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Abstract—This paper examines the effectiveness of a sparse
Bayesian algorithm to estimate multivariate autoregressive coef-
ficients when a large amount of background interference exists.
This paper employs computer experiments to compare two
methods in the source-space causality analysis: the conventional
least-squares method and a sparse Bayesian method. Results
of our computer experiments show that the interference affects
the least-squares method in a very severe manner. It produces
large false-positive results, unless the signal-to-interference ratio
is very high. On the other hand, the sparse Bayesian method
is relatively insensitive to the existence of interference. However,
this robustness of the sparse Bayesian method is attained on
the scarifies of the detectability of true causal relationship. Our
experiments also show that the surrogate data bootstrapping
method tends to give a statistical threshold that are too low
for the sparse method. The permutation-test-based method gives
a higher (more conservative) threshold and it should be used
with the sparse Bayesian method whenever the control period is
available.

I. INTRODUCTION

Estimating a causal relationship among cortical activities
using the MEG/EEG source space analysis has gained a great
interest[1], [2]. Such causality analysis generally requires a
two step procedure: The first step estimates source time series
from MEG/EEG measurements. The second step computes
some types of causality measures using the estimated time
series of target source activities. Here, popular measures are
Granger-causality-based measures. Many investigations have
been performed in the past fifteen years to explore the ef-
fectiveness of the Granger-causality-based measures in brain
signal analysis[3], [4], [5].

The Granger-causality measures rely on the accurate model-
ing of the multivariate vector auto-regressive (MVAR) process
of the source time series. Since, in general, the causality
analysis is performed using the source time series estimated
from non-averaged data, the estimated time series inevitably
contains large influence of brain background interference,
which is often referred to as the brain noise. However, the
MVAR modeling in general does not take such interference
into account, their existence may cause significant amount of

errors in the estimated MVAR coefficients, leading to a mis-
estimation of completely wrong causality relationships.

One approach to reduce the errors in the MVAR estimation
caused due to the background interference is to impose the
sparsity constraint when estimating the MVAR coefficients.
The key assumption here is that true brain interaction causes
small number of MVAR coefficients to have non-zero values,
and most of MVAR coefficients remain to be zero. If this
is true, the sparsity constraint imposed when estimating the
MVAR coefficients should be able to prevent most MVAR co-
efficients to have erroneously large values due to the influence
of background interference.

This paper tests the effectiveness of a method that im-
poses the sparsity on its solution. This paper uses computer
experiments to compare two methods for MVAR coefficient
estimation: the conventional least-squares method and a sparse
Bayesian method that imposes the sparsity on its solution. In
Section II, the two methods are briefly described. We present
the results of our computer experiments to compare these two
methods in Section III.

II. METHOD

A. Estimation of MVAR coefficients

1) Least-squares-based algorithm: We assume that total K
multiple time series exist and we model these multiple time
series using the multivariate vector auto-regressive (MVAR)
process. Let us denote the kth time series as sk(t), where k =
1, . . . ,K, and define a column vector s(t) such that s(t) =
[s1(t), . . . , sK(t)]T . The time t is expressed using a unit-less
value. This s(t) is expressed as MVAR process, such that

s(t) =
P∑
p=1

A(p)s(t− p) + e(t), (1)

where A(p) is the pth coefficient matrix, P is the model order,
and e(t) is the residual vector.

We can estimate the MVAR coefficients Ai,j(p) where
i, j = 1, . . . ,K and p = 1, . . . , P based on the least-squares



principle. To derive the least-squares equation, let us explicitly
write the MVAR process for the kth component sk(t) as

sk(t) =
K∑
j=1

Ak,j(1)sj(t− 1) +
K∑
j=1

Ak,j(2)sj(t− 2)

+ · · ·+
K∑
j=1

Ak,j(P )sj(t− P ) + ek(t). (2)

We assume that the source time series are obtained at t =
1, . . . , NT where NT � K × P . Then, since Equation (2)
holds for t = P+1, . . . , NT , a total of NT−P linear equations
are obtained by setting t = P + 1, . . . , NT in Eq. (2).

These equations are formulated as a matrix form,

yk = Φxk + ek. (3)

Here, the (NT − P )× 1 column vector yk is defined as

yk = [sk(P + 1), sk(P + 2), . . . , sk(NT )]T , (4)

where the superscript T indicates the matrix transpose. In
Eq. (3), Φ is an (NT−P )×PK matrix whose (i, j)th element
Φi,j is given by

Φi,j = sξ

(
P −

[
j

K

]
+ (i− 1)

)
, (5)

where
ξ = j −

[
j

K

]
K, (6)

and [·] indicates the integer not greater than the value in
parentheses. The column vector xk is expressed as

xk = [Ak,1(1), . . . , Ak,K(1), . . . , Ak,1(P ), . . . , Ak,K(P )]T .
(7)

The residual vector ek is given by

ek = [ek(P + 1), . . . , ek(NT )]T . (8)

Equation (3) is called the Yule-Walker equation. The least-
squares estimate of xk, x̂k, is then obtained using,

x̂k = (ΦTΦ)−1ΦTyk. (9)

2) Sparse Bayesian algorithm: We introduce an algorithm
that imposes the sparsity on its solution. One powerful algo-
rithm is based on the Bayesian statistics applied to solving the
linear equation in Eq. (3). In this algorithm, the prior proba-
bility distribution of xk, f(xk), is assumed to be Gaussian:

f(xk) = N (xk|0,ν), (10)

where 0 is a column vector whose elements are all zero. ν
is a diagonal precision matrix. The probability distribution of
yk given xk, f(yk|xk), is also assumed to be Gaussian:

f(yk|xk) = N (yk|Φxk,Λ), (11)

where Λ is a diagonal noise precision matrix. Then, the pos-
terior distribution of xk, f(xk|yk), is shown to be Gaussian,
and it is expressed as

f(xk|yk) = N (xk|x̄k,Γ ). (12)

The estimation of x̄k and Γ is carried out by using the
well-known expectation-maximization (EM) algorithm[7]. The
update rules in the E step of the EM algorithm give the
estimates of those parameters, such that

x̄k = Γ−1ΦTΛyk (13)

Γ = ΦTΛΦ+ ν (14)

The parameters, ν and Λ, are estimated in the M step of
the EM algorithm. The diagonal components of ν are obtained
using

[ν]j,j =
1

[Rxx]j,j
(15)

where
Rxx = x̄kx̄

T
k + Γ−1, (16)

and [ · ]j,j indicates the (j, j)th (diagonal) element of a matrix
in parentheses. The noise precision matrix Λ is obtained using

Λ−1 = diag
[
Ryy −RT

xyΦ
T −ΦRxy +ΦRxxΦ

T
]
, (17)

where
Ryy = yky

T
k , and Rxy = x̄ky

T
k , (18)

and diag[ · ] indicates a diagonal matrix whose diagonal el-
ements are equal to those of a matrix in parentheses. The
estimate of the MVAR coefficients is given from x̄k, after
the EM iteration is finished. This algorithm is similar to but
considerably simpler than the one proposed in [6].

B. Partial directed coherence

Once the MVAR coefficient matrices are obtained, Granger-
causality-based measures can be computed. In this paper, we
use the partial directed coherence (PDC) proposed in [4]. To
derivce PDC, we first compute

Ā(f) = I −
P∑
p=1

A(p)e−2πipf , (19)

where I is the identity matrix with its size equal to the size
of the coefficient matrix A(p). Then, the PDC from the kth
source to the jth source, Ψk→j , can be computed using

Ψk→j =
|Āj,k(f)|√
āHk āk

, (20)

where āk represents the kth column of the matrix Ā(f), and
the superscript H indicates the Hermitian transpose.

In actual measurements of brain signals, multiple trials
(realizations) are usually measured. In such cases, the above
Ā(f) is computed from each trial, and the average of each
Ā(f), 〈Ā(f)〉, is then obtained where 〈·〉 indicates the average
across trials. This 〈Ā(f)〉 is used to derive PDC in Eq. (20),
such that,

Ψk→j =
|〈Āj,k(f)〉|√
〈āHk 〉〈āk〉

, (21)

In our computer experiments, Eq. (21) is used to compute
PDC.



C. Statistical thresholding

1) Surrogate-data bootstrapping: In this paper, two types
of statistical thresholding methods are tested: the surrogate-
data bootstrapping[8] and the permutation test[9]. The
surrogate-data bootstrapping is widely used in the MVAR-
based causal analysis. In this method, the Fourier transform
of the time series sj(t) is first computed; it is denoted σj(fk)
where fk indicates the kth frequency bin. We multiply a
random phase to σj(fk) to create σj(fk) exp(−iεk) where
εk is a uniform random number distributed between −π
and π. The phase-modulated spectrum σj(fk) exp(−iεk) is
then inverse Fourier transformed to create s∗j (t), which is
called the surrogate time series. This procedure is repeated for
j = 1, . . . ,K with generating a new random number to εk.
The resultant surrogate data set s∗j (t) where j = 1, . . . ,K does
not anymore contain causal relationships, although it maintains
the same power spectra as those of the original time series.

Since there are (infinitely) many ways of generating random
phases, many different surrogate data sets can be generated.
Let us assume that we generate total NB surrogate data sets,
and compute NB different PDC results using these surrogate
data sets. We denote these PDC results as Ψβ(fk) where β =
1, . . . , NB1.

We may derive the statistical threshold using the null distri-
bution formed using Ψβ(fk) (β = 1, . . . , B). However, such
a statistical threshold does not take the multiple comparisons
into account. To derive a statistical threshold that takes the
multiple comparisons into consideration, the values Ψβ(fk)
(β = 1, . . . , B) are standardized, such that

T β(fk) =
Ψβ(fk)− Ψ̄β(fk)

σB(fk)
, (22)

where Ψ̄β(fk) and σ2
B(fk) are the average and the variance of

Ψβ(fk). The maximum value of T β(fk) is denoted Tmax(fk).
The null distribution for deriving the statistical threshold is
formed using Tmax(fk) from all frequency bins. That is,
denoting a total number of the frequency bins Nf , we sort
Tmax(fk) such that

Tmax(1) ≤ Tmax(2) ≤ · · · ≤ Tmax(Nf ). (23)

Here, Tmax(j) is the jth smallest value of Tmax(fk). Setting
the significance level as α, which is the probability of occur-
ring the type I error, the threshold value T thmax is determined
as Tmax(ω) where ω = (1 − α)Nf . The threshold for each
frequency bin fk, Ψth(fk), is derived as

Ψth(fk) = T thmaxσB(fk) + Ψ̄β(fk). (24)

This Ψth(fk) is the statistical threshold that takes the multiple
comparisons into account.

2) Permutation-test based thresholding: In our numerical
experiments, we introduce another method to derive the sta-
tistical threshold, which is based on the permutation test. To
implement the permutation-test-based method, a prerequisite

1Here, we omit the explicit notation of k → j from the notation Ψβ(fk).

is that the control data2 is available, and the method computes
the MVAR coefficient also from the control data. Let us
denote the MVAR coefficient computed from the mth-trial
task data as A(m)

i,j (p) and that from the mth-trial control data
as cA

(m)
i,j (p). Denoting the total number of trials as Ne, the

Ne/2 coefficients are randomly chosen from A
(m)
i,j (p) where

m = 1, . . . , Ne and another Ne/2 coefficients are randomly
chosen from cA

(m)
i,j (p) where m = 1, . . . , Ne. These total Ne

coefficients are averaged, and these mean MVAR coefficients
are used to compute PDC with Eq. (21). Since many number
of the way to choose A

(m)
i,j (p) and cA

(m)
i,j (p), many number

of mean MVAR coefficients can be obtained. Assuming that
we have a total of NB mean MVAR coefficients, we can
use NB different PDC values to form a null distribution.
Therefore, using exactly the same procedure as described in
Section II-C1, we can derive the statistical threshold Ψth(fk).

III. COMPUTER EXPERIMENTS

A. Generation of simulated MEG recordings

We perform numerical experiments to compare the perfor-
mances of the algorithms described in Section II. In these
experiments, we apply the source-space causality analysis
in which source time series are first estimated from MEG
recordings, and the MVAR coefficients are then computed
using the source time series at selected voxels. The partial
directed coherence (PDC) is computed to assess the causality
relationship.

Here, we use a sensor alignment of the 275 whole-head
MEG sensor array from OmegaTM (VMS Medtech, Coquit-
lam, Canada) neuromagnetometer. Three sources are assumed
to exist on the vertical single plane: (x = 0 cm). The source-
sensor configuration and the coordinate system are depicted
in Fig. 1(a). We assume three sources and the time series of
these three sources are denoted s1(t), s2(t), and s3(t). We
simulate two kinds of scenarios: interacting-source and non-
interacting-source scenarios. In the interacting source scenario,
the source activities are assumed to have causal relationships,
and the time series of the three sources are generated using
the MVAR process reported in [10], which uses s1(t)

s2(t)
s3(t)

 =

 0.8 0 0.4
0 0.9 0
0 0.5 0.5

 s1(t− 1)
s2(t− 1)
s3(t− 1)


+

 −0.5 0 0
0 −0.8 0
0 0 −0.2

 s1(t− 2)
s2(t− 2)
s3(t− 2)

+ e(t). (25)

This MVAR process represents the causal relationship depicted
in Fig. 1(a), in which the second source has a directional
causal influence on the third source and the third source has
the directional influence on the first source. The true PDC
is computed using the model MVAR coefficients in Eq. (25).

2The control data indicates the data containing only interference and sensor
noise.
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Fig. 1. The coordinate system and source-sensor configuration used in
the numerical experiments. The plane at x = 0 cm is shown. The small
circles show the locations of the three sources, and the bold arrows indicate
their causal relationships assumed in the experiments. (b) The plot of partial
directed coherence (PDC) computed using the model MVAR coefficients in
Eq. (25). The ordinate of these plots indicates the frequency normalized by the
sampling frequency in which the value 0.5 indicates the Nyquist frequency.
The abscissa is the PDC value, which is normalized to 1.

The results are shown in Fig. 1(b). These plots of PDC is the
ground truth for the following experiments.

In the non-interacting source scenario, the source activities
are assumed to have no causal relationships, and the time
series of the three sources are generated as low-pass-filtered,
independent random time series. Here, s1(t) is generated by
applying low-pass filter with the cut-off frequency of 0.3 to
a white Gaussian random time series. The time series of the
second source, s2(t), is generated by applying the low-pass
filter with the cutoff frequency of 0.2 to a white Gaussian
random time series, and s3(t) is generated by applying the
low-pass filter with the cutoff equal to 0.15 to a white Gaussian
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Fig. 2. Results of computing partial directed coherence (PDC) for interacting
source scenario. The least-squares (LS) algorithm is used. (a)Results when
SIR equal to 2. (b)Results when SIR equal to 1. (c)Results when SIR equal
to 0.5. (d)Results when SIR equal to 0.25. The solid lines show PDC and
the broken lines show the statistical threshold for the 95%-significance level
obtained with the surrogate-data bootstrap method.
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Fig. 3. Results of computing partial directed coherence (PDC) for interacting
source scenario. The sparse Bayesian algorithm is used. (a)Results when SIR
equal to 2. (b)Results when SIR equal to 1. (c)Results when SIR equal to 0.5
(d)Results when SIR equal to 0.25. The solid lines show PDC and the broken
lines show the statistical threshold for the 95%-significance level obtained
with the surrogate-data bootstrap method.

random time series. (The filter cut-off frequency is expressed
by the the frequency normalized by the sampling frequency.)
Note that, since the three white Gaussian random time series
are independent, these source time series have no causal
relationships.

In our computer simulation, we first generated the three-
source time series, s1(t), s2(t), and s3(t), and then computed



the signal magnetic recordings bS(t) using the spherical
homogeneous conductor model[11]. The simulated sensor
recordings b(t) were generated by adding spontaneous MEG
signal to bS(t), such that, b(t) = bS(t)+αbI(t), where bI(t)
is the spontaneous MEG measured using the same 275 whole-
head sensor array, and α is a constant that controls the signal-
to-interference ratio(SIR) of the generated sensor recordings.
We generated forty-trial recordings; each consisting of 600
time points with SIR equal to 2, 1, 0.5, and 0.25. Note that,
in general, causality analysis is performed using non-averaged
trial data, the conditions with SIR equal to 1 and 2 should
be considered high SIR conditions. The conditions with SIR
below 0.5 are considered practical conditions for non-averaged
measurements.

B. Source-space causality analysis

The source reconstruction was performed using the recently-
proposed algorithm, called Champagne. Since the detail of this
algorithm has already been published[12], it is not described
here. Champagne algorithm was applied to the simulated
sensor recordings b(t), and reconstructed time series ŝ1(t),
ŝ2(t), and ŝ3(t) were obtained as the time series at vox-
els nearest to the assumed source locations. Here, three-
dimensional reconstruction was performed on a region defined
as −4 ≤ x ≤ 4, −4 ≤ x ≤ 4, and 6 ≤ z ≤ 12 cm with a
voxel interval equal to 0.5 cm.

Once source time series are estimated, we can proceed with
the MVAR coefficient estimation using these eatimated time
series, ŝ1(t), ŝ2(t), and ŝ3(t). The MVAR coefficients were
estimated by using the methods described in Section II. Here,
the MVAR coefficient estimate x̂k was obtained from each
trial and, since forty trials were generated, forty sets of x̂k was
obtained. The final estimates of the MVAR coefficients were
obtained by averaging these forty sets of x̂k. These averaged
MVAR coefficients were then used to compute PDC.

C. Results for interacting source scenario

Results for interacting source scenario are shown in Figs. 2
and 3. According to the results in Fig. 2, the least-squares
method gives fairly accurate results only when SIR is equal
to 2. However, in other SIR cases, very large spurious causal
relationships exist in any directions. Although some spurious
relationships may be removed by the statistical thresholding.
this is not always the case. For example, when SIR is equal to
1 and 0.5 (Fig. 2(b) and (c)), the causal relationship for the “2
to 1” direction exceeds the threshold, and cannot be removed
by the statistical thresholding.

According to the results from the sparse algorithm in Fig. 3,
when SIR is equal to 2 or 1, the resultant PDC is almost
identical to the ideal results in Fig. 1(b). However, when SIR
is equal to 0.5, small amounts of spurious PDC arises, for
example, in the “2 to 1” direction; this spurious PDC exceeds
the statistical threshold. When SIR is 0.25, spurious PDC
arises in such directions as “2 to 1”, “1 to 2”, and “3 to 2”.
Also, PDC for the “2 to 3” direction becomes significantly
weaker than the ideal results in Fig. 1(b), indicating that the

detectability of the true causal relationship decreases due to
the low SIR condition.

D. Results for non-interacting source scenario

The results of computing PDC for non-interacting source
scenario are shown in Fig. 4. Since in these numerical experi-
ments, no causal relationship is assumed among the activities
of the three sources, the PDC for all the six directions must be
completely zero. However, the results from the least-squares
method show a large amount of spurious PDC and the spurious
PDC exceeds, in some cases, the statistical threshold. This
happens even when SIR is considerably high such as SIR
equal to one. On the other hand, in the Bayesian results, PDC
is almost completely equal to zero when SIR is equal to 1,
but when SIR is equal to 0.25, a small amounts of non-zero
spurious PDC exists that are sometimes exceeds the statistical
threshold.

E. Results using permutation-test based thresholding

Next, the statistical threshold obtained using the permuta-
tion test are shown in Figs. 5 and 6. we can see that the
statistical threshold obtained using the permutation test is
more conservative than the threshold from the surrogate-data
bootstrapping. In Fig. 5(d), the threshold is as high as the
spurious PDC in the “1 to 2” and “2 to 1” directions, and the
spurious PDC can be thresholded out in these directions. On
the other hand, the PDC in the “3 to 1” and “2 to 3” directions
is also thresholded out, even though true interactions exist in
these directions.

On the other hand, in Fig. 6, the permutation-test-based
method can threshold out the spurious PDC in all directions.
The permutation-test based thresholding can remove the spuri-
ous interactions, and it is particularly effective when used with
the sparse Bayesian algorithm, since it increases the protection
against having false positive results, although this is attained
on the sacrifices of the detectability to true interactions.

IV. SUMMARY

Results of our computer experiments show that the interfer-
ence affects the least-squares method in a very severe manner.
It produces large false-positive results, and the least-squares
method easily suffers from spurious causal relationships unless
the signal-to-interference ratio is very high, such as SIR of 2.
On the other hand, the sparse Bayesian method is relatively
insensitive to the existence of interference. However, the
robustness of the sparse Bayesian method to false positive
results is attained on the scarifies of the detectability of true
causal relationship. When SIR is very low, the sparse Bayesian
method may fail to detect the true causal relationships, al-
though the spurious causal relationship is small.

The surrogate data bootstrapping method tends to give a sta-
tistical threshold that are too liberal for the sparse method. This
is probably because the sparsity constraint works effectively
for the surrogate data, and PDC computed using the surrogate
data set tends to be very small, and as a result of this, the
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Fig. 4. Results of computing partial directed coherence (PDC) for non-
interacting source scenario. (a)Results from the least-squares algorithm when
SIR equal to 1. (b)Results from the least-squares algorithm when SIR equal
to 0.25. (c)Results from the Bayesian algorithm when SIR equal to 1. (d)
Results from the Bayesian algorithm when SIR equal to 0.25. The solid lines
show PDC and the broken lines show the statistical threshold for the 95%-
significance level obtained with the surrogate-data bootstrap method.
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Fig. 5. Results of computing partial directed coherence (PDC) for interacting
source scenario with the statistical thresholding obtained using the permutation
test. (a)Results from the least-squares algorithm when SIR equal to 1.
(b)Results from the least-squares algorithm when SIR equal to 0.25. (c)Results
from the Bayesian algorithm when SIR equal to 1. (d) Results from the
Bayesian algorithm when SIR equal to 0.25. The solid lines show PDC and
the broken lines show the statistical threshold for the 95%-significance level
obtained with the permutation-test based method.

statistical threshold becomes very low. The permutation-test-
based method gives a higher (more conservative) threshold and
this method is better be used with the sparse Bayesian method
whenever the control period is available.
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Fig. 6. Results of computing partial directed coherence (PDC) for non-
interacting source scenario with the statistical thresholding obtained using the
permutation test. (a)Results from the least-squares algorithm when SIR equal
to 1. (b)Results from the least-squares algorithm when SIR equal to 0.25.
(c)Results from the Bayesian algorithm when SIR equal to 1. (d) Results from
the Bayesian algorithm when SIR equal to 0.25. The solid lines show PDC
and the broken lines show the statistical threshold for the 95%-significance
level obtained with the permutation-test based method.
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