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Introduction . X

The inherent difficulty in the biomagnetic inverse problem is that » three-dimensional current distri.
bution must be estimated from a biomagnetic field measured on a two-dimensional surface elose to
a human head or body. In such cases, the estimation is ill-posed. To reduce this ill-posedness, the
current distribution to be estimated is often modeled by using the equivalent current dipole (ECD),
which assumes a highly localized current source. However, when the source current distribution is not
localized, or when no information Tegarding the spatial extent of the source distribution is obtained,
we cannot rely on ECD modeling. The least-squares minimum-norm method [1] has been developed
that does not use a particular source model and, therefore, can estimate non-localized sources, This
method has been successfully applied in two dimensional cases where the biocurrent distribution is as-
sumed 1o be confined to a single or a few Panes. Its three-dimensional application, however, poscs a
serious problem in that the signal current is estimsted 1o be closer to the detector coils than its actual
location [2]. This paper presents a method that can provide thres-dimensional reconstruction where the
conventional minimum-norm method fails, It utilizes the principle of the generalized Wiener estimation
with the assumption that the activities of the biocurrent sources are uncorrelated.

Method ‘

Let us define the magnetic field measured by the mth detector coil at time ¢, as b (ts), and a vector
b(te) = (by(te),b2{te), ..., bar(tx))T as a set of measured data at time te, k = 1,2,..., K. Here, M
is the total number of detector coils, K is the total number of time points, and the superseript T
indicates the matrix transpose. Lot us also define the signal primary current distribution attime ty asa
vector f (tx) = (f1(ts), f2{te),. v San ()T, Here, N is the total number of pixels and the z, y, and z
components of the primary current located at the ith pixel are assigned to fagi—1y41 (L), Ssim1y42(te),
and fai-1y43(te), respectively. We define the lead field matrix L, which is a M x (3N) matrix. Its
elements, L s(-1y41, Lo, 8(i-1)+2, and L, 3(i~1)+3, represent the sensitivity of the mth detector to
the z, y, and z components of the primary current at the ith pixel. The eolumn vector of the lead
field matrix defined by 1, = (L,,, Lyp,..., Lap)T is introduced. The lead feld matrix is expressed
using its colurnn vectors as, L = (1,1, .. ., lsn). The relationship between b (i4) and f (tx) is given by
b{te)=L f(te)+n (tx), where n (i) is the noise vector. The mth element of this noise vector is the
noise contained in the mth detector measurement at time tx. The problem that this paper deals with
is how to find the optimum estimate of the signsl primary current souree distribution £ (t) at all time
instants k= 1,2,..., K, from a given spatic-temporal data set of measured data b(te), k=1,2,...,K.

The method proposed in this paper utilizes the minimization of the following least-squares-error
expressed in the source current gpace. That is, the cost function F = zf_, £ Cte) = F (Ex)I1? is
minimized to obtain the optimum estimate J (). Here, £ (tx) is the true current distribution at time
ty, and the measured data b (i) Is expressed as b (i) = L f(t;). The solution which minimizes the
above cost function is known to be the generalized Wiener estimate or the minimum mean Square error
estimate [3]. This is expressed as f(t4) = § LTD ~1b(tx). Here, defining the time average of A as
{4), D is the covariance matrix of the measured data defined as D = (B (t)bT(t,)), and § is the
covariance matrix of the signal current sources defined as § = (F () FTte))

When applying the above equation to an actual problem, it is usually difficult to obtain an accurate
estimate of the signal-source covariance matrix § . When all the non-diagonal elements of § can be
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assumed to be zero, estimating the signal covariance matrix is performed in the following manner. Using
the column veetors of the lead field matrix, let us expreas Wiener estimate as

Folte) = Sppl3 D b (1) , 1)

\Yhere Spp is the pth disgonal element of the signal covariance matrix, Defining the estimate of Spp as
Spp, We have

Sen = Upt)plt) = (Sl D ' ())(Sppl? D ~'b ()T} = SZUTD 4, |

Assuming that §,; = 8,., one can obtain the relationship 8, = 1/1TD ~'1,). Thus, the proposed
Wiener estimation becomes - .
ITD ~'b(t,)
t) = a2
Folte} DT, (2)

One problem with this estimation method is that it gives erroneous results when the orientations
of current sources are completely fixed during the measurement. The extension of the methods to
accommodate such cases can be performed in the following manner. Let us define the normal vector
representing the orlentation of the source current located at, the pth pixel as e, and the M x 3 matrix
LyasL, = {13(,_,,“,13(,_,)“, I3(p~1)+3). This e, can be obtained by solving the following eigenvalue
problem at each pixel,

LID “'Loe, = Aminey, 3)

where Ay, is the minimum eigenvalue. Once ey is obtained, the amplitude of the current element at
the pth pixel is obtained using

(Lpeg)TD ~'b(ty) @)
(Lpep)TD LI(LPGP).

fp(tk) =

Computer Simulation and Results

Computer simulations were performed to show the effectiveness of the proposed method. A magnetome-
ter with thirty.seven channels that simulated the BT 37-channel biomagnetic measurement systern was
assumed. The detector frame with its origin at the center of the coil alignment was used. The values of
the coordinate (z,y, z) were expressed in centimeters. Since the homogeneous spherical conductor was
assumed, only the two tangential components, ¢ and 8 components, of the primary current vectors were
considered.

Two time-varying magnetic-field sources were assumed to exist: the first source at (—4,1, —4) and
the second source at (3, 1, =6). This source configuration is schematically shown in Fig. 1. The ¢ and 6
components of those sources randomly fluctuated, and the activities of the two sources were assumed to
be uncorrelated with cach other. The time instant st which the relative value of the (¢, #) components
of the first and second sources were equal to {D, 1) and (1,1) was chosen, and the field map at this time
instant was calculated. The noise was added to set the signal-to-noise ratio (SNR) of this simulated
data equal to 25.

First, conventional minimum-norm reconstruction was performed using f(tk) = L ~b(t;), where
L~ = LT(L LT)™}, The fild map obtained above was used and the reconstruction volume covers
8<z<8 -B<y<B and~2<z< ~8 Itcomsistsof 17 » 17T x 7 pixels. The plane, y=1, in
the three-dimensional reconstruction is shown in Fig. 2. Here, the ¢ and § components are separately
displayed. These results clearly show that the minimum-norm method provides severely distorted three-
dimensional reconstruction in this case. The covariance matrix of the measured data D was estimated
from 500 data generations; This simulates data acquisition for 0.5 s with & sampling interval of 1 ms.
The proposed Wiener reconstruction using Eq. (2) was applied with this covariance matrix. The results
are shown in Fig. 3. Here, both sources are reconstructed, clearly demonstrating this method’s three-
dimensicnal reconstruction capability.
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Next, sources having fixed orientations was reconstructed. In this experiment, the data used for
obtaining D was generated assuming that the (¢,8) components of the first and the second sources
were fixed at (0,1) and (1,1), respectively. The results obtained using Eq. (2) are shown in Fig. 4. The é
component is correctly reconstructed. However, the reconstruction for the & component contains severe
distortion caused by non-diagonal terms that cannot be ignored. The results obtained using Eqgs. (3)
and (4) are shown in Fig. &, Here, the two components are reconstructed. These results indicate that
the effectiveness of Eqs. (3) and (4) for reconstructing sources with fixed orientations.

Conclusion .

This paper proposes a method based on the principle of generalized Wiener estimation for obtaining
a three-dimensional biocurrent distribution from spatio-temporal biomagnetic data. The method is
formulated under the assumption that current gources are uncorrelated, and the method is extended
to reconstruct current sources with fixed orientations. Computer simulation shows that the proposed
method can reconstruct three-dimensional current distribution where the conventional least-squares
minimum-norm method fails.
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Fig. 1 Source current configuration assumed in computer sitmulation.
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Fig. 2 Minimum norm reconstruction results.
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Fig. 3 Proposed Wiener reconstruction results.
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Dstribution of 8 component (left) and that of ¢ components (right).
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Fig. 4 Results of reconstruction with Eq. (2) fur fixed orientation sources,
Dstribution of @ component (left) and that of ¢ components (right).
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Fig. 5 Results of reconstruction with Egs. (3) and (4) for fixed orientation sources.
Dstribution of 8 component (left) and that of ¢ components (right).



