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Abstract

The synchronous brain activity measured via mangentodrdegraphy (MEG) arises
from current dipoles located throughout the cortex. Edimgaethe number, location, time-
course, and orientation of these dipoles, called souressains a challenging task, one
that is significantly compounded by the effects of sourceatations and interference from
spontaneous brain activity and sensor noise. Likewis@sasyy the interactions between
the individual sources, known d&snctional connectivity, is also confounded by noise and
correlations in the sensor recordings. Computational dexity has been an obstacle to
computing functional connectivity. This paper demonsisdhe application of an empirical
Bayesian method to perform source localization with MEGadatorder to estimate mea-
sures of functional connectivity. We demonstrate thatrbsaiurce activity inferred from
this algorithm is better suited to uncover the interactioesveen brain areas as compared
to other commonly used source localization algorithms.

1 Introduction

Magnetoencephalography (MEG) non-invasively detectislaetivity from direct measurements of the mag-
netic field from an array of sensors; the observed field is igead by large ensembles of neurons firing syn-
chronously, approximated as compact current sourcesriditieg the combination of current sources that
best explains the field recording is an ill-posed inversdjam because the number of potential sources is
much greater than the number of sensors. Determining the@kgistribution, orientation, and time courses
of these unknown sources is still an open inverse problem.

We have developed a novel empirical Bayesian scheme, peesier{8] and [9], that improves upon existing
methods of source reconstruction in terms of reconstrn@azuracy, robustness, and efficiency. The algo-
rithm derived from this model, which we c&lhampagne, is designed to estimate the number and location of
a small (sparse) set of flexible dipoles that adequatelya@xphe observed sensor data. This method relies on
having access to pre- and post-stimulus data, where thstipnetus data is thought to contain no stimulus-
evoked brain activity. We have shown that Champagne reglisddonstructs a large number of correlated
dipoles. The source time-course estimates that Champagdages are well suited functional connectivity
analyses.

Functional connectivity can be described as understariadiig function in terms of the way information is
transmitted and integrated across brain networks. In thet cmmplete case, one would like to make infer-
ences from a causal linear model that describes the depeird@mong activities across all voxels. However,
due to the large number of voxels, solving such a model is eaatipnally expensive and virtually impossible
with limited, noisy data. Instead, existing techniquesdstimating functional connectivity approximate the
full problem in various ways, but there is a tradeoff betwesducing the computational complexity and loss
of sensitivity. Paradoxically, inferences about connatgtican be made from the correlations between source
time-courses, but many common localization algorithmsehgignificant trouble reconstructing correlated
brain activity. Consequently, there is a fundamental grobapplying many existing localization methods to
functional connectivity estimation.

The solution obtained from Champagne is ideal for use intfanal connectivity analyses as it is robust
to highly correlated dipoles and it circumvents the issulesomnputational complexity by vastly pruning
the number of active voxels. We present results from siredlaind real MEG data showing Champagne’s



efficacy in reconstructing brain activity and estimatingdtional connectivity as compared to standard lo-
calization techniques such as minimum variance adaptimb@ming (MVAB) [6] and SLORETA [4].

2 Methods

2.1 Sourcelocalization: Champagne

The voxels time-courses:() are inferred from the sensor datd'§ using a novel source-localization algo-
rithm calledChampagne described in full detail in [8] and [9]. In summary, this methrelies on segmenting
the data into pre- and post-stimulus periods, learning thtstics of the background activity from the pre-
stimulus period, and then applying the statistics of thé&kbemund activity to the post-stimulus data to uncover
the stimulus-evoked activity. The underlying assumpt®that the noise and non-stimulus-locked brain ac-
tivity present in the pre-stimulus period continues inte gost-stimulus period, where the stimulus-evoked
activity is linearly superimposed. We model the pre- and4stimulus sensor data as:

ygre = Bque + vn (1)

ygost = Fxn + B’U’Zost + Un (2)

where the number of sensorsAs the number of voxels i&, the number of inference factorsig, and the
total number of time points i%/. 4" is the L x 1 measured electromagnetic signal vector at time 1 : NV,

z™ is the L x 1 voxel activity vector attimex = 1 : N, uy,, anduy,,., are theM x 1 pre- and post-stimulus
interference factors at time = 1 : IV, andv” is the K x 1 sensor noise vector attime= 1 : N. F'is
the K x L leadfield matrix and3 is the L x M interference mixing matrix. Using a 2-dimensional leadfiel
results in the interleaving of the leadfield columns for thie tirections. Likewise the number of voxel time
courses is doubled to represent the two dipolar directibesexry voxel. (This method can also be extended
to 3 directions for use with EEG data.) The dimensiong'dfecomesk x 2L and the dimensions of"
become2L x 1. Bothv™ and B are learned from the pre-stimulus period and then used iagtimation of

2™ andu™ with the post-stimulus data.

The signalst, u, v are assumed to be independent zero-mean Gaussian distributhe precision matrices
for the factorsu™ and then sensor nois¢ are diagonal, where” has precision 1 and* has has precision
A; The precision matrix; for eachz? is a 2x2 matrix that allows for correlation between the twediions
of each dipole at every voxel. The entire precision matrig a2 L x 2L block-diagonal matrix.

The model distributions are:

p(y"|z") N(y"|Fa™ + Bu™, A) ®3)
p(z") = N(2"[0,v) (4)
p(u") = N(u"0,1) (5)
p(v") = N("[0,}) (6)

In
n

We can redefine the notation such thet: = ( u ),F’ = (FB),andv = ( 16 ? )
post

With this new notation, the estimation problem in the pdstglus period reduces to:

ygost = F/IIn + G (7)
p@@™) = N("0,v) 8
The posterior over’™ is Gaussian: -
p™ly") = N, T) 9)
where -
" = TRy (10)
I = FTAF+V (11)
The marginal log-likelihood function in this new notatia i
N
L= Z logp(y"|v') = ) (log|V'| + log|T'| — Q + constant) (12)
where@ = % Z " ' . We can derive an updates rule igrusing an Expectation-Maximization (EM)
algorithm,’~! = @, but this algorithm has a slow convergence rate for a largetau of voxels. Thus, we
have derived a faster algorithm that uses a fixed point mgtfo@he update rule for’ for this method is:
V' TE = 873(STQS%)5 s (13)

whereS = v 2 WF'v'~3 andW = I'"1F'T ). The source time courses are estimated from 10 are itelsative
computed with/ in the algorithm.



2.2 Functional Connectivity

We chose to employ two pair-wise connectivity metrics: e¢ehee and imaginary coherence. Coherence
is a traditional metric of connectivity and is the frequemlgynain representation of cross-correlation. The
coherence is a complex-valued quantity; we looked at b&nthgnitude of the coherence and the imaginary
part of the coherence alonémaginary coherence is a relatively new metric developed for use with MEG
and EEG data [3]. It only reflects the coherence that is nstaittaneously mixed. Functional connectivity
methods with MEG are subject to spurious correlationsragiiom instantaneous correlations at the sensors.
While imaginary coherence under-estimates the couplitgdsn two brain areas, it has been shown to be
more robust than coherence when using MEG source recotistisi¢l]. Coherence and imaginary coher-
ence contain complimentary information. We used the catoereneasure to reconstruct the correlations and
imaginary coherence to determine which correlations a&irtaneous or non-instantaneous.

2.3 Experimental Methods
Sour ce Localization

We conducted tests using simulated data with realisticceoaonfigurations. The brain volume was seg-
mented into 5mm voxels and a two orientatiefh (= 2) forward leadfield was calculated using a single
spherical-shell model [5]. The data time courses were tparéd into a pre-stimulus period where there is
only noise and interfering brain activity and a post-stiasuperiod where there is the same (statistically)
noise and interference factors plus source activity ofrege The pre-stimulus activity consisted of the
resting-state sensor recordings collected from a humajeciudnd is presumed to have spontaneous activ-
ity (i.e., non-stimulus evoked sources) and sensor noligs;activity was on-going and continued into the
post-stimulus period, where damped-sinusoidal sources se=ded and projected to the sensors through the
leadfield. We were able to adjust the signal-to-noise-pitesrefence ratio (SNIR), the correlations between
the different voxel time-courses (inter-dipole), and tbeelations between the two orientations of the dipoles
(intra-dipole) to examine the algorithm performance onnown correlated sources and dipole orientations.
Champagne is compared to two commonly used source lodalizagorithms: minimum variance adaptive
beamforming (MVAB) [6] and sSLORETA [4]. We used a metric (A)at weighs hits versus false positives to
asses the localization accuracy and the correlation casffibetween the seeded and estimated time-courses
to assess time-course reconstruction accuracy. We alsGlrampagne and MVAB on an auditory evoked
field (AEF) data-set. A tone was presented to a control stiifg@ times and the three algorithms were run
on the stimulus-locked average of the sensor data. Thissgaia notoriously difficult to reconstruct due to
the highly correlated dipoles in the right and left auditooytices.
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Figure 1:Performance evaluation: (a) Aggregate localization aaguresults
for MVAB, sLORETA, and Champagne (CHAMP) for recoveringearcorre-
lated sources with unknown orientations. (b) Estimate@{tourse correlation

Figure 2:Performance
on a real auditory data-
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set.

We used simulated data to investigate Champagne’s alalijeover interacting brain activity. For the pre-
stimulus period we used Gaussian noise, instead of théoraal-noise described above. We usedl /R =
5dB and an intra-dipole correlation of 0.5. The sensor datadgvahin Figure 3(a). We simulated a network
of 7 nodes (or voxels), where there were two networks, ortealed one right, and two deep "common
source nodes”. We first localized the sources using ChangadWAB, and sSLORETA and then assessed
the connectivity from the estimated sources. The inteoldiporrelations are depicted in the diagram found
in Figure 4(a) where the color of the lines between the s@udemotes the strength of correlation, with red
being high and blue being weak (see colorbar in Figure 4(&¢.lihe type indicates whether the mixing was
instantaneous (dashed) or non-instantaneous (solid).”ddmemon source” nodes were added to simulate



the effect of instantaneous correlations on the metricse vdxels in the left and right networks were all
instantaneously coupled with the common source voxels;dupling was a different strength.

3 Resultsand Discussion

Figure 1 demonstrates that Champagne outperforms MVAB BGIRETA in both location accuracy and
time-course reconstruction. Figure 2 shows that Champiagtide to recover the bilateral dipoles in auditory
cortex, while MVAB finds only the source on the left. The résdbr SLORETA are not shown, but it was
also not able to localize two compact, bilateral dipolesuditory cortex. Figure 3(b), (c), and (d) show the
source reconstruction results from Champagne, MVAB, ardRETA respectively. The white and black
circles mark the true locations of the sources and the saiglut shows the maximum intensity projection of
the power of the source estimate at every voxel, illustegtive inferred location of the sources. Champagne
was able to resolve the network on the left even though théesbeoxel locations were relatively close to
one another and the time-courses were correlated.

The functional connectivity results are depicted in FigdreAs described above, we used the coherence
measure to reconstruct the correlations (shown by the obltre lines) and imaginary coherence to deter-
mine which correlations are instantaneous or non-instemas (shown by dashed versus solid lines). The
similarity of the ground truth (a) and Champagne (b) plotsidestrates that these two quantities can be
used in conjunction to uncover the strength and lags (itesteaous vs. non-instantaneous) of interactions
in a network of brain areas. The common sources are not shmworfound the connectivity results with
Champagne. MVAB (c) and sLORETA (d) both show an over-edionaf the connectivity and fail to recon-
struct the ground-truth connectivity. We decided to praceith the connectivity analysis with MVAB and
sLORETA regardless of the failure of these algorithms talize the sources because it is common practice
to do region-of-interest analyses.
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Figure 3: Source Localization: (a) Sensor data with SNIR = 5dB, thelirezl depicts the stimulus onset. (b) Source
localization results for Champagne (¢) MVAB and (d) sLOREThe white circles show the seeded location of the
sources and the surface plot shows the estimated locatite gburces.

4 Conclusion

We have demonstrated that Champagne is superior in latgkizirrelated dipoles in the presence of noise and
interfering brain activity. The sparse solution to the irsegproblem obtained from Champagne is well suited
for functional connectivity analyses as the number of a&ctioxels is significantly smaller than with other
techniqgues commonly used, such as MVAB and SLORETA. An eitenof this work will be to incorporate
multivariate methods of functional connectivity analyséée have started work in this area, but the results
thus far have not been as robust as those obtained with thevjsa metrics. In addition to simulated data,
we must extend our technique to real brain data. This metluddisipromise in improving both source
localization and functional connectivity analyses in &#kat requite the integration of information across a
number of brain areas. We are also working to use Champag&£f@ source localization. Our preliminary
results have shown that this method has the potential tooweghe inverse problem solution in EEG as well.
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Figure 4:Functional Connectivity: (a) Ground-truth functional oewativity between sources and "common sources”.
Reconstructed networks using (b) Champagne, (c) MVAB apgl({@RETA. The color (see (e)) shows the strength of
coupling and the line type shows the lag of integrationigsfar instantaneous, dashed for non-instantaneous).
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