tð Þ ¼ ~
M

m ¼ 1

wm rð Þbm tð Þ; ð1Þ

where ŝ(r, t) is the estimated source magnitude. The column vector

w rð Þ ¼ w1 rð Þ; . . . . . . ;wM rð Þ½ �T

represents a set of the filter weights. The filter weights w(r) should

only pass the signal from a source with a location r and reject the

signals generated at other locations. Since the source is a three-

dimensional vector quantity, the weight vector generally depends

on the source directions. In this paper, we define w(r) as the weight

vector in the optimum direction hopt(r), which is determined as the

direction that gives the maximum spatial-filter outputs at each r.

There are two types of spatial filter techniques. One is a non-

adaptive method in which the filter weight is independent of the

measurements. The best-known non-adaptive spatial filter is the

minimum-norm estimate (Hämäläinen and Ilmoniemi, 1984). The

filter weight is expressed as

w rð Þ ¼ G�1L rð Þhopt rð Þ: ð2Þ

The matrix G is often referred to as the gram matrix, which is given

by calculating the overlap between the lead fields,

G ¼ XL rð ÞLT rð Þdr: ð3Þ

The estimated current density is then expressed as

ŝs r; tð Þ ¼ hTopt rð ÞLT rð ÞG�1b tð Þ: ð4Þ

The minimum-norm spatial filter in its original form is known to

give erroneous source reconstruction results. Therefore, to improve

the performance, it is often used with some kind of constraint on
source distributions (Baillet et al., 2001; Dale et al., 2000; Pascual-

Marqui, 2002).

The other type of spatial filter is an adaptive spatial filter in

which the filter weight depends on the measurements. The best-

known adaptive spatial filter is the minimum variance spatial filter,

which is customarily referred to as the minimum-variance beam-

former (Robinson and Vrba, 1999; Sekihara and Seholz, 1996;

Sekihara et al., 2001; van Veen et al., 1997). In this method, the

weight vector is given by

wT rð Þ ¼ lT rð ÞR�1

lT rð ÞR�1l rð Þ
; ð5Þ

where l(r) is defined as l(r) = L(r)hopt(r). (The method for

determining hopt(r) for the adaptive spatial filter is described in

(Sekihara and Seholz, 1996). Furthermore, in practice, the

normalized lead field l(r)/||l(r)|| is used in Eq. (5) to avoid a

source location bias caused by the variation of the lead field norm

||l(r)|| (Sekihara et al., 2005). The minimum-variance beamformer

can be extended to the eigenspace-projection beamformer, which is

known to be tolerant of errors in the forward modeling or in the

estimation of the data covariance matrix (Sekihara et al., 2002).

The extension is attained by projecting the weight vector in Eq. (5)

onto the signal subspace of the measurement covariance matrix.

That is, redefining the weight vector in Eq. (5) as w(MV) (r), the

weight vector for the eigenspace-projection beamformer is

obtained using

w rð Þ ¼ ES ET
S wðMVÞ rð Þ: ð6Þ

In this equation, ES is a matrix whose columns consist of the

signal-level eigenvectors of R, and ESES
T is the projection matrix

that projects a vector onto the signal subspace of R. This

eigenspace projection beamformer was used in the experiments

described in Numerical experiments and Experiments.
Evaluation of statistical significance using parametric statistics

The evaluation of the statistical significance of the spatial filter

outputs has typically been performed using parametric statistics

(Barnes and Hillebrand, 2003; Dale et al., 2000; Gross et al., 2001;

Robinson and Vrba, 1999). The basic assumption of the parametric

method is that the measurement consists of deterministic signal and

Gaussian noise, i.e.,

b tð Þ ¼ bI tð Þ þ n tð Þ; ð7Þ

where bI(t) is the signal of interest, i.e., the signal generated from

brain sources that are the target of current investigation.

In Eq. (7), n(t) is the noise vector, and each element of n(t) is

assumed to follow N 0;r2
0

� �
, which indicates the Gaussian

distribution with zero mean and a variance of r0
2. The spatial

filter outputs ŝ(r, t) are expressed as

ŝs r; tð Þ ¼ wT rð Þb tð Þ ¼ wT rð ÞbI tð Þ þ wT rð Þn tð Þ: ð8Þ
Therefore, since these Gaussian processes are assumed to be

uncorrelated between different sensor recordings, the outputs ŝ(r, t)

follows N wT rð Þ bI tð Þ;r2
0jjw rð Þjj2

� �
; which is a Gaussian

distribution with a mean of wT(r)bI(t) and a variance of

r0
2||w(r)||2. Actually, since r0

2 must be estimated from the measured

data, the distribution of ŝ(r, t) is not exactly represented by the

Gaussian distribution but by the t distribution.
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The statistical evaluation can be performed by testing the null

hypothesis at each pixel location. (The null hypothesis is that there

is no signal source activity.) That is, the z score under the null

hypothesis, ŝ(r, t)/(r0||w(r)||), is calculated and compared to za/2,

which is the two-tailed z score corresponding to the a level of

significance, which is equal to the probability of Type I error. This

procedure is performed at each pixel location, and if the calculated

z score is higher than za/2, the estimated source activity ŝ(r, t) is

considered to be statistically significant. This procedure can be

extended to incorporate the multiple comparison problem (Barnes

and Hillebrand, 2003).
Proposed nonparametric statistical significance evaluation

The signal and noise model expressed in Eq. (7) is, in general,

insufficient to express real-world measurements, and the measured

data should be expressed as

b tð Þ ¼ bI tð Þ þ bn tð Þ þ n tð Þ; ð9Þ

where bn(t) is the magnetic field generated from sources other than

the signal sources, such as spontaneous brain activities or some

evoked activities that are not the target of the current investigation.

This bn(t) is often referred to as the brain noise. Here, we propose a

simple nonparametric method that can take such brain noise into

consideration.

The spatial filter outputs obtained from b(t) is expressed as

ŝs r;tð Þ ¼ wT rð ÞbI tð Þ þ wT rð Þbn tð Þ þ wT rð Þn tð Þ

¼ ŝsI r; tð Þ þ ŝsc r;tð Þ; ð10Þ

where

ŝsI r;tð Þ ¼ wT rð ÞbI tð Þ and ŝsc r;tð Þ ¼ wT rð Þ bn tð Þ þ n tð Þð Þ: ð11Þ

Here, ŝI(r, t) is the estimated source activity of interest, and ŝc(r,

t) is the estimated background interference plus noise. The problem

with the parametric modeling described in the preceding section is

that it cannot efficiently take the background interference into

account because the Gaussianity assumption may not hold for ŝc(r,

t). The key assumption in the proposed method is that the control

measurement that can provide bc(t) = bn(t) + n(t) is available. In

general, this assumption is approximately fulfilled because the pre-

stimulus measurement can be considered as a control in many cases.

Using this control measurement, the proposed method first derives

an empirical distribution of ŝc(r, t), and with this empirical

distribution, the method determines the statistical threshold. The

procedures are as follows:

(i) Empirical distribution formation. We calculate ŝc(r, tj) by

applying the spatial filter to the control measurement bc(tj)

where tj is the discrete time point in the control measure-

ment. We then calculate F̂(x), which is the empirical

distribution of the modulus of the time course |ŝc(r, tj)|,

such that F̂(x) = #{|ŝc(r, tj)| 	 x}/Kc where #{|ŝc(r, tj)| < x}

indicates the number of |ŝc(r, tj)| which is less than or

equal to x, and Kc is the number of total time points in

the control measurement. The implicit assumption here is

that the time course reconstruction |ŝc(r, tj)| is identically

and independently distributed (IID) over the pre-stimulus

time period. This procedure is repeated, and the empirical

distribution is calculated at all pixel locations. Since F̂(x)
is obtained at each pixel location r, F̂(x) is rewritten as

F̂(x|r) below.

(ii) Statistical thresholding without multiple comparisons. Using

F̂(x|r), we could obtain the statistical threshold at r, R(r),

such that R(r) = F̂�1(1 � a|r) where a is a level of signi-

ficance. In practice, the inverse of the empirical distribution

can be calculated by first sorting |ŝc(r, tj)| in increasing order:

jŝsc r; t 1ð Þ
� �

j 	 jŝsc r; t 2ð Þ
� �

j 	 > 	 jŝsc r; t Kcð Þ
� �

j; ð12Þ

and then by choosing |ŝc(r, t( q))| as R(r) where q = [(1 �
a)Kc] and |[I] indicates the maximum integer that does not

exceed the value in parenthesis. However, the statistical

threshold obtained in this manner does not take multiple

comparisons into consideration, and instead of implementing

the above mentioned procedure, the following procedure is

performed.

(iii) Statistical thresholding with multiple comparisons. The

proposed method uses maximum statistics (Blair and

Karniski, 1994; Pantazis et al., 2003) to address the

multiple comparison problem. To utilize maximum sta-

tistics, we first standardize the empirical distribution of

|ŝc(r, tj)| by calculating T(r, tj) such that

T r; tj
� �

¼
jŝsc r; tj
� �

j � bjŝsc r; tj
� �

j�c
r̂r rð Þ ð13Þ

Here,

r̂r2 rð Þ ¼ bŝsc r; tj
� �2

�c � bjŝsc r; tj
� �

j�2c ;

and bI�c indicates the time average over the control

period, i.e.,

bŝsc r; tj
� �2

�c ¼
1

Kc

~
Kc

j ¼ 1

ŝsc r; tj
� �2

and

bjŝsc r; tj
� �

j�c ¼
1

Kc

~
Kc

j ¼ 1

jŝsc r; tj
� �

j:

We then calculate the maximum T value Tmax (r) at each pixel

location. The maximum T value at the ith pixel location is denoted

Tmax
i , where i = 1,. . ., KN, and KN indicates the total number of

pixels. We next obtain the empirical distribution of Tmax
i , Ĥ (x), such

that Ĥ (x) = #{T i
max 	 x}/KN, where #{T

i
max 	 x} is the number of

T i
max values which is less than or equal to x. We can then obtain the

threshold of the T i
max value for the a-significance level, T th

max, such

that T th
max = Ĥ (1 � a). The inverse of this empirical distribution can

be calculated by first sorting T i
max in increasing order:

T 1ð Þ
max < T 2ð Þ

max < > < T KNð Þ
max ; ð14Þ

and choose T ( p)
max as T

th
max where p = [(1 � a)KN]. We finally obtain

the statistical threshold for the spatial-filter reconstruction, R(r), by

converting T th
max into the source activity value, that is,

~ rð Þ ¼ Tth
max r̂r rð Þ þ bjŝsc r;tj

� �
j�c: ð15Þ

We evaluate the statistical significance of the spatial filter

outputs by comparing the outputs |ŝ(r, t)| with ~ (r), and when

|ŝ(r, t)| > ~ (r), the outputs ŝ(r, t) are considered to be statistically

significant. It should be mentioned that, once we take Tmax (r) at
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each pixel location, the distributional properties of the process do

not matter anymore, and the assumption that the time course

reconstruction is IID is not needed. Instead, this multiple

comparison procedure imposes a new assumption that the shape

of the control source distribution is the same at each pixel, although

its scale may be different.
Fig. 1. (a) The coordinate system and source-sensor configuration used in

the numerical experiments. The coordinate origin was set at the center of

the sensor coil located at the center of the array. The three point-like

sources, shown by the small filled circles, were assumed to be located at (0,

�1, �6) cm, (0, l, �6) cm, and (0, 1.6, �7.2) cm on the plane of x = 0. The

large circle indicates the projection of the sphere used for the forward

calculation. (b) The first three panels from top to bottom show the time

courses assumed as the time courses of the first, second, and third sources,

respectively. The fourth panel shows the spontaneous MEG added to the

generated signal magnetic field. The bottom panel shows the simulated

magnetic recordings used for the reconstruction experiments.
Numerical experiments

We conducted numerical experiments to show the effectiveness

of the proposed statistical thresholding. We use a sensor alignment

of the 37-sensor array from the Magnesi (4D Neuroimaging Inc.,

San Diego) neuromagnetometer. The source-sensor configuration

and the coordinate system are illustrated in Fig. 1(a). The

coordinate origin is set at the center of the sensor coil located at

the center of the array. The three point-like sources, shown by the

small filled circles in this figure, are assumed to be located at (0,

�1,�6) cm, (0, l, �6) cm, and (0, 1.6, �7.2) cm on the same plane

(x = 0). These locations of the three sources are denoted rl, r2, and

r3. The simulated magnetic field is calculated for 400 ms pre-

stimulus and 400 ms post-stimulus time windows with a sampling

rate of 1 kHz. Here, the nearly orthogonal three time courses

shown in Fig. 1(b) are used as the time courses of the three sources.

In these experiments, the pre-stimulus period is considered the

control period. The first and second sources are considered the signal

sources of interest because they are only active in the post-stimulus

(task) period. The third source is considered the control source

because it is active both in the pre- and post-stimulus periods. To

simulate brain background activity (which is so-called brain noise),

spontaneous MEG measured from an awake human subject was

added to this computer-generated magnetic field to create simulated

magnetic recordings. Here, the spontaneous MEG was measured

with a sampling rate of 1 kHz using the same sensor array and

averaged over 400 trials. These spontaneousMEG data are shown in

the fourth panel (from the top) of Fig. 1(b). The resulting simulated

magnetic recordings are shown in the bottom panel of Fig. 1(b).

The eigenspace-projected adaptive spatial filter (Sekihara et al.,

2002), mentioned in Typical non-adaptive and adaptive spatial

filters, was applied to these simulated recordings. The data between

0 and 400 ms were used for calculating the covariance matrix, and

the weight vector of the spatial filter was obtained with this

covariance matrix. The dimension of the signal subspace for the

eigenspace projection was set at three. The spatial filter was

applied to both the pre- and post-stimulus data, and the

reconstructed results are shown in Fig. 2. Fig. 2(a) shows the

reconstructed time courses at the three source locations, ŝ(r1, t),

ŝ(r2, t), and ŝ(r3, t). Three snapshot reconstructions at 220, 265,

and 300 ms, |ŝ(r, 220)|, |ŝ(r, 265)|, and |ŝ(r, 300)| are shown in Fig.

2(b). The reconstruction–averaged over the whole post-stimulus

time window between 0 and 400 ms,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bŝs r;tð Þ2�post

q
(where bI�post

indicates the time average over the whole post-stimulus period)—is

shown in Fig. 2(c). The reconstruction region was defined such that

�2.5 < y < 2.5 cm and �8 < z < �4 cm with the pixel interval of

0.5 cm, resulting in the total number of pixels equal to 7373.

To apply the proposed statistical thresholding, we first calculate

the modulus of the reconstructed time courses |ŝ(r, t)| and derive an

empirical null distribution from the pre-stimulus portion of |ŝ(r, t)|

at each pixel location. The magnitude time courses |ŝ(r1, t)|, |ŝ(r2,

t)|, and |ŝ(r3, t)| are shown in Fig. 3(a). The resultant empirical

distributions at r1, r2, and r3, expressed as histograms of the pre-



Fig. 2. (a) The reconstructed time courses for the first source ŝ(r1, t)

(upper), the second source ŝ(r2, t) (middle), and the third source ŝ(r3, t)

(bottom). (b) The snapshot reconstruction at 220 ms |ŝ(r, 220)| (upper left),

265 ms |ŝ(r, 265)| (upper right), and 300 ms |ŝ(r, 300)| (lower left). The time

instants at 220, 265, and 300 ms are shown by the three broken vertical

lines in panel (a). (c) The reconstruction averaged over the post-stimulus

time window,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bŝs r;tð Þ2�post

q
:

Fig. 3. (a) Reconstructed magnitude time courses, |ŝ(r1, t)|, |ŝ(r2, t)|, and

|ŝ(r3, t)|, are shown from top to bottom, respectively. The horizontal broken

lines in the upper two panels show the threshold values at r1 and r2. (b)

Histograms of the pre-stimulus values of |ŝ(r1, t)| (upper left), |ŝ(r2, t)|

(upper right), and |ŝ(r3, t)| (lower left).
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stimulus values of |ŝ(r1, t)|, |ŝ(r2, t)|, and |ŝ(r3, t)|, are shown in Fig.

3(b). The empirical distributions are then standardized using Eq.

(13), and the T i
max, values are derived from the standardized

distributions at all pixel locations. The distribution of T i
max

expressed as a histogram is shown in Fig. 4(a). Using this

distribution, the value of T th
max is determined to be 3.40 for a

significance level a of 0.05. Finally, using Eq. (15), we derive the

threshold ~ (r), and when |ŝ(r, t)|<~ (r), |ŝ(r, t)| is set equal to zero.
The results of this thresholding with a 5% significance level applied

to the reconstruction results in Fig. 2(b) are shown in Fig. 4(b). The

thresholded time-averaged reconstruction is shown in Fig. 4(c). The

results indicate that the third source, active during both the pre- and

post-stimulus periods, is removed from the post-stimulus recon-

struction, verifying the effectiveness of the proposed method.
Experiments

We applied the proposed method to auditory-evoked MEG data

to test its effectiveness. The auditory-evoked fields were measured

using the 275-channel Omega-275i (VSM MedTech Ltd., Port

Coquitlam) whole-cortex biomagnetometer installed at the Bio-

magnetic Imaging Laboratory, University of California, San

Francisco. The auditory stimulus (1-kHz pure tone) was presented

to the subject’s right ear. The average inter-stimulus interval was 2

s, with the interval randomly varied between 1.75 s and 2.25 s. The

sampling frequency was set at 4 kHz, and an on-line filter with a

bandwidth from 1 to 2 kHz was used. A total of 400 epochs were

measured, and these 400 epochs were averaged to produce the

auditory-evoked recordings shown in Fig. 5. Here, although clear

P50m and N100m peaks can be observed, we can see that these



Fig. 4. (a) Histogram of T i
max. The value of T th

max is determined to be 3.40

for a significance level a of 0.05 using this distribution. (b) Thresholded

results with a = 0.05 for |ŝ(r, 220)| (upper left), |ŝ(r, 265)| (upper right), and

|ŝ(r, 300)| (lower left). (c) The thresholded reconstruction for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bŝs r;tð Þ2�post

q
:

Fig. 5. (a) The 400-epoch-averaged auditory-evoked fields measured using the 275-

132 sensors covering the subject’s left hemisphere are displayed.
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averaged recordings contain a considerable amount of periodic

background activity.

The eigenspace-projected adaptive beamformer (Sekihara et al.,

2002) was applied to these averaged recordings. The dimension of

the signal subspace was set at 2. The data between 0 to 200 ms

were used to calculate the covariance matrix R, and the weight

vector was obtained with this covariance matrix. Two latencies, 44

ms and 86 ms, are selected. One is near the peak of P50m, and the

other is near the peak of N100m. These time points are shown in

the two vertical broken lines in Fig. 5. The snapshots of the source

reconstruction results at these latencies are shown in Figs. 6(a) and

(b). Both sets of the results contain a clear localized source in the

left temporal lobe probably near the primary auditory area.

However, the reconstruction results at 44 ms also contain other

diffuse activity. The time-averaged reconstruction obtained from

the whole pre-stimulus period (�400 �0 ms),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bŝs r;tð Þ2�pre

q
; is shown

in Fig. 6(c) (where (I)pre indicates the time average over this pre-

stimulus period). These results also contain a diffuse source similar

to that found in the snapshot at 44 ms, suggesting that these diffuse

sources were caused by the periodic background activities

observed in the waveforms in Fig. 5.

To apply the proposed statistical thresholding, we use the

measurements taken during the pre-stimulus period as a control. We

reconstruct the time course |ŝ(r, tj)| of the pre-stimulus period, and

the empirical distribution of |ŝ(r, tj)| is calculated at each pixel

location. The empirical distributions are then standardized using Eq.

(13) to determine T i
max for the ith pixel, and the same procedure is

repeated at all pixel locations to derive the distribution of T i
max. The

empirical distribution of T i
max is shown as a histogram in Fig. 7(a).

Here, the number of pixels in the three-dimensional reconstruction

grid was 6800. The value of T th
max was determined to be 3.34 using

this empirical distribution. Then, using Eq. (15), we derive the

threshold R(r). When |ŝ(r, t)| < R (r), |ŝ(r, t)| is set to zero. The

results of this thresholding applied to the snapshot images in Figs.

6(a) and (b) are shown in Figs. 7(b) and (c), respectively. Here, the

significance level a was set at 0.05. The diffuse source activities

contained in the results in Fig. 6(a) have been removed in Fig. 7(b).

These results demonstrate the effectiveness of the proposed

statistical thresholding in removing the influence of background

source activities in the reconstruction results.
Discussion and conclusion

We have developed a simple and novel nonparametric statistical

thresholding procedure for tomographic reconstruction results from
channel sensor array. Among the 275 sensor recordings, the recordings from



Fig. 6. The maximum-intensity projections of the source reconstruction obtained using the eigenspace-projected adaptive spatial filter. (a) Snapshot at 44 ms of

latency, (b) snapshot at 86 ms of latency, and (c) time averaged reconstruction obtained from the whole pre-stimulus period (�400 and 0 ms). The left column

shows the maximum intensity projections of the three-dimensional reconstruction onto the axial plane. The middle column shows those onto the coronal plane.

The left column shows those onto the sagittal plane. The upper ease letters L and R show the left and the right hemispheres, respectively.
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MEG data. Several methods with their aims similar to the one for

the proposed method have recently been proposed (Greenblatt and

Pflieger, 2004; Pantazis et al., 2003; Singh et al., 2003).

Particularly, the methods in (Greenblatt and Pflieger, 2004;

Pantazis et al., 2003) can be alternative methods to the one

proposed in this paper. These methods use permutation tests to

assess the statistical significance of the source reconstruction

results. Thus, it not only requires intensive computer time but also

requires raw epoch data to be stored. On the contrary, the method

proposed in this paper does not use such computer intensive re-

sampling methods as the permutation tests or the bootstrap and can

thus be implemented with much less computer time. In addition,

our method does not require raw epoch data to be stored but uses

rather only the averaged data.

The proposed method uses the maximum statistics to address

the multiple comparison problems. Without such a multiple

comparison procedure, 100a% of pixels may exhibit false-

positive activations in a single snapshot image (where a is the

level of significance). The multiple comparison procedure,

however, reduces this false-positive probability to the level at

which only 100a% of snapshot images may contain the false-

positive activations. However, since the proposed procedure does

not perform the multiple comparisons in the temporal dimension,

a reconstructed time course may still contain 100a% of time

points that exhibit false activations. This fact can be seen in Fig.

3(a) in which the derived threshold values are indicated by the

horizontal broken lines in the upper two panels. Particularly in the

middle panel, several time points in the pre-stimulus period
exceed the threshold value, resulting in the false-positive

activations at these time points. To avoid such false activations,

the multiple comparisons should also be performed in the

temporal dimension, and for such space– time multiple compar-

isons, an empirical distribution should be derived not only at each

spatial point but also at each time point. Such a method for

space–time multiple comparisons is currently under investigation,

with the results to be published in the near future.

We pointed out in Proposed nonparametric statistical signifi-

cance evaluation that we impose the assumption that the time

course reconstruction |ŝc(r, tj)| is identically and independently

distributed (IID) to derive an empirical distribution of |ŝc(r, tj)|.

This assumption is essential for the procedure without multiple

comparisons. However, once we take Tmax (r) at each pixel

location, the distributional properties of the process do not matter

anymore, and the assumption that the time course reconstruction

is IID is not needed for our procedure with multiple comparison.

In other words, even if the pre-stimulus process, ŝc(r, tj), has

strong temporal autocorrelations, we can still compare post-

stimulus values to the maximal values of the pre-stimulus

process. However, instead of the IID assumption, our multiple

comparison procedure imposes a new assumption that the shape

of the control source distribution is the same at each pixel,

although its scale may be different. This assumption is more

attainable than the IID assumption because brain source time

courses are known to have significant autocorrelations, but such

autocorrelations should be more or less similar at each pixel

location.



Fig. 7. (a) Histogram of Tmax
i from all pixel locations. (b) The results of the proposed statistical thresholding applied to the snapshot shown in Fig. 6(a). (c) The

results of the proposed statistical thresholding applied to the snapshot shown in Fig. 6(b).
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The other implicit assumption needed for our proposed

procedure is that the source activities in the control (pre-stimulus)

period are not correlated with those in the task (post-stimulus)

period, that is, the control source activities are stationary

throughout the task and control periods. This assumption is not

exactly hold in such a situation that background (control source)

activities are changed before and after the stimulus. Actually, we

can often observe that the alpha activity is suppressed by a visual

stimulus. In such situations, however, we can assume that the

stimulus will also evoke non-phase locked activity that should be

accounted for separately from the ‘‘pure’’ control source activities

that are unchanged by the stimulus. The proposed method can

only remove the influence of the brain sources that are

uninfluenced by the stimulus, i.e., ‘‘pure’’ control source activities,

and it cannot remove the influence of the stimulus-evoked non-

phase locked activity. The proposed method should work for

average evoked responses because, in such averaged responses,

the contribution of the stimulus-evoked non-phase locked activity

is much reduced by averaging, and its influence generally can be

neglected.

In Proposed nonparametric statistical significance evaluation,

the proposed method is described using the one-tailed test.

However, the two-tailed test may be more appropriate when target

source activities can vary in the both directions, i.e., when target

sources can be deactivated by stimuli. The extension of the
proposed method to include the two-tailed test can be performed

by first calculating the minimum T value Tmin(r) at each pixel

location where the value of T is calculated using Eq. (13). Denoting

the minimum T value at the ith pixel location as T i
min, we next

obtain the empirical distribution of Tmin, Ĥmin(x) such that

Ĥmin(x) = #{T i
min 	 x} / KN and then obtain the threshold of the

Tmin value for the a-significance level, T th
min, such that T th

min =

Ĥ�1min(1 � a / 2). We can obtain the statistical threshold correspond-

ing to Tth
min, Rmin(r), by using

~ min rð Þ ¼ Tth
min r̂r rð Þ þ bjŝsc r;tj

� �
j�c: ð16Þ

When |ŝ(r, t)| 	 Rmin(r), we can conclude that there is a statistically

significant decrease in the source activity at r and time t. The other

side of the threshold can be obtained in exactly the same manner as

described in Proposed nonparametric statistical significance evalua-

tion except using T th
max = Ĥ�1(1 � a / 2).

Although the proposed method has been described as a method

for assessing the statistical significance of the source reconstruction

results, the method can also be applied to determine the statistical

significance of bI(t) in the sensor recordings b(t). The null

hypothesis here is bI(t) = 0 in the task measurements. Let us

denote the kth component of the vectors b(t), bc(t), and bI(t) as

bk(t), bc
k(t), and bI

k(t), respectively. To determine the statistical
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significance of bI
k(t), the empirical distribution of |bc

k(tj)| is first

standardized by calculating

Tk
c tj
� �
¼
jbkc tj
� �
j � bjbkc tj

� �
j�c

r̂rk
b

; ð17Þ

where

r̂rk
b

� �2 ¼ bbkc tj
� �2

�c � bjbkc tj
� �
j�2c ;

tj is a discrete time point in the control period, and bI�c again

indicates the time average over the control period. We then

calculate the maximum T value for the kth channel recording,

T k
max, and obtain the empirical distribution of T k

max, Ĥb(x), such

that Ĥb(x) = {T k
max 	 x} / M1. We then obtain the threshold of the

Tmax value for the a-significance level T th
max such that T th

max =

Ĥb
�1(1 � a) and finally obtain the statistical threshold for the kth

sensor recording, Rb
k, by using

~ k
b ¼ Tth

max r̂rk
b þ bjbkc tj

� �
j�c: ð18Þ

Therefore, when bk(t) > Rb
k, the null hypothesis is rejected and we

can conclude that a statistically significant bI(t) exists.

In conclusion, this paper proposes a simple and efficient method

of statistical thresholding for MEG spatio-temporal source recon-

struction. The method assumes the neural source activities to be

quasi-stochastic, and it derives an empirical distribution of non-

target sources from the time course reconstruction in the control

period. It then derives the value of statistical threshold based on the

empirical distribution with the multiple comparisons taken into

account. In summary, the method provides an effective means of

removing source activities not of interest to the current measure-

ments and of extracting the source activity of interest.
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