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Abstract

The synchronous brain activity measured via mangentoencephalography (MEG) arises
from current dipoles located throughout the cortex. Estimating the number, location, time-
course, and orientation of these dipoles, called sources, remains a challenging task, one
that is significantly compounded by the effects of source correlations and interference from
spontaneous brain activity and sensor noise. Likewise, assessing the interactions between
the individual sources, known asfunctional connectivity, is also confounded by noise and
correlations in the sensor recordings. Computational complexity has been an obstacle to
computing functional connectivity. This paper demonstrates the application of an empirical
Bayesian method to perform source localization with MEG data in order to estimate mea-
sures of functional connectivity. We demonstrate that brain source activity inferred from
this algorithm is better suited to uncover the interactionsbetween brain areas as compared
to other commonly used source localization algorithms.

1 Introduction

Magnetoencephalography (MEG) non-invasively detects brain activity from direct measurements of the mag-
netic field from an array of sensors; the observed field is generated by large ensembles of neurons firing syn-
chronously, approximated as compact current sources. Determining the combination of current sources that
best explains the field recording is an ill-posed inverse problem because the number of potential sources is
much greater than the number of sensors. Determining the spatial distribution, orientation, and time courses
of these unknown sources is still an open inverse problem.

We have developed a novel empirical Bayesian scheme, presented in [8] and [9], that improves upon existing
methods of source reconstruction in terms of reconstruction accuracy, robustness, and efficiency. The algo-
rithm derived from this model, which we callChampagne, is designed to estimate the number and location of
a small (sparse) set of flexible dipoles that adequately explain the observed sensor data. This method relies on
having access to pre- and post-stimulus data, where the pre-stimulus data is thought to contain no stimulus-
evoked brain activity. We have shown that Champagne reliably reconstructs a large number of correlated
dipoles. The source time-course estimates that Champagne produces are well suited functional connectivity
analyses.

Functional connectivity can be described as understandingbrain function in terms of the way information is
transmitted and integrated across brain networks. In the most complete case, one would like to make infer-
ences from a causal linear model that describes the dependencies among activities across all voxels. However,
due to the large number of voxels, solving such a model is computationally expensive and virtually impossible
with limited, noisy data. Instead, existing techniques forestimating functional connectivity approximate the
full problem in various ways, but there is a tradeoff betweenreducing the computational complexity and loss
of sensitivity. Paradoxically, inferences about connectivity can be made from the correlations between source
time-courses, but many common localization algorithms have significant trouble reconstructing correlated
brain activity. Consequently, there is a fundamental problem applying many existing localization methods to
functional connectivity estimation.

The solution obtained from Champagne is ideal for use in functional connectivity analyses as it is robust
to highly correlated dipoles and it circumvents the issues of computational complexity by vastly pruning
the number of active voxels. We present results from simulated and real MEG data showing Champagne’s



efficacy in reconstructing brain activity and estimating functional connectivity as compared to standard lo-
calization techniques such as minimum variance adaptive beamforming (MVAB) [6] and sLORETA [4].

2 Methods

2.1 Source Localization: Champagne

The voxels time-courses (xn) are inferred from the sensor data (yn) using a novel source-localization algo-
rithm calledChampagne described in full detail in [8] and [9]. In summary, this method relies on segmenting
the data into pre- and post-stimulus periods, learning the statistics of the background activity from the pre-
stimulus period, and then applying the statistics of the background activity to the post-stimulus data to uncover
the stimulus-evoked activity. The underlying assumption is that the noise and non-stimulus-locked brain ac-
tivity present in the pre-stimulus period continues into the post-stimulus period, where the stimulus-evoked
activity is linearly superimposed. We model the pre- and post-stimulus sensor data as:

yn
pre = Bun

pre + vn (1)

yn
post = Fxn + Bun

post + vn (2)

where the number of sensors isK, the number of voxels isL, the number of inference factors isM , and the
total number of time points isN . yn is theL x 1 measured electromagnetic signal vector at timen = 1 : N ,
xn is theL x 1 voxel activity vector at timen = 1 : N , un

pre andun
post are theM x 1 pre- and post-stimulus

interference factors at timen = 1 : N , andvn is theK x 1 sensor noise vector at timen = 1 : N . F is
theK x L leadfield matrix andB is theL x M interference mixing matrix. Using a 2-dimensional leadfield
results in the interleaving of the leadfield columns for the two directions. Likewise the number of voxel time
courses is doubled to represent the two dipolar directions at every voxel. (This method can also be extended
to 3 directions for use with EEG data.) The dimensions ofF becomesK x 2L and the dimensions ofxn

becomes2L x 1. Bothvn andB are learned from the pre-stimulus period and then used in theestimation of
xn andun with the post-stimulus data.

The signalsx, u, v are assumed to be independent zero-mean Gaussian distributions. The precision matrices
for the factorsun and then sensor noisevn are diagonal, whereun

j has precision 1 andvn
i has has precision

λi The precision matrixνj for eachxn
j is a 2x2 matrix that allows for correlation between the two directions

of each dipole at every voxel. The entire precision matrixν is a2L x 2L block-diagonal matrix.

The model distributions are:
p(yn|xn) = N (yn|Fxn + Bun, λ) (3)

p(xn) = N (xn|0, ν) (4)

p(un) = N (un|0, I) (5)

p(vn) = N (vn|0, λ) (6)

We can redefine the notation such that:x′n =

(

xn

un
post

)

, F ′ = (FB), andν′ =

(

ν 0
0 I

)

.

With this new notation, the estimation problem in the post-stimulus period reduces to:
yn

post = F ′x′n + vn (7)

p(x′n) = N (x′n|0, ν′) (8)

The posterior overx′n is Gaussian:
p(x′n|yn) = N (x′n|x̄′

n
, Γ) (9)

where
x̄′

n
= Γ−1F ′T λyn (10)

Γ = F ′T λF ′ + ν′ (11)

The marginal log-likelihood function in this new notation is:

L =
∑

n

log p(yn|ν′) =
N

2
(log|ν′| + log|Γ| − Q + constant) (12)

whereQ = 1

N

∑

n x̄′
n
x̄′

nT

. We can derive an updates rule forν′ using an Expectation-Maximization (EM)
algorithm,ν′−1 = Q, but this algorithm has a slow convergence rate for a large number of voxels. Thus, we
have derived a faster algorithm that uses a fixed point method[7]. The update rule forν′ for this method is:

ν
′
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1
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2 (13)

whereS = ν
′ 1

2 WF ′ν
′
−

1

2 andW = Γ−1F ′T λ. The source time courses are estimated from 10 are iteratively
computed withν′ in the algorithm.



2.2 Functional Connectivity

We chose to employ two pair-wise connectivity metrics: coherence and imaginary coherence. Coherence
is a traditional metric of connectivity and is the frequencydomain representation of cross-correlation. The
coherence is a complex-valued quantity; we looked at both the magnitude of the coherence and the imaginary
part of the coherence alone.Imaginary coherence is a relatively new metric developed for use with MEG
and EEG data [3]. It only reflects the coherence that is non-instantaneously mixed. Functional connectivity
methods with MEG are subject to spurious correlations arising from instantaneous correlations at the sensors.
While imaginary coherence under-estimates the coupling between two brain areas, it has been shown to be
more robust than coherence when using MEG source reconstructions [1]. Coherence and imaginary coher-
ence contain complimentary information. We used the coherence measure to reconstruct the correlations and
imaginary coherence to determine which correlations are instantaneous or non-instantaneous.

2.3 Experimental Methods

Source Localization

We conducted tests using simulated data with realistic source configurations. The brain volume was seg-
mented into 5mm voxels and a two orientation (dc = 2) forward leadfield was calculated using a single
spherical-shell model [5]. The data time courses were partitioned into a pre-stimulus period where there is
only noise and interfering brain activity and a post-stimulus period where there is the same (statistically)
noise and interference factors plus source activity of interest. The pre-stimulus activity consisted of the
resting-state sensor recordings collected from a human subject and is presumed to have spontaneous activ-
ity (i.e., non-stimulus evoked sources) and sensor noise; this activity was on-going and continued into the
post-stimulus period, where damped-sinusoidal sources were seeded and projected to the sensors through the
leadfield. We were able to adjust the signal-to-noise-plus-interefence ratio (SNIR), the correlations between
the different voxel time-courses (inter-dipole), and the correlations between the two orientations of the dipoles
(intra-dipole) to examine the algorithm performance on unknown correlated sources and dipole orientations.
Champagne is compared to two commonly used source localization algorithms: minimum variance adaptive
beamforming (MVAB) [6] and sLORETA [4]. We used a metric (A’)that weighs hits versus false positives to
asses the localization accuracy and the correlation coefficient between the seeded and estimated time-courses
to assess time-course reconstruction accuracy. We also ranChampagne and MVAB on an auditory evoked
field (AEF) data-set. A tone was presented to a control subject 120 times and the three algorithms were run
on the stimulus-locked average of the sensor data. This dataset is notoriously difficult to reconstruct due to
the highly correlated dipoles in the right and left auditorycortices.
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Figure 1:Performance evaluation: (a) Aggregate localization accuracy results
for MVAB, sLORETA, and Champagne (CHAMP) for recovering three corre-
lated sources with unknown orientations. (b) Estimated time-course correlation
coefficient results.

(a) Champagne

(b)MVAB

Figure 2:Performance
on a real auditory data-
set.

Functional Connectivity

We used simulated data to investigate Champagne’s ability to uncover interacting brain activity. For the pre-
stimulus period we used Gaussian noise, instead of the real-brain noise described above. We usedSNIR =
5dB and an intra-dipole correlation of 0.5. The sensor data is shown in Figure 3(a). We simulated a network
of 7 nodes (or voxels), where there were two networks, one left and one right, and two deep ”common
source nodes”. We first localized the sources using Champagne, MVAB, and sLORETA and then assessed
the connectivity from the estimated sources. The inter-dipole correlations are depicted in the diagram found
in Figure 4(a) where the color of the lines between the sources denotes the strength of correlation, with red
being high and blue being weak (see colorbar in Figure 4(e). The line type indicates whether the mixing was
instantaneous (dashed) or non-instantaneous (solid). The”common source” nodes were added to simulate



the effect of instantaneous correlations on the metrics. The voxels in the left and right networks were all
instantaneously coupled with the common source voxels, butcoupling was a different strength.

3 Results and Discussion

Figure 1 demonstrates that Champagne outperforms MVAB and sLORETA in both location accuracy and
time-course reconstruction. Figure 2 shows that Champagneis able to recover the bilateral dipoles in auditory
cortex, while MVAB finds only the source on the left. The results for sLORETA are not shown, but it was
also not able to localize two compact, bilateral dipoles in auditory cortex. Figure 3(b), (c), and (d) show the
source reconstruction results from Champagne, MVAB, and sLORETA respectively. The white and black
circles mark the true locations of the sources and the surface plot shows the maximum intensity projection of
the power of the source estimate at every voxel, illustrating the inferred location of the sources. Champagne
was able to resolve the network on the left even though the seeded voxel locations were relatively close to
one another and the time-courses were correlated.

The functional connectivity results are depicted in Figure4. As described above, we used the coherence
measure to reconstruct the correlations (shown by the colorof the lines) and imaginary coherence to deter-
mine which correlations are instantaneous or non-instantaneous (shown by dashed versus solid lines). The
similarity of the ground truth (a) and Champagne (b) plots demonstrates that these two quantities can be
used in conjunction to uncover the strength and lags (instantaneous vs. non-instantaneous) of interactions
in a network of brain areas. The common sources are not shown to confound the connectivity results with
Champagne. MVAB (c) and sLORETA (d) both show an over-estimation of the connectivity and fail to recon-
struct the ground-truth connectivity. We decided to procede with the connectivity analysis with MVAB and
sLORETA regardless of the failure of these algorithms to localize the sources because it is common practice
to do region-of-interest analyses.
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Figure 3: Source Localization: (a) Sensor data with SNIR = 5dB, the redline depicts the stimulus onset. (b) Source
localization results for Champagne (c) MVAB and (d) sLORETA. The white circles show the seeded location of the
sources and the surface plot shows the estimated location ofthe sources.

4 Conclusion

We have demonstrated that Champagne is superior in localizing correlated dipoles in the presence of noise and
interfering brain activity. The sparse solution to the inverse problem obtained from Champagne is well suited
for functional connectivity analyses as the number of active voxels is significantly smaller than with other
techniques commonly used, such as MVAB and sLORETA. An extension of this work will be to incorporate
multivariate methods of functional connectivity analyses. We have started work in this area, but the results
thus far have not been as robust as those obtained with the pair-wise metrics. In addition to simulated data,
we must extend our technique to real brain data. This method holds promise in improving both source
localization and functional connectivity analyses in tasks that requite the integration of information across a
number of brain areas. We are also working to use Champagne for EEG source localization. Our preliminary
results have shown that this method has the potential to improve the inverse problem solution in EEG as well.
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(a) Ground-Truth Connectivity
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(b) Connectivity with Champagne
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(d) Connectivity with sLORETA
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Figure 4:Functional Connectivity: (a) Ground-truth functional connectivity between sources and ”common sources”.
Reconstructed networks using (b) Champagne, (c) MVAB and (d) sLORETA. The color (see (e)) shows the strength of
coupling and the line type shows the lag of integration.(solid for instantaneous, dashed for non-instantaneous).
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