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ABSTRACT

This paper proposes a bootstrap-based statistical method for
extracting target source activities from MEG/EEG source
reconstruction results. The method requires measurements
in a control condition, which contains only non-target source
activities. The method derives, at each pixel location, an
empirical probability distribution of the non-target source
activity using bootstrapped reconstruction obtained from the
control period. The statistical threshold that can extract the
target source activities is derived based on the empirical dis-
tributions obtained from all pixel locations. Here, the mul-
tiple comparison problem is taken into account by using
two step procedure: studentizing these empirical distribu-
tions and deriving an empirical distribution of the maximum
pseudo T value at each pixel location. The results of numer-
ical experiments are presented to demonstrate the method’s
effectiveness.

Keywords – Bootstrap method, MEG, Source
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1. INTRODUCTION

Neuromagnetic imaging can visualize neural activities with
a fine time resolution of milli-second order, and provide
functional information about brain dynamics. One major
problem here is that measured MEG signal generally con-
tains not only magnetic fields associated with the signal
sources of interest but also contains interference magnetic
fields generated from non-target source activities; such non-
target source activities include brain spontaneous activities
or some evoked activities that are not the interest of the
current investigation. These non-target activities generally
overlap with the target source activities in the source recon-
struction, and they often make interpreting the reconstruc-
tion results difficult.

In most studies using positron emission tomography or
functional magnetic resonance imaging, the experiments are
carefully designed to extract only the target activities. A
common example for such experimental designs contains

two kinds of stimuli: a task stimulus and a control stimu-
lus. The task stimulus generally elicits the target cortical
activities as well as other activities associated with the tar-
get activities. The control stimulus is designed to elicit only
these associated activities. Then, by calculating the statisti-
cal subtraction between the images measured with the two
kinds of stimulus, the target activities can be extracted.

This paper proposes a bootstrapped-based method for
implementing this statistical subtraction between task and
control measurements. The method is applicable to results
of source reconstruction from evoked MEG/EEG measure-
ments. This method assumes neural activities to be quasi
stochastic, and applies the bootstrap method to derive an
empirical probability distribution of these activities using
the source reconstruction in the control period. This em-
pirical distribution is then used for deriving the statistical
threshold; the thresholding can extract the target activities
that exist only in the task measurements by eliminating other
non-target activities. In this paper, we explain the proposed
statistical thresholding method with spatial filter source re-
construction [1]. This is because the formulation of the spa-
tial filter is relatively simple and it has been successfully
applied to MEG source analysis. However, the applicabil-
ity of the proposed method is not limited to the spatial filter
formulation and it can be used with any types of source re-
construction methods

2. SPATIAL FILTER FORMULATION AND
PARAMETRIC STATISTICAL SIGNIFICANCE

EVALUATION

We define the magnetic field measured by the mth detec-
tor coil at time t as bm(t), and a column vector b(t) =
[b1(t), b2(t), . . . , bM (t)]T as a set of measured data where
M is the total number of sensor coils and superscript T in-
dicates the matrix transpose. The spatial location is repre-
sented by a three-dimensional vector r: r = (x, y, z). The
magnitude of the source moment is denoted s(r, t). Spa-
tial filter techniques estimate the source current density by



applying a simple linear operation to the measured data, i.e.,

ŝ(r, t) = wT (r)b(t) =
M∑

m=1

wm(r)bm(t), (1)

where ŝ(r, t) is the estimated source magnitude. The col-
umn vector w(r) expresses a set of the filter weights, which
characterizes the property of the spatial filter. Various types
of spatial filter techniques have been proposed and applied
to the MEG/EEG source reconstruction problems. Some of
them are found in [2][3][4][5].

The evaluation of the statistical significance of the spa-
tial filter outputs has been conventionally performed using
the parametric statistics [2][5]. The basic assumption for
such parametric method is that the measurement consists of
deterministic signal and Gaussian noise, i.e.,

b(t) = bI(t) + n(t), (2)

where bI(t) is the signal magnetic field of interest, which
is generated from brain sources that are the target of cur-
rent investigation. In Eq. (2), n(t) is the noise vector and
each element of n(t) is assumed to follow N (0, σ2

0), which
indicates the Gaussian distribution with zero mean and the
variance of σ2

0 . Since these Gaussian processes are assumed
to be uncorrelated between different sensor recordings, the
spatial filter outputs ŝ(r, t) expressed as

ŝ(r, t) = wT (r)b(t) = wT (r)bI(t) + wT (r)n(t), (3)

follows
N (wT (r)bI(t), σ2

0‖w(r)‖2). (4)

Thus, using this property, the statistical evaluation can be
performed by testing the null hypothesis (bI(t) = 0) at each
pixel location.

3. PROPOSED NONPARAMETRIC STATISTICAL
SIGNIFICANCE EVALUATION

The signal and the noise model expressed in Eq. (2) is, in
general, insufficient to express real-world measurements,
and the measured data should be expressed as

b(t) = bI(t) + bξ(t) + n(t), (5)

where bξ(t) is the magnetic field generated from sources
other than the signal sources, such as brain spontaneous
activities or some evoked activities that are not the target
of current investigation. This bξ(t) is often referred to as
the brain noise. The parametric modeling cannot efficiently
take this brain noise into account, because the Gaussianity
assumption does not hold for bξ(t). Here, we propose a
bootstrap-based nonparametric method that can take such

brain noise into consideration. The spatial filter outputs ob-
tained from b(t) is expressed as

ŝ(r, t) = ŝI(r, t) + ŝc(r, t), (6)

where

ŝI(r, t) = wT (r)bI(t) (7)

ŝc(r, t) = wT (r)(bξ(t) + n(t)) (8)

The key assumption in the proposed method is that the con-
trol measurement that can provide bc(t) = bξ(t) + n(t)
is available. Using this control measurement, the proposed
method first derive an empirical distribution of ŝc(r, t), and
with this empirical distribution, the method evaluates the
statistical significance of ŝ(r, t) under the null hypothesis
that ŝI(r, t) = 0. The proposed procedures are described
as follows:

(i) Empirical distribution formation In evoked mea-
surements, the magnetic field is generally obtained by aver-
aging raw-epoch measurements. We denote such raw epochs
for the control measurements bc(t) as {e1(t), . . . , eK(t)}
where K is the number of raw epochs, i.e.,

bc(t) = 1/K

K∑
j=1

ej(t).

We calculate the bootstrapped control measurements bβ
c (t)

such that

bβ
c (t) = 1/K

K∑
j=1

e∗
j (t), (9)

where {e∗
1(t), . . . , e∗

K(t)} are the re-sampled epochs, each
of which is drawn randomly from {e1(t), . . . , eK(t)} with
replacements. The assumption here is that each epoch is a
one realization of a stochastic process with unknown dis-
tribution. In Eq. (9), β is the bootstrap index such that
β = 1, . . . , KB where KB indicates the total number of
bootstrap samples. We next calculate ŝβ

c (r, t) by applying
the spatial filter to bβ

c (t), i.e., ŝβ
c (r, t) = wT (r)bβ

c (t), and
obtain

pβ
c (r) =

√
〈ŝβ

c (r, t)2〉,
where 〈·〉 indicate the time average over the control period.
We then calculate F̂ (x), which is the empirical distribu-
tion of pβ

c (r), such that F̂ (x) = �{pβ
c (r) ≤ x}/KB where

�{pβ
c (r) ≤ x} indicates the number of pβ

c (r) which are less
than or equal to x. At all pixel locations, this procedure is
repeated and the empirical distribution is calculated. Since
F̂ (x) is obtained at each pixel location r, F̂ (x) is rewritten
as F̂ (x|r) in the following explanation.

(ii) Statistical thresholding without multiple compar-
isons Using F̂ (x|r), we could obtain the statistical thresh-
old at r, Σ(r), such that Σ(r) = F̂−1(1−α|r) where 1−α



is the confidence level such as 1 − α = 0.95. In practice,
the inverse of the empirical distribution can be calculated by
first sorting pβ

c (r) in the increasing order with respect to β,

p(1)
c (r) ≤ p(2)

c (r) ≤ · · · ≤ p(KB)
c (r), (10)

where p
(j)
c (r) is the jth smallest item among pβ

c (r). Then,

we choose p
(q)
c (r) as Σ(r) where q = [(1 − α)KB] and

[·] indicates the maximum integer that does not exceed the
value in the parenthesis. However, the statistical threshold
obtained in this manner does not take the multiple compar-
isons into consideration, and instead of implementing the
above-mentioned procedure, the following procedure should
be performed.

(iii) Statistical thresholding with multiple compar-
isons The proposed method uses the maximum statistics
to incorporate the multiple comparison problems; the use
of the maximum statistics has been studied in [6]. To uti-
lize the maximum statistics, we first studentize the empiri-
cal distribution of pβ

c (r) by calculating Tβ(r) such that

Tβ(r) =
pβ

c (r) − 〈pβ
c (r)〉β

σ̂(r)
. (11)

Here,
σ̂2(r) = 〈pβ

c (r)2〉β − 〈pβ
c (r)〉2β ,

and 〈·〉β indicates the average over the bootstrap samples.
We then calculate Tmax(r), which is the maximum Tβ(r)

value. The maximum Tβ value at the ith pixel location is
denoted T i

max where i = 1, . . . , KN and KN indicates the
total number of pixels. We next obtain the empirical dis-
tribution of T i

max, Ĥ(x), such that Ĥ(x) = �{T i
max ≤

x}/KN where �{T i
max ≤ x} is the number of T i

max val-
ues which are less than or equal to x. We can obtain the
threshold for the (1 − α) confidence level, T th, such that
T th = Ĥ−1(1 − α). The inverse of this empirical distribu-
tion can be calculated by first sorting T i

max in the increasing
order

T (1)
max ≤ T (2)

max ≤ · · · ≤ T (KN)
max , (12)

and choose T
(p)
max as T th where p = [(1 − α)KN ]. We

finally obtain the statistical threshold for the spatial-filter
reconstruction, Σ(r), by using

Σ(r) = T thσ̂(r) + 〈pβ
c (r)〉β . (13)

We evaluate the statistical significance of the spatial filter
outputs by comparing the outputs |ŝ(r, t)| with Σ(r), and
when |ŝ(r, t)| ≥ Σ(r), the outputs ŝ(r, t) is considered to
be statistically significant.

4. NUMERICAL EXPERIMENTS

We conducted numerical experiments to show the effective-
ness of the proposed statistical thresholding. We use a sen-
sor alignment of the 37-sensor array from Magnes TM (4D

Neuroimaging Inc., San Diego) neuromagnetometer. Three
signal sources were assumed to exist on a single plane (x =
0 cm). The source-sensor configuration and the coordinate
system are illustrated in Fig. 1. The simulated magnetic
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Fig. 1. The coordinate system and source-sensor configura-
tion used in the numerical experiments. The circle indicate
the projection of the sphere used for the forward calculation.

field were calculated at 400 ms prestimulus and 400 ms post
stimulus time window with 1 ms sample. Here, nearly or-
thogonal three time courses shown in Fig. 2 were assigned
to the three sources. In this experiments, the prestimulus
period is considered as the control period. The first and the
second sources is considered as the signal sources of in-
terest and the third sources as the control sources that are
active both the post and pre stimulus periods. Spontaneous
MEG measured using the same sensor array was added to
this simulated signal-magnetic field to create a simulated
raw-epoch data. One hundred raw-epochs were generated
in this manner, and averaged to create the final simulated
evoked recordings. The resultant simulated evoked record-
ings are also shown in Fig. 2.

The eigenspace-projected adaptive spatial filter [4] was
applied to this averaged recordings. The data between 0 to
400 ms was used for calculating the covariance matrix and
the weight vector of the spatial filter was obtained with this
covariance matrix. The spatial filter was applied to both the
pre and post stimulus 400 ms time windows to give two sets
of the source power reconstruction results,

√〈ŝ(r, t)2〉pre

and
√〈ŝ(r, t)2〉post. These results are shown in Fig. 3, in-

dicating that all three sources are active in the post stim-
ulus period but only the third source is active in the pres-
timulus period. Then, the proposed method was applied the
post stimulus reconstruction

√〈ŝ(r, t)2〉post. The results
of thresholding

√〈ŝ(r, t)2〉post with 95 % confidence level
are shown in Fig. 4. The results indicate that the third source



is eliminated from the post stimulus reconstruction, verify-
ing the effectiveness of the proposed method.
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Fig. 2. Time courses assigned to the three sources and sim-
ulated evoked recordings (bottom).
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Fig. 4. Source reconstruction results
√〈ŝ(r, t)2〉post

thresholded by the proposed method.


