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Abstract – This paper proposes a novel non-

parametric statistics-based method for extracting

phase-locked target source activities from non-phase-

locked background activities in MEG event-related

measurements. The method derives, at each pixel

location and at each time point, an empirical proba-

bility distribution of non-phase-locked activities from

plus/minus averagings of raw epochs. The statisti-

cal threshold that extracts the target source activ-

ities is derived based on the empirical distributions

obtained at all spatio-temporal locations. Here, the

multiple comparison problems are taken into account

by using the maximum statistics, i.e., by using two

step procedure: standardizing these empirical distri-

butions and deriving an empirical distribution of the

maximum pseudo T values. The results of numer-

ical experiments are presented to demonstrate the

method’s effectiveness.
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I. INTRODUCTION

Neuromagnetic imaging can visualize neural activities
with a fine time resolution of milli-second order, and pro-
vide functional information about brain dynamics. One
major problem here is that measured MEG signal gener-
ally contains not only magnetic fields associated with the
signal sources of interest but also contains interference
magnetic fields generated from non-target background
source activities; such non-target source activities in-
clude brain spontaneous activities or some evoked non-
phase locked activities that are not the interest of the
current investigation. These non-target activities gen-
erally overlap with the target source activities in the
source reconstruction, and they often make interpreting
the reconstruction results difficult.

This paper proposes a novel method based on the non-
parametric statistics for implementing the statistical ex-
traction of target activities; such target activities are in
principle phase-locked to the stimulus in event-related
MEG/EEG measurements. This method assumes neu-
ral activities to be quasi stochastic, and forms an empir-

ical probability distribution of non-phase-locked activi-
ties using randomized plus/minus averagings of event-
related raw epochs. The method then uses this em-
pirical distribution as the null distribution for deriving
the statistical threshold; the thresholding can extract
the target activities that are time-locked to the stimu-
lus by eliminating other non-time-locked activities. In
this paper, we explain the proposed statistical thresh-
olding method with spatial filter source reconstruction
[1]. This is because the formulation of the spatial filter
is relatively simple and it has been successfully applied
to MEG source analysis. However, the applicability of
the proposed method is not limited to the spatial filter
formulation and it can be used with any types of source
reconstruction methods

II. SPATIAL FILTER FORMULATION AND
PARAMETRIC STATISTICAL SIGNIFICANCE

EVALUATION

We define the magnetic field measured by the mth de-
tector coil at time t as bm(t), and a column vector
b(t) = [b1(t), b2(t), . . . , bM (t)]T as a set of measured data
where M is the total number of sensor coils and super-
script T indicates the matrix transpose. The spatial lo-
cation is represented by a three-dimensional vector r:
r = (x, y, z). The magnitude of the source moment is
denoted s(r, t). Spatial filter techniques estimate the
source current density by applying a simple linear oper-
ation to the measured data, i.e.,

ŝ(r, t) = wT (r)b(t) =
M∑

m=1

wm(r)bm(t), (1)

where ŝ(r, t) is the estimated source magnitude. The
column vector w(r) expresses a set of the filter weights,
which characterizes the property of the spatial filter.
Various types of spatial filter techniques have been pro-
posed and applied to the MEG/EEG source reconstruc-
tion problems. Some of them are found in [2–5].

The evaluation of the statistical significance of the
spatial filter outputs has been conventionally performed
using the parametric statistics [2,5]. The basic assump-
tion for such parametric method is that the measurement



consists of deterministic signal and Gaussian noise, i.e.,

b(t) = bI(t) + n(t), (2)

where bI(t) is the signal magnetic field of interest, which
is generated from brain sources that are the target of cur-
rent investigation. In Eq. (2), n(t) is the noise vector and
each element of n(t) is assumed to follow N (0, σ2

0), which
indicates the Gaussian distribution with zero mean and
the variance of σ2

0 . These Gaussian processes represent
the sensor noise that is assumed to be uncorrelated be-
tween different sensor recordings. Thus, the spatial filter
outputs ŝ(r, t), which are expressed as

ŝ(r, t) = wT (r)b(t) = wT (r)bI(t) + wT (r)n(t), (3)

follows
N (wT (r)bI(t), σ2

0‖w(r)‖2). (4)

The statistical evaluation can be performed by testing
the null hypothesis (bI(t) = 0) at each pixel location
using Eq. (4).

III. PROPOSED NONPARAMETRIC
STATISTICAL SIGNIFICANCE EVALUATION

A. Data model

The signal and the noise model expressed in Eq. (2) is,
in general, insufficient to express MEG measurements,
and the measured data should be expressed as

b(t) = bI(t) + bξ(t) + n(t), (5)

where bξ(t) is the magnetic field generated from sources
other than the signal sources of interest, such as brain
spontaneous activities or some evoked activities that are
not the target of current measurements. This bξ(t) is of-
ten referred to as the brain noise. The parametric model-
ing cannot efficiently take this brain noise into account,
because the Gaussianity assumption does not hold for
bξ(t).

Here, we propose a novel nonparametric method that
can take such brain noise into consideration. The spatial
filter outputs obtained from b(t) is expressed as

ŝ(r, t) = ŝI(r, t) + ŝc(r, t), (6)

where

ŝI(r, t) = wT (r)bI(t), (7)

ŝc(r, t) = wT (r)(bξ(t) + n(t)) = wT (r)bc(t). (8)

Here, bc(t) = bξ(t) + n(t), which represents the back-
ground non-phase-locked magnetic field plus noise. The
key assumption in the proposed method is that the signal

magnetic field bI(t) and thus the estimated target activ-
ity ŝI(r, t) are phase-locked to the stimulus, but the non-
target magnetic field and the non-target activity ŝc(r, t)
are not phase-locked to the stimulus. Therefore, the
background non-phase-locked magnetic field bc(t) can
be estimated by calculating the plus/minus averagings
of the raw epochs. That is, when averaging raw epochs,
the half number of epochs are multiplied with −1. By
doing so, the phase-locked activities are averaged out
but activities that are not phase-locked to the stimulus
are not averaged out. This is the basis of our statistical
analysis mentioned below.

B. Empirical distribution formation
In event-related measurements, the magnetic field gener-
ated from phase-locked activities is obtained by averag-
ing raw-epoch measurements. Denoting the raw epoch
measurements as {e1(t), . . . , eK(t)} where K is the num-
ber of raw epochs, we have b(t) = 1/K

∑K
j=1 ej(t).

When K is very large or when bc(t) is very small, we gen-
erally have the relationship b(t) ≈ bI(t). However, ex-
cept such extreme cases, a considerable amount of bc(t)
still exists in the averaged data b(t).

Such non-phase-locked magnetic field existing in the
averaged data, bc(t), can be estimated from

bc(t) = 1/K
K∑

j=1

εjej(t), (9)

where the coefficients ε1, . . . , εK have a value of either −1
or 1. We assign −1 or 1 to ε1, . . . , εK by drawing −1 or
1 randomly from K/2 number of −1 and K/2 number of
1 without replacements. As a result, a half of ε1, . . . , εK

have a value of −1 and the other half have a value of 1.
Here, there are a number of ways to assign −1 or 1 to
ε1, . . . , εK (the number is equal to K!/(K

2 !)2.) and we
can obtain many different bc(t). We denote one of such
bc(t) as bβ

c (t), which is expressed as

bβ
c (t) = 1/K

K∑
j=1

ε∗jej(t), (10)

where ε∗1, . . . , ε
∗
K is one realization of the −1 or 1 as-

signment. In Eq. (10), β is a index for many different
−1 or 1 assignments and β = 1, . . . , KB where KB indi-
cates the total number of different assignments. We next
calculate ŝβ

c (r, t) by applying the spatial filter to bβ
c (t),

i.e., ŝβ
c (r, t) = wT (r)bβ

c (t). We then calculate F̂ (x),
which is the empirical distribution of ŝβ

c (r, t), such that
F̂ (x) = �{ŝβ

c (r, t) ≤ x}/KB where �{ŝβ
c (r, t) ≤ x} indi-

cates the number of ŝβ
c (r, t) which are less than or equal

to x. This procedure is repeated and the empirical dis-
tribution is calculated at all pixel locations and at all



time points. To explicitly show that F̂ (x) is obtained at
each spatial location r and each time point t, F̂ (x) is
rewritten as F̂ (x|r, t) in the following explanation.
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Figure 1: (a)The coordinate system and source-sensor
configuration used in the numerical experiments. The
large circle indicates the projection of the sphere used
for the forward calculation. (b)Time courses assigned
to the three sources and simulated event-related record-
ings. the initial phase of the third source’s time course
is randomly fluctuated between 0 and 3π/2. The third
panel from the top shows all such time courses.

C. Statistical thresholding with multiple comparisons

The proposed method uses the maximum statistics to
incorporate the multiple comparison problems; the use
of the maximum statistics has been studied in [6]. To
utilize the maximum statistics, we first standardize the
empirical distribution F̂ (x|r, t) by calculating Tβ(r, t)
such that

Tβ(r, t) =
ŝβ

c (r, t) − 〈ŝβ
c (r, t)〉β

σ̂(r, t)
. (11)
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Figure 2: Source reconstruction results at 230 ms(upper
left), 275 ms(upper right), and 330 ms(bottom left).
The bottom-right results show the power reconstruction,√〈ŝ(r, t)2〉, where 〈·〉 indicates the average over 0 and
400 ms.

Here,
σ̂2(r, t) = 〈ŝβ

c (r, t)2〉β − 〈ŝβ
c (r, t)〉2β ,

and 〈·〉β indicates the average with respect to the index
β.

We calculate Tmax(r, t), which is the maximum
Tβ(r, t) value. The maximum Tβ value at the ith pixel
location and jth time point is denoted T ij

max where
i = 1, . . . , KN and j = 1, . . . , Kt and KN and Kt, re-
spectively, indicate the total number of pixels and time
points. We next obtain the empirical distribution of
T ij

max, Ĥ(x), such that Ĥ(x) = �{T ij
max ≤ x}/(KNKt)

where �{T ij
max ≤ x} is the number of T ij

max values which
are less than or equal to x. We can obtain the thresh-
old for the (1 − α) significance level, T th, such that
T th = Ĥ−1(1 − α). The inverse of this empirical dis-
tribution can be calculated by first sorting T ij

max in the
increasing order

T (1)
max ≤ T (2)

max ≤ · · · ≤ T (KNKt)
max , (12)

and choose T
(p)
max as T th where p = [(1−α)KNKt] and [·]

indicates the maximum integer that does not exceed the
value in the parenthesis. We finally obtain the statistical
threshold Σ(r, t) by converting the value of T th into the
value of source activities, i.e.,

Σ(r, t) = T thσ̂(r, t) + 〈ŝβ
c (r, t)〉β . (13)

We evaluate the statistical significance of the spatial
filter outputs by comparing the outputs |ŝ(r, t)| with
Σ(r, t), and when |ŝ(r, t)| ≥ Σ(r, t), the outputs ŝ(r, t)
is considered to be statistically significant.



IV. NUMERICAL EXPERIMENTS

We conducted numerical experiments to show the ef-
fectiveness of the proposed statistical thresholding. We
use a sensor alignment of the 37-sensor array from
MagnesTM (4D Neuroimaging Inc., San Diego) neuro-
magnetometer. Three signal sources were assumed to
exist on a single plane (x = 0 cm). The source-sensor
configuration and the coordinate system are illustrated
in Fig. 1(a). The simulated magnetic field were calcu-
lated for 400 ms post stimulus time window with 1 ms
sample. Three time courses shown in Fig. 1(b) were as-
signed to the three sources. Here, the initial phase of
the third source time course is randomly fluctuated be-
tween 0 and 3π/2. The first and the second sources are
considered as the signal sources of interest and the third
source represents the stimulus-evoked non-phase-locked
activity. We set the third source intensity 3 times greater
than the intensities of the first and the second sources.
(The intensities of the first and the second sources were
set equal.) Spontaneous MEG measured using the same
sensor array was added to the calculated signal-magnetic
field to create a simulated raw-epoch data. Four hundred
raw-epochs were generated, and averaged to create the
final simulated event-related recordings. The resultant
simulated recordings are also shown in Fig. 1(b).

The eigenspace-projected adaptive spatial filter [4]
was applied to these averaged recordings. The whole
data between 0 to 400 ms was used for calculating the
covariance matrix and the weight vector of the spatial fil-
ter was obtained with this covariance matrix. The filter
was first applied to the simulated recordings in Fig. 1(b).
The results of the source reconstruction are shown in
Fig. 2. Here, the reconstruction contains the three
sources, including the third source that is not phase-
locked to the stimulus. Then, total 100 of bβ

c (t) were
calculated using the proposed procedure, and the same
spatial filter was applied to bβ

c (t) to create ŝβ
c (r, t). An

empirical null distribution was obtained using ŝβ
c (r, t)

(β = 1, . . . , 100), and derive the threshold for each pixel
and each time point using Eq. (13). The thresholded
reconstruction results are shown in Fig. 3. Here when
|ŝ(r, t)| < Σ(r, t), ŝ(r, t) was set to zero. The results
show that the third source is removed, verifying the ef-
fectiveness of the proposed method for thresholding out
the non-phase-locked activity, even when it is stimulus
evoked.

REFERENCES

[1 ] K. Sekihara and S. S. Nagarajan, “Neuromag-
netic source reconstruction and inverse modeling,”
in Modeling and Imaging of Bioelectric Activity -
Principles and Applications, pp.213–250. Kluwer
Academic/Plenum Publishers, 2004.

−4 −2 0 2 4
−8

−7

−6

−5

−4

−3

y (cm)

z 
(c

m
)

230 ms

−4 −2 0 2 4
−8

−7

−6

−5

−4

−3

y (cm)

z 
(c

m
)

275 ms

−4 −2 0 2 4
−8

−7

−6

−5

−4

−3

y (cm)

z 
(c

m
)

330 ms

−4 −2 0 2 4
−8

−7

−6

−5

−4

−3

y (cm)

z 
(c

m
)

power image

Figure 3: Results of the proposed statistical thresholding
applied to the reconstruction results in Fig. 2.
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