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Abstract — This paper formulates a novel probabilistic 
graphical model for stimulus-evoked MEG and EEG 
sensor data obtained in the presence of large 
background brain activity. The model describes the 
observed data in terms of unobserved evoked and 
background sources. We present an expectation 
maximization algorithm that estimates the model 
parameters from data. Using the model, the algorithm 
cleans the stimulus-evoked data by removing 
interference from background sources and noise 
artifacts, and separates those data into contributions 
from independent factors. We demonstrate on real and 
simulated data that the algorithm outperforms 
benchmark methods for denoising and separation. We 
also show that the algorithm improves the performance 
of existing localization techniques. 
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I. INTRODUCTION 
 Electromagnetic source imaging (ESI), the 
reconstruction of the spatiotemporal activation of brain 
sources from MEG and EEG data, is increasingly being used 
for functional brain imaging of normal and diseased human 
brain function. A major problem in ESI is that MEG and 
EEG measurements, which use sensors located outside the 
brain, generally contain not only signals associated with 
brain sources of interest, but also signals from other sources 
such as spontaneous brain activity, eye blinks and other 
artifacts. Interference signals from those sources overlap 
spatially and temporally with those from the brain sources of 
interest, making it difficult to obtain accurate 
reconstructions. Many approaches have been taken to 
address the problem of interference from background brain 
activity and noise artifacts [1]. These approaches have 
provided some benefits but require a subjective choice of 
many parameters, such as thresholds for truncation and 
choice of specific components and usually don’t work well 
for low SNR. Most of these algorithms also provide no 
principled mechanism for model order selection. Hence, the 
selection of the number of spatially distinct sources and the 
number of sources of interest must be based on ad-hoc 
methods or by expert analysis. 
      This paper presents a novel and powerful approach for 
the suppression of interference signals and the separation of 
signals from individual evoked sources. This approach is 
formulated in the framework of probabilistic graphical 
models with latent variables, which has been developed and 
studied in the fields of machine learning and statistics [2]. In 

the graphical modeling framework, the observed data are 
modeled in terms of a set of latent variables, which are 
signals that are not directly observable. The dependence of 
the data on the latent variables is specified by a 
parameterized probability distribution. The latent variables 
are modeled by their own probability distribution. The 
combined distributions define a probabilistic model for the 
observed data. The model parameters are inferred from data 
using an expectation-maximization (EM) type algorithm, 
which is a standard technique for performing maximum 
likelihood in latent variable models. Problems such as 
interference suppression and source separation translate to 
the problem of probabilistic (Bayesian) inference of 
appropriate latent variables.  
      In our case, the observed MEG and EEG data are 
modeled in terms of the latent variables, termed factors, 
which represent evoked sources and interference sources. 
This paper focuses on MEG, but the framework is 
applicable to EEG as well. The model is defined in 
mathematical terms in section II. Section III presents a VB-
EM (a generalization of standard EM) algorithm for this 
model[3]. The algorithm infers from data not just the model 
parameters, but also the number of factors required to 
represent evoked and interference sources (i.e., the 
dimensionalities of the evoked and interference subspaces). 
Next, it estimates the separate contribution of each 
individual evoked factor to the sensor data. This estimator 
uses the model to remove interferences and separate the 
evoked response into independent contributions.  Section III 
also presents an automatically regularized estimator of the 
covariance matrix of the evoked response. Section IV 
demonstrates, using real and simulated data, that the 
algorithm provides interference-robust estimates of the time 
course and dimensionality of the stimulus evoked response. 
Furthermore, it shows that using the regularized evoked 
covariance in an existing source localization method 
improves its performance. 

 

II. A PROBABILISTIC GRAPHICAL MODEL FOR 
STIMULUS-EVOKED MEG DATA 

This section defines the graphical model for stimulus 
evoked MEG sensor data. Our model uses an independent 
factor analysis approach[4]. Assume we have K sensors that 
record N-point time series data. Let iny denote the signal 

recorded by sensor i = 1:K at time n=1:N. We describe this 
multivariate time series as a linear combination of L 
stimulus evoked factors and M interference factors, both 
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Figure 1: Probabilistic graphical model for MEG sensor data. 
Left: pre-stimulus period; data arise from interference factors u 
(modeled by Gaussians) via mixing matrix B. Right: post-stimulus 
period; data arise from interference factors u, plus independent 
stimulus-evoked factors x (modeled by MOGs with state vector s) 
via mixing matrix A. In both periods, the data include additive 
noise with precision matrix Λ . Nodes inside the dotted box 
denote model variables (which change with time), and nodes 
outside the box denote model parameters. 

unobserved, contaminated by additive sensor noise. Let jnx  

denote the activity of evoked factor j=1:L, let jnu denote 

the activity of interference factor j=1:M, and let jnv denote 
the noise in sensor i, all at time n. We also assume an 
evoked stimulus paradigm with a stimulus onset at 
time 0 1n N= + . The evoked factors are active only during 
the post-stimulus period, and vanish during the pre-stimulus 
period, whereas the interference factors and sensor noise are 

active throughout. Hence
1 1

L M

j j
in jn jn jn jn iny A x B u v

= =

= + +∑ ∑  , 

where the matrices A,B, termed mixing (or factor loading) 
matrices, define the linear combination relating the sensor 
and factor signals. In vector notation, 
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To define the graphical model, we must specify 
probability distributions for the different signals. We model 
the interference factors and sensor noise as Gaussian. 
specifically, the interference factors are modeled by M 
independent, zero mean Gaussians with unit precision, and 
the sensor noise is modeled by a K dimensional, zero mean 
Gaussian with a diagonal precision matrix Λ (precision is 
defined as the inverse covariance).  

Notice that this model describes the non-evoked part of 
the data as a K dimensional Gaussian with covariance 
BBT+Λ -1, which has K(M+1) parameters. Alternatively, one 
could have used a general covariance matrix, requiring 
K(K+1)/2 parameters. This number is quadratic in the 
number of sensors and could become quite large, hence 
difficult to estimate accurately from finite data, resulting in 
an ill-conditioned covariance matrix. In contrast, the 
covariance in our model is always well conditioned, and 
with an appropriate choice of M the number of parameters is 
sufficiently small to allow accurate estimation. Moreover, 
rather than setting M manually, the graphical modeling 

framework facilitates model order selection, i.e., inferring M 
(and L) from data, as described below.       

Next, the evoked factors are modeled by independent 
non-Gaussian distributions. There are two reasons for 
avoiding Gaussians. First, evoked brain sources are often 
characterized by spikes or by modulated harmonic functions, 
leading to non-Gaussian distributions. Second, it is well 
known from work on ICA that mixed Gaussian sources 
cannot be separated. Here we model each factor by a 1 
dimensional mixture of Gaussians (MOG) with S 
components (or states). Such a model provides an accurate 
description of arbitrary distributions, given an appropriate 
choice of S. It is also convenient to work with as a building 
block in larger graphical models. Here, for simplicity, we 
model all evoked factors by the same MOG distribution. For 
Gaussian state s=1:S, let , ,

s s s
µ ν π  denote its mean, 

precision, and mixing proportion. Finally, we specify a prior 
distribution over the mixing matrices. We use an 
independent Gaussian for each matrix element Aij,Bij with 
hyperparameters ,

i j
α β , respectively. This completes the 

definition of our probabilistic model, whose graphical 
representation is given in Fig. 1.  

 

III. VB-EM ALGORITHM  
We now present an algorithm, termed stimulus-evoked 

independent factor analysis (SEIFA), which infers the model 
parameters and reconstructs the evoked sources x  from 
data. As usual in latent variable models, this is an iterative 
algorithm of the EM type.  Here, however, we use a 
generalized version termed variational Bayesian EM (VB-
EM) [3]. Whereas standard EM computes point estimates of 
parameters, VB-EM is formulated in the Bayesian 
framework and computes a full posterior distribution over 
the parameters A,B. This is necessary in order to perform 
model order selection. We also compute point estimates of 
the noise precision Λ  and the hyperparameters ,α β . The 
MOG parameters of the evoked factors are fitted to a 
particular sparse distribution (details omitted) in advance, 
and are kept fixed.  

VB-EM is guaranteed to converge, since it maximizes 
an objective function which is upper-bounded by the 
marginal likelihood [3]. It is iterated from a random 
initialization to convergence. Each iteration includes an E-
step and an M-step. Here we provide only the algorithm; 
details on the derivation will be given elsewhere.  

E-step: Here we update the posterior distribution over 
the factors x,u, and compute their sufficient statistics (which 
are moments of the posterior) required for the M-step. For 
the pre-stimulus period, the posterior over nu is Gaussian 
with mean nu and covariance matrixΦ , where 
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Φ = Λ + + Ψ
 (1.2) 
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Figure 2. (A) Simulated location of stimulus-evoked sources (dots) 
and 21 background sources (crosses) assumed to lie on a plane with 
sensors all around the head. (B) Waveforms showing raw sensor data 
at a Signal to Interference Ratio (SIR) of 0 dB. (C) Beamformer 
reconstruction of raw sensor data cannot distinguish between true 
sources and interferences. (D) Regularized beamformer reconstruction 
of the denoised sources inferred from SEIFA shows accurate 
reconstruction of true sources. 

B 

For the post-stimulus we first define several quantities. Let 
L’ = L+M be the combined number of evoked and 
interference factors. Let A’= (A, B) denote the K × L’ matrix 
containing A and B, and let nx′ =( xn

T, un
T) 

T
  denote the L’ × 

1 vector containing nx and nu . Let sn denote the state vector 
of the evoked factors at time n. Then conditioned on sn=s, 
the posterior over all the factors is Gaussian, with mean snx′  

and covariance matrix sΓ given by 

1

( )T
sn s n s s

T
s s

x A y

A A K

ν µ

ν−

′ ′ ′ ′= Γ Λ +

′ ′ ′Γ = Λ + + Ψ
     (1.3) 

where Ψ is a sufficient statistic of the posterior over 
parameters computed in the M-step. The state posterior, i.e., 
the probability that sn=s,  is 

11 1exp( ( ))
2

T T T T
sn s s s n n s s s n s n

n

y y x x
z

π π ν µ ν µ −′ ′= Γ − Λ − + Γ  (1.4) 

where nz is a normalization constant ensuring 1snπ =∑ . 
      M-step: Here we update the posterior distribution over 
the mixing matrices A,B, and compute their sufficient 
statistics required for the E-step. We also update , ,α βΛ . 

The posterior over A’= (A, B)  is Gaussian, with mean A′  
and covariance matrix Ψ given by 
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where Rxx, Rxu, Ruu are the cross-correlations of the posterior 
means of the factors ,n nx u computed in the E-step. The 
updates of the hyperparameters and noise precision are 
given by 
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where , ,AA AB BBΨ Ψ Ψ  are the top-left, top-right, bottom-

right parts of Ψ corresponding to xx, xu, uu, respectively.  
      Model order selection: Inferring the number of evoked 
and interference factors L,M is done via the hyperparameters 

,α β . When the number of evoked factors (i.e., columns of 
A) is larger than needed to model the data, the VB-EM 
estimated values of 

j
α corresponding to the irrelevant 

columns end up approaching∞ . Since 
j

α is the precision of 
the prior over column j, it causes the matrix elements Aij to 
vanish, effectively canceling factor j. A similar effect occurs 
for the interference factors. This effect is termed automatic 
relevance determination and results from the Bayesian 
treatment (i.e., computing full posteriors over the parameters 
A,B) of our model [5]. 

 Interference suppression and evoked source 
separation: Following convergence, one can also compute 
Bayes optimal estimates for the contribution of each evoked 
factor to the sensor signals. Furthermore, the algorithm 
automatically regularizes sensor covariance matrix for each 
evoked factor, which is often required for further processing 
such as localization [6]. Let zj

in=Aijxjn denote the clean 
sensor signal i produced by evoked factor j, then its 
estimator is j

in in jnz A x=  and its covariance is given 

by 1( ) ( ) ( )j T
ik ij xx jj jk ik xx jj AA jj

i

C A R A Rδ= + Ψ
Λ

. Notice that the first 

term alone is ill-conditioned. The second, which is a direct 

result of the Bayesian treatment of our model, is the 
regularizer for the covariance matrix. 
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Figure 3: Top left – Mean denoising performance as a function of SIR 
plotted as a mean of 50 Monte Carlo simulations for different positions 
of active and interference sources. Error bars on mean are ~ 1 dB. Top 
right – Mean separation performance for SEIFA compared to JADE. 
Error bars on mean are ~ 1 dB. Bottom - Localization performance of 
beamformers for SEIFA, JADE, SVD and Raw data. SEIFA clearly 
outperforms all other algorithms on all three metrics. 
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Figure 4: SEIFA denoising of eye-blink data. Top – The averaged 
magnetic field response to a tone in the presence of large eye-blink 
artifact is shown. Typical response peaking around 100 ms cannot be 
seen in the raw data. Bottom – Beamformer localization of responses 
in the left and right hemisphere computed from a denoised and 
separated factor. The denoised sensor data shows peak responses in 
each hemisphere around 100ms that can be well localized to auditory 
cortex in each hemisphere. 

V. RESULTS 
 A synthetic dataset was constructed using a small 
number of evoked and interference sources, each of which 
has a sinusoidal time course of random frequency (chosen 
uniformly over a finite range). The finite length of each 
evoked source was enforced by modulating the 
corresponding sinusoid by a Hanning window having 
random length and random placement within the post-
stimulus window. The subject’s head was assumed to be 
spherical, reconstruction was done only for the x = 0 
(coronal) plane, and 275 channel MEG data were simulated 
using a lead field matrix for a random physical location and 
orientation for each neural signal and then adding white 
Gaussian noise to each sensor. The power of the evoked 
sources relative to the power of the interference sources 
(computed in sensor space and averaged over all channels) 
is referred to as the signal-to-interference ratio (SIR). 
Likewise, the signal-to-noise ratio (SNR) is used to quantify 
the power of the evoked sources relative to the power of the 
additive sensor noise.  SNR for simulations were fixed at 10 
dB with N=1000 and 0N =375. The results below are given 
for several different values of SIR ranging from -5 dB to 
+10 dB. Comparisons include the SEIFA algorithm, an ICA 
method (JADE), results obtained by selecting the most 
energetic singular-value components (SVD), and the results 
obtained when no denoising procedure is used (Raw). 
Although the number of factors could be computed from our 
algorithm using marginal likelihood estimates, for these 
simulations we assumed that the numbers of evoked and 
interference sources were known. ICA was performed using 
JADE following an SVD truncation, where the number of 

components kept during the truncation is L+M. The 
denoised sensor signals were based on the L ICA 
components that have the highest ratio of post-stimulus 
energy to pre-stimulus energy. SVD results were based on 
keeping the number of components as L+M. Figure 2 shows 
an example from our simulations where noisy MEG data 
denoised using SEIFA clearly reconstructs the true sources 
whereas neither JADE, nor truncated SVD methods 
reconstruct the true sources. We compare performance 
across 50 Monte Carlo trials with different positions and 
orientations of the stimulus-evoked and background sources. 
As seen in figure 3, SEIFA significantly outperforms JADE 
and SVD methods in the three metrics of performance – 
denoising, separation and localization. Performance on real 
MEG data are shown in Figures 4 and 5. In figure 5, we 
were able to denoise large eye-blink artifacts that 
contaminated an auditory evoked response and to localize 
auditory cortex using SEIFA Figure 5 shows SEIFA 
performance in extracting auditory responses for varying 
number of trials in the average. The algorithm was able to 
extract clean auditory evoked responses from even ten trials 
and outperforms SVD and JADE for small trial averages. 
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Figure 5: Left – Averaged auditory evoked response for varying 
number of trials ranging from 250 to 10 (top to bottom).  Middle - 
SEIFA denoised data that shows good denoising occurs even for 
averages with 10 trials. Right – Performance comparison between 
SEIFA, JADE, SVD that indicates best performance for SEIFA.
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