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Abstract – This paper discusses the influence of

the background brain activity on the adaptive beam-

former reconstruction. By modeling the background

activity as uniformly distributed incoherent sources,

we derive the resolution kernel (point-spread func-

tion) of the minimum-variance adaptive beamformer

and we show that the spatial resolution of the source

reconstruction can be severely degraded by such

background activities. We then propose two novel

adaptive beamformer techniques that can reduce

the influence from such background activities: the

prewhitened eigenspace beamformer and covariance

difference beamformer. We present numerical exam-

ples that show the effectiveness of these methods.
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I. INTRODUCTION

One major problem with the EEG/MEG measurements
is that measured MEG signal generally contains interfer-
ence magnetic fields generated from background sponta-
neous activities, which are often referred to as the brain
noise or the physiological noise. Such spontaneous ac-
tivities generally degrade the quality of the source re-
construction results, and often make interpretating the
reconstruction results difficult. This is particularly true
for adaptive beamformer source reconstruction methods
[1,2] because the high-rank nature of the background
spontaneous activity [3,4] may invalidate the underlying
low-rank signal assumption necessary for formulating the
adaptive beamformers. This paper discusses the influ-
ence of such high-rank background brain activity on the
results of the source reconstruction obtained using adap-
tive beamformer methods. We show that the spatial res-
olution can be severely degraded as an influence of such
high-rank background activities. We then propose two
novel adaptive beamformer methods that can restore the
spatial resolution degraded by the background activities.

II. DEFINITION AND SPATIAL FILTER
FORMATION

We define the magnetic field measured by the mth de-
tector coil at time t as bm(t), and a column vector

b(t) = [b1(t), b2(t), . . . , bM (t)]T as a set of measured
data where M is the total number of sensor coils and
superscript T indicates the matrix transpose. The spa-
tial location is represented by a three-dimensional vector
r: r = (x, y, z). The covariance matrix of the measure-
ment is denoted R, i.e., R = 〈b(t)bT (t)〉. The magni-
tude of the source moment is denoted s(r, t). We de-
fine the sensor lead field matrix, which represents the
sensitivity of the whole sensor array at r, as L(r) =
[lx(r), ly(r), lz(r)], where lζ(r) (where ζ equals x, y, or
z) is defined as lζ(r) = [lζ1(r), lζ2(r), · · · , lζM (r)]T , and
lζm(r) is the output of the mth sensor induced by the
unit-magnitude source located at r and pointing in the
ζ direction.

The beamformer techniques estimate the source cur-
rent density by computing ŝ(r, t) = wT (r)b(t) where
ŝ(r, t) is the estimated source magnitude. The col-
umn vector w(r) expresses a set of the filter weights.
The weight vector of the minimum-variance beamformer,
which is the best-known adaptive beamformer, is ex-
pressed as

w(r) =
R−1l(r)

lT (r)R−1l(r)
, (1)

where l(r) is defined as l(r) = L(r)ηopt(r). Here,
ηopt(r) is the optimum direction determined as the di-
rection that gives the maximum filter outputs.

III. RESOLUTION KERNEL UNDER
BACKGROUND INTERFERENCE

We assume that the background sources are quasi-
continuously distributed, and its magnitude and its ori-
entation are denoted ξ(r, t) and η(r), respectively. Let
us also assume that a single target source exists at r1

with an orientation equal to η1. Its magnitude is de-
noted s(r1, t). Then, defining f such that f = L(r1)η1,
the measured data b(t) is expressed as

b(t) = s(r1, t)f +
∫

ξ(r, t)l(r)dr + n(t), (2)

where the lead field vector l(r) is defined such that
l(r) = L(r)η(r), and n(t) represents the sensor noise
that are uncorrelated between different sensor channels.



The covariance matrix of the measurements is given by

R = σ2
1ffT +

∫ ∫
〈ξ(r, t)ξ(r′, t)〉l(r)l(r′)drdr′ + σ2

0I,

(3)

where we define the signal power σ2
1 such that σ2

1 =
〈s(r1, t)2〉, and use the relationship, 〈n(t)nT (t)〉 = σ2

0I.
We assume that the background source activity is spa-
tially uniform and incoherent, i.e.,

〈ξ(r, t)ξ(r′, t)〉 = σ2
c δ(r − r′), (4)

where σ2
c is the power of the background source activity.

Substituting the above equation into Eq. (3), we finally
obtain

R = σ2
1ffT + σ2

c G + +σ2
0I , (5)

where G is the gram matrix defined as

G =
∫

l(r)lT (r)dr. (6)

The resolution kernel of the minimum-variance beam-
former is expressed as,

R(r, r0) = w(r)f =
lT (r)R−1f

lT (r)R−1l(r)
. (7)

Substituting Eq. (5) into Eq. (7), we derive the resolu-
tion kernel normalized by its peak value such that

R(r, r0) =
cos(l,f |Q−1)

[1 + α̃(1 − cos2(l,f |Q−1))]
, (8)

where Q = I + (σ2
c /σ2

0)G, α̃ = (σ2
1/σ2

0)fQ−1fT , and
the generalized cosine is defined as cos2(l,f |Q−1) =
(lTQ−1f)2/[(lTQ−1l)(fTQ−1f)]. In Section IV, we
present numerical examples of the normalized resolution
kernel obtained using the above equation, and show that,
when increasing the power of the background activity,
σ2

c , a significant degradation of the spatial resolution is
caused.

III. SEPARATION OF TARGET ACTIVITY FROM
THE BACKGROUND INTERFERENCE

We have developed two-types of novel beamformer tech-
niques to extract the target activities from the back-
ground interference. To derive these techniques, we first
assume that the control measurements which only con-
tain the background interference are available, and the
interference-plus-noise covariance matrix Ri+n can be
obtained. Second, we assume that the background ac-
tivities are stationary and they are uncorrelated with the

target activities. Under this second assumption, we can
derive the relationship

R = Rs + Ri+n, (9)

where Rs is the covariance matrix obtained from the
signal magnetic field generated from the target sources
only.

A. Prewhitened eigenspace beamformer

We define the prewhitened measurement covariance ma-
trix R̃ as R̃ = R

−1/2
i+n RR

−1/2
i+n . Using Eq. (9), we have

the relationship,

R̃ = R
−1/2
i+n RsR

−1/2
i+n + I. (10)

We then define the eigenvalues and eigenvectors of R̃,
respectively, as λ̃1, . . . , λ̃M and ẽ1, . . . , ẽM , and assume
that P target sources exist. Then, according to Eq. (10),
the P largest eigenvalues λ̃1, . . . , λ̃P are greater than 1
and related to the signal part R

−1/2
i+n RsR

−1/2
i+n , and other

eigenvalues λ̃P+1, . . . , λ̃M are equal to 1 and they are
related to the interference and noise. Thus, we have,

R
−1/2
i+n RsR

−1/2
i+n =

P∑
j=1

λ̃j ẽj . (11)

Using the eigenvectors corresponding to these signal-
level eigenvalues as ẽ1, . . . , ẽP , we define a matrix ẼS

as ẼS = [ẽ1, . . . , ẽP ]. Then, using ẼS, we define ΠS

such that

ΠS = R
1/2
i+nẼSẼ

T

S R
−1/2
i+n . (12)

The weight vector of the prewhitened minimum-variance
beamformer is obtained using ΠS as

wpw(r) =
ΠT

S [ΠSRΠT
S + γI]−1l(r)

lT (r)[ΠSRΠT
S + γI]−1l(r)

. (13)

Note that ΠSRΠT
S is expressed as

ΠSRΠS = R
1/2
i+nẼSẼ

T

S R
−1/2
i+n R[R−1/2

i+n ẼSẼ
T

S R
1/2
i+n]T

= R
1/2
i+n[ẼSẼ

T

S R̃]R1/2
i+n.

According to Eq. (11), we have

[ẼSẼ
T

S R̃] =
P∑

j=1

λ̃j ẽj = R
−1/2
i+n RsR

−1/2
i+n , (14)

and therefore the relationship

ΠSRΠT
S = Rs (15)



holds. That is, ΠSRΠT
S + γI is approximately equal to

the signal-plus-sensor-noise covariance matrix, and the
prewhitening weight, wT

pw(r), in Eq. (13) can provide
an interference-free reconstruction of the target source
activities.

B. Covariance difference beamformer

We next describe the other technique that directly uses
the relationship in Eq. (9). Because we calculate the
covariance matrices R and Ri+n from time samples,
we cannot generally obtain the signal covariance ma-
trix Rs by simply subtracting Ri+n from R. This is
because the numerically-obtained difference matrix ΔR:
ΔR = R−Ri+n and ΔR−1 are not positive definite ma-
trices and the quadratic form of ΔR−1 can be negative.
To derive the proposed beamformer’s weight, we define
the eigenvalues of ΔR as γ1, γ2, . . . , γM , and apply the
eigenvalue decomposition to the difference matrix ΔR
such that

ΔR = UΥUT , (16)

where Υ = diag[γ1, γ2, . . . , γM ] and diag[·] indicates a
diagonal matrix. Here, U is an orthogonal matrix whose
columns are the corresponding eigenvectors. We then de-
fine a matrix Ῡ such that Ῡ = diag[|γ1|, |γ2|, . . . , |γM |].
The proposed covariance difference beamformer uses
the positive definite matrix UῩ−1

UT , instead of us-
ing ΔR−1, for deriving the weight. That is, the weight
for the covariance difference beamformer is obtained as

wdiff (r) =
ESET

S R−1l(r)

lT (r)[UῩ−1
UT ]l(r)

, (17)

where ES is a matrix whose columns are the eigenvectors
corresponding to the signal-level eigenvalues of R.
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Figure 1: The coordinate system and source-sensor con-
figuration used in the numerical experiments.
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Figure 2: Plot of resolution kernels obtained using
Eq. (8). Note that the maxima of these kernels are lo-
cated at y = −1 because we assume that a single source
exists at (0,−1,−6).

IV. NUMERICAL EXPERIMENTS

A sensor alignment of the 148-sensor array from Magnes
2500TM (4D Neuroimaging Inc., San Diego) neuromag-
netometer is used in our experiments. Three signal
sources were assumed to exist on a single plane (x =
0 cm). The source-sensor configuration and the coordi-
nate system are illustrated in Fig. 1. First, we calculated
the peak-normalized resolution kernel by using Eq. (8).
Here, a single source was assumed to exist at (0,−1,−6),
the first source location, and the variance of the sensor
noise, σ2

0 , is set at σ2
0 = (1/16)σ2

1‖f‖2/M . Four differ-
ent values of σ2

c , σ2
c = 0, σ2

c = 0.03σ2
1 , σ2

c = 0.1σ2
1 , and

σ2
c = 0.3σ2

1 were used. The results are shown in Fig. 2
in which the kernel shape was plotted in the y direc-
tion. The results clearly show that when the power of
the background interference σ2

c is increased, the spatial
resolution is severely degraded.

The simulated magnetic recordings were calculated
from −1200 to 1200 time points by assigning three time
courses shown in Fig. 3(a) to the three sources. Here,
we consider the data portion between −1200 and 0 is
the prestimulus period and that between 0 and 1200 is
the post-stimulus portion. Note that the third source is
active for both the pre- and post-stimulus periods. A
set of simulated magnetic recordings is shown in the up-
per panel of Fig. 3(b). We then generated another set
of simulated magnetic recordings that contain the uni-
formly distributed incoherent activities. One hundred
brain-noise sources with random locations and orienta-
tions were distributed, and magnetic fields from these
sources were calculated by assuming that they had un-
correlated random time courses. These noise-source-
originated magnetic fields are added to the recordings in
the upper panel of Fig. 3(b). The final simulated mag-
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Figure 3: (a) Waveforms of the three sources assumed
for the numerical experiments. (b) Generated magnetic
recordings when no noise sources exist (upper) and when
100 noise sources exist (lower).

netic recordings are shown in the lower panel of Fig. 3(b).
Note that we used the prestimulus period as the control
period, the third source is considered as a control source
in addition to the 100 noise sources. The first and the
second sources are considered as the target sources.

The conventional minimum-variance beamformer in
Eq. (1) was applied to these two sets of the simulated
recordings. Here R was obtained using the whole post-
stimulus period. Figure 4(a) shows the results for the
case with no background sources, and figure 4(b) shows
the results for the case with 100 noise sources. The
comparison between them also confirms that the back-
ground high-rank activities cause a severe blur in the re-
construction results. We then applied the prewhitened
beamformer in Eq. (13), and the results are shown in
Fig. 4(c). Here, Ri+n was obtained using the whole
prestimulus period. The third source is removed and
the blur caused due to the background activity is sig-
nificantly reduced. We also applied covariance differ-
ence beamformer in Eq. (17), and the results are shown
in Fig. 4(d). Here, again, the influence of the back-
ground activity is significantly reduced. The results in
4(c) (d) clearly demonstrate the effectiveness of the pro-
posed beamformer methods.
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Figure 4: Conventional reconstruction (a) when no back-
ground source exists and (b) when background sources
exist. (c) Prewhitened beamformer reconstruction, and
(d) covariance difference beamformer reconstruction.
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