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We present two related probabilistic methods for neural source recon-
struction fromMEG/EEGdata that reduce effects of interference, noise,
and correlated sources. Both methods localize source activity using a
linearmixture of temporal basis functions (TBFs) learned from the data.
In contrast to existing methods that use predetermined TBFs, we com-
pute TBFs from data using a graphical factor analysis based model
[Nagarajan, S.S., Attias, H.T., Hild, K.E., Sekihara, K., 2007a. A
probabilistic algorithm for robust interference suppression in bioelec-
tromagnetic sensor data. Stat Med 26, 3886–3910], which separates
evoked or event-related source activity from ongoing spontaneous
background brain activity. Both algorithms compute an optimal weight-
ing of these TBFs at each voxel to provide a spatiotemporal map of
activity across the brain and a source imagemap from the likelihood of a
dipole source at each voxel. We explicitly model, with two different
robust parameterizations, the contribution from signals outside a voxel
of interest. The two models differ in a trade-off of computational speed
versus accuracy of learning the unknown interference contributions.
Performance in simulations and real data, both with large noise and
interference and/or correlated sources, demonstrates significant im-
provement over existing source localization methods.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

Magnetoencephalography (MEG) and electroencephalography
(EEG) are popular methods for providing the spatiotemporal cha-
racteristics of human neural activity to both researchers and clini-
cians. Both techniques record the effects of neural activity at the
scalp with millisecond precision. The increasing availability of
whole-head MEG/EEG sensor arrays allows for higher-resolution
spatiotemporal reconstruction of neural activity, thus increasing the
demand for improved methods for source reconstruction.

Many sources of noise interfere with true signals in the MEG/
EEG data, affecting all existing inverse method algorithms. Thermal
or electrical noise is present at the MEG or EEG sensors themselves.
Background room interference such as from powerlines and elec-
tronic equipment can be problematic. Biological noise such as heart-
beat, eyeblink, or other muscle artifact can also be present. Ongoing
brain activity itself, including the drowsy-state alpha (~10 Hz)
rhythm, can drown out evoked brain sources. Finally, many locali-
zation algorithms have difficulty in separating neural sources of
interest that have temporally overlapping activity.

The magnitude of the stimulus-evoked neural sources is on the
order of noise on a single trial, and so typically 50–200 averaged
trials are needed in order to clearly distinguish the sources above
noise. This limits the type of cognitive questions that can be an-
swered, and is prohibitive for examining processes such as learning
that can occur over just a few trials. Obtaining sufficient trials for
successfully averaging out noise is time-consuming and therefore
difficult for a subject or patient to hold still or pay attention through
the duration of the experiment.

Algorithms proposed in this paper use a probabilistic graphical
model framework: a general tool for learning unknown, underlying
variables from observed sensor data. The graphical model depicts
probabilistic dependencies between nodes, which include the ob-
served data, computed lead field, unobserved evoked and interfe-
rence factors, and sensor noise. Many inference algorithms exist to
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estimate the unknown quantities given the data and model. We have
recently shown that this approach is effective for interference sup-
pression, source separation and source localization of MEG data
(Nagarajan et al., 2007a; Zumer et al., 2007).

The source reconstruction framework proposed in this paper is
referred to as Neurodynamic Stimulus-Evoked Factor Analysis Lo-
calization (NSEFALoc), which first uses a separate graphical model
called Stimulus-Evoked Factor Analysis (SEFA) to estimate tem-
poral basis functions and then finds the best linear mixture (spatial
weighting) of these basis functions at each source voxel. NSEFA-
Loc1 models the activity outside a particular voxel by a full-rank co-
variance matrix and estimates unknown quantities by maximizing
the likelihood. NSEFALoc2 parameterizes activity outside the voxel
of interest as a linear mixture of a set of unknown Gaussian factors
plus Gaussian sensor noise and estimates all unknown quantities
using a Variational Bayesian Expectation-Maximization (VB-EM)
algorithm (Attias, 1999; Ghahramani and Beal, 2001). Both tech-
niques create an image of brain activity by scanning the brain,
inferring the models from sensor data, and using them to compute
the maximized likelihood of the data with the best set of parameters
at each voxel, creating a spatial map to indicate the most likely
locations of sources.

It is clear that improved performance for noisy data with cor-
related sources is a desirable trait for a new source reconstruction
Fig. 1. Graphical models for NSEFALoc1 and NSEFALoc2. Noisy sensor data are fi
of which a linear mixture can produce any localized evoked source. These TBFs
estimate the spatial weightingG of these TBFs for each voxel. The likelihood map c
each graphical model, quantities inside the large square are variables dependent on
time. Directed arrows between nodes indicate a probabilistic dependence. Square no
relative amounts of dashes/dots for each circle or square indicate groupings of no
method, especially since some methods such as minimum variance
adaptive beamforming (MVAB) is known to have reduced perfor-
mance when at least two sources are highly correlated (Sekihara
et al., 2002a). The simulations and real data tested here illustrate
these issues and demonstrate improved performance of NSEFALoc
over existing methods. In simulations, several parameters such as
location of sources, rotating or fixed dipoles, SNR, and type of
background noise were varied. The effect of number of sensors and
timepoints (total data available) was also tested. Finally, robustness
to choice of number of basis functions or factors by the user is
shown. Furthermore, performance of all methods is compared using
some real-data examples from an auditory-evokedMEG data set and
a low-SNR somatosensory MEG data set.

An initial report of this method was presented in Zumer et al.
(2006). This current paper expands on the mathematical details and
provides a more thorough analysis of performance in both simula-
tions and real data, in comparison to established methods of MVAB
(Sekihara et al., 2002b) and sLORETA (Pascual-Marqui, 2002).

Theory

In both NSEFALoc models, we assume the source activity is a
linear combination of J×N temporal basis functions Φ computed
from the data, spatially weighted at each voxel r by a Q×J dipole
rst processed by SEFA to determine the denoised temporal basis functionsΦ,
are then input as fixed bases to both NSEFALoc1 and NSEFALoc2, which
an be displayed, and the source estimate at its spatial peaks can be plotted. In
time while quantities outside are parameters/hyperparameters independent of
des are known (observed or computed) while circles nodes are unknown. The
des.
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mixing matrix Gr. We compute the maximum likelihood at each
voxel; the spatial peaks of this likelihood map correspond to the
most likely source locations.

Fig. 1 depicts the graphical models for the processing steps of
both NSEFALoc models. SEFA (top middle) is a separate model
that is first run as a preliminary step on the data Y prior to either
NSEFALoc algorithm in order to learn the denoised evoked factors
Φ (top right) to be used at temporal basis functions. In SEFA,
evoked brain activity, biological noise, other room interference,
and sensor noise all contribute to the measured sensor data (top
left). The second step is to run either or both NSEFALoc models,
shown in the second row of Fig. 1. Both NSEFALoc models use
the averaged sensor data and the temporal basis functions Φ as
known/fixed quantities. Finally, both models output a likelihood
map indicating the location of sources as well as the source time
course estimates.

The mathematical notation used throughout this paper is as
follows. Matrices are in bold upper case, vectors are in bold lower
case (e.g. the nth column of the matrix Φ is /n, or a vector such as
the hyperparameter α), and scalars are in non-bold lower case (e.g.
the element from the kth row and lth column of matrix A is akl).
Non-bold upper case Roman letters are used to denote the dimen-
sion of matrices or vectors, such as K number of MEG sensors.

Computing temporal basis functions from data using SEFA

We assume that the neural activity at all possible source locations
can be described as a linear combination of temporal basis functions,
which we estimate using SEFA (Nagarajan et al., 2007a). SEFA uses
the computational framework of Variational Bayesian Factor ana-
lysis (VBFA), but includes the additional concept of howMEG/EEG
data are collected in order to further separate out noise components.
In the stimulus-evoked paradigm, some baseline control data are
collected for several hundred milliseconds during the pre-stimulus
period, then a stimulus occurs, evoking a neural response in the post-
stimulus period.

The key idea of SEFA is that background activity, such as
ongoing brain activity unrelated to the stimulus, other biological
noise such as eye blinks and heartbeat, other room noise, and
sensor noise, will be present in both pre-stimulus and post-stimulus
periods. However, only the evoked brain sources of interest will be
present in post-stimulus period alone and not in the pre-stimulus
period. Note that this assumption is valid for the evoked response
paradigm, but not the event-related synchronization/desynchroni-
zation analysis.

The data Y is partitioned into pre- and post-stimulus sections as:

yn ¼ Bun þ vn n ¼ �Npre; N ;�1
yn ¼ Cfn þ Bun þ vn n ¼ 0; N ;Npost � 1

ð1Þ

Time ranges from −Npre:0:Npost−1 where Npre (Npost) indicates
the number of time samples in the pre- (post-) stimulus period. The
K×M matrix B and the M×1 vector un represent the background
mixing matrix and background factors, respectively. The K×L
matrix C and L×1 vector /n are the evoked mixing matrix and
evoked factors (temporal basis functions), respectively. The sensor
noise term vn is described by diagonal precision matrix ΛS, where
the subscript S indicates the Λ learned from SEFA. The quantities
Φ, U, and V are the matrices for all time points for /n, un, and vn.

The details of themodel are described in Appendix A. The update
rules are listed explicitly here again, since those listed in Nagarajan
et al. (2007a) describe the one-stage model. Here, SEFA is computed
by using a two-stage procedure, whereB,U, andΛ S are first learned
from just the pre-stimulus data alone. Then, B andΛS are held fixed
andC,Φ, andU are computed using just the post-stimulus data. Note
thatU needs to be recomputed for the post-stimulus period, since the
projection from the data to the noisy source space is defined by B,
which is fixed, but the actual realization of noise strength in the post-
stimulus changes from time point to time point.

We define

kn ¼ fn

un

� �
; Ω ¼ C

P
B

� �
;

P
Ω ¼ P

C
P
B

� �
; ð2Þ

The main update equation for /n from the post-stimulus data
is:

q knjynð Þ¼ N knjPkn;Γ
� �

;Pkn ¼Γ�1PΩTΛSyn; ð3Þ

Γ ¼
P
ΩTΛSΩ þ I ¼ P

ΩTΛS
P
ΩþKΨ�1 þ I

¼
P
CT

P
BTÞΛS

P
C

P
B

� �
þK Ψ�1

C 0
0 0

� �
þ I

0
B@

ð4Þ

NSEFALoc1

The NSEFALoc1 model and its solution are related to that pro-
posed by Dogandzic and Nehorai (2000) and Baryshnikov et al.
(2004). NSEFALoc1 differs from their work by precomputing the
basis functions /n from the data using the estimated /

–
n from SEFA.

These SEFA estimates are preferred since interference and noise
sources have been removed, and the spectral content and statistical
properties have not been restricted. NSEFALoc1 also differs from the
above methods by placing a Wishart prior distribution on the full-
rank precision matrix, which assists learning many unknown quan-
tities from potentially few data points. The NSEFALoc1 generative
model for the K×1 sensor data yn is:

yn ¼ FrGrfn þ wr
n ð5Þ

Both NSEFALoc models are based on a physical description of
neural activity, in which brain sources are modeled by current
dipoles. For a given volume conductor forward model, the K×Q
forward lead field matrix Fr represents the physical relationship
between a dipole at voxel r and its influence on sensor k=1:K
(Sarvas, 1987). In the most general case, including EEG data, Q=3
for all three possible directions of coordinate bases of a source
dipole. In the case of the single-shell sphere as commonly used in
MEG, the radial component of source dipoles contributes nothing
to MEG sensors, thus Q=2. If there is knowledge of subject-
specific cortical anatomy, the source may be constrained to be
perpendicular to the gray matter surface, thus Q=1. Throughout
the rest of this paper, the single-shell model with Q=2 is used for
both simulations and real data from MEG, although these methods
could be easily extended to a multisphere model for MEG with
Q=3 or to EEG data with an appropriate forward model taking
tissue conductivities into account.

The noise wn
r is modeled by zero-mean Gaussian distribution

with a K×K precision matrix Λ1 which is full-rank (not diagonal
like in SEFA above), and the subscript 1 indicates the Λ learned in
theNSEFALoc1model. Both the parametersG andΛ1 are unknown.
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For a large number of sensors K, the precision matrix becomes quite
large and difficult to infer accurately from the data. It may also
become ill-conditioned. Hence, a prior probability using a Wishart
distribution is used for Λ1:

p Λ1ð Þ ¼ W Λ1jn;Σ0ð Þ~jΛ1jm=2e�1
2Tr Σ0Λ1ð Þ ð6Þ

where Σ0 and ν are hyperparameters. A Wishart distribution is
related to a multivariate Γ distribution.

The estimates Λ̂1 and Ĝ are the value of each that maximizes
the likelihood L specific to each scanned voxel, given in Eq. (B1).
Their derivation is described in Appendix B and the final results
are given here. Initially solving for Λ̂1

−1 gives:

Λ̂
�1

1 ¼ 1
N þ m

RYY � FGRΦY þΣ0ð Þ ð7Þ

Solving for G r gives

Gr ¼ FTS�1F
� ��1

FTS�1RYΦR�1
ΦΦ

S ¼ 1
N þ m

RYY � RYΦR
�1
ΦΦRΦY þΣ0

� � ð8Þ

Since the expression for G is now known, this value can be
plugged into Eq. (7) to find Λ1. The maximized likelihood is then:

Lr ¼ N þ m
2

logjΛr
1j þ const: ð9Þ

whose spatial peaks correspond to the most likely source locations.
The data and factor covariance matrices referred to above are:

RYY ¼
XN
n¼1

yny
T
n ; RYΦ ¼

XN
n¼1

ynf
T
n ; RΦΦ ¼

XN
n¼1

fnf
T
n ð10Þ

The source estimate from both NSEFALoc1 and NSEFALoc2 is
given by GrΦ. For NSEFALoc1, using Eqs. (8), (10), and (3), the
source estimate per voxel r is

ŝ rn ¼ FrTS�1Fr
� ��1

FrTS�1RYΦR
�1
ΦΦΓ

�1
Φ

P
Ω

T
ΛSyn ð11Þ

where ΓΦ
−1 indicates the first set of rows only corresponding only

to Φ, but all columns, and ΛS is from Eq. (A8).
� RΦΦ � RΦXΨ
�1RXΦ

�1Γ�1
Φ

P
ΩTΛSyn
NSEFALoc2

NSEFALoc2 also uses the TBFs Φ
–
estimated from SEFA de-

scribed above. In contrast to NSEFALoc1, the contributions to post-
stimulus sensor measurements not arising from a dipole source at the
voxel r are now more explicitly modeled in NSEFALoc2. The J×1
unknown interference factors xn

\r correspond to activity in all voxels
excluding r and A\r is a K×J unknown mixing matrix, where \r
means corresponding to activity not at r. The sensor noise has
unknown diagonal precisionΛ2, where the subscript 2 indicates the
Λ learned in the NSEFALoc2 model. The corresponding generative
model for the sensor data Y is:

yn ¼ FrGrfn þA⧹rx⧹rn þ vrn ð12Þ
The following conditional probabilities complete specification
of the model:

p ynjxn;A;Λ2ð Þ ¼ N ynjFGfn þAxn;Λ2ð Þ ð13Þ

p xnð Þ ¼ N xnj0; Ið Þ; p vnð Þ ¼ N vnj0;Λ2ð Þ p Að Þ¼j
kj

p akj
� �

;

p akj
� � ¼ N akjj0; k2ð Þkαj

� �
ð14Þ

Notice that in place of the (K2+K) /2 elements of the full-rank
precision matrixΛ1 in NSEFALoc1, now just the KJ+K elements of
A and diagonalΛ2 need to be inferred from the data. Since typically
J≪K (Jb~10 and at UCSF K=275), NSEFALoc2 has significantly
less parameters and can thus be inferred more accurately.

We again use a VB-EM algorithm to infer the unknown quan-
tities from the data and the derivation is given in Appendix C. The
VBE-step updates for the variables are:

p xnjynð Þ ¼ N xnjPxn;Γ
� �

Pxn ¼Γ�1PATΛ2ðyn � F
P
GfnÞ

Γ ¼ATΛ2Aþ KΨþ I

ð15Þ

In the VBM-step, the full posterior over A is found by finding
the q(A|Y) that best approximates p(A|Y) and the MAP estimates
of the parameters G and Λ2 and hyperparameter α are found. The
posterior distribution of A is thus:

q AjYð Þ ¼j
k

q ak jYð Þ; q ak jYð Þ ¼ N ak jPak ; k2ð ÞkΨ
� �

P
A ¼ RYX � FGRΦXð ÞΨ�1

Ψ ¼ RXX þα

ð16Þ

The MAP estimate of G is

P
G ¼ FTΛ2F

� ��1
FTΛ2 RYΦ � RYXΨ

−1RXΦ
� �

� RΦΦ−RΦXΨ
�1RXΦ

� ��1
ð17Þ

Solving for Λ2 and α in NSEFALoc2 is very similar to solving
for Λ S and χ in SEFA, by letting yn′=yn−FG/n. Then, take the
derivative of the free energy F w.r.t. Λ2 (or α) to obtain a similar
solution:

Λ2 ¼ N diag RYVYV�
P
ARXYV

� �h i�1

α�1 ¼ diag
1
K

P
A

T
Λ2

P
AþΨA

� � ð18Þ

The expressions RYX, RY′X , RΦX, and RXX represent the
posterior covariance between the two subscripts, similar to ma-
trices previously defined. The maximized likelihood function for
NSEFALoc2 is the following, where the dependency on voxel
location is made explicit:

Lr ¼ N
2
log

jΛr
2=2pj
jΓrj þ K

2
logjαrΨrj

� 1
2

XN
n¼1

ð yn � FrPG
r
fn

� �T
Λr

2ðyn�FrPG
r
fnÞ�PxTnΓ

rPxnÞ
ð19Þ

The source estimate for NSEFALoc2, using Eqs. (17) and (A9) is:

ŝrn ¼ FTΛ2F
� ��1

FTΛ2 RYΦ−RYXΨ
�1RXΦ

� �� � ð20Þ
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Methods: simulations, performance metrics, and real data

Simulation setup

The construction of simulated data sets and performance metrics
was similar or identical to that described in Zumer et al. (2007).
Simulations were created using a variety of realistic source confi-
gurations reconstructed on a 5 mm voxel grid. A single-shell sphe-
rical volume conductor model for MEG data was used to calculate
the forward lead field (Sarvas, 1987). While EEG models and data
were not tested here, use of an appropriate forward model for EEG
would make NSEFALoc amenable to EEG data as well.

Simulations and real data were analyzed using NUTMEG (Neu-
rodynamic Utility Toolbox for MEG) (Dalal et al., 2004), a toolbox
developed using MATLAB (MathWorks, Natick, MA, USA), ob-
tainable from http://bil.ucsf.edu. NUTMEG is useful for coregistra-
tion of fiducial points to a structural MRI, selection of volume-of-
interest, computation of forward field, filtering, and other denoising
preprocessing methods, as well as a variety of source reconstruction
methods, including MVAB (Sekihara et al., 2002b), sLORETA
(Pascual-Marqui, 2002), SAKETINI (Zumer et al., 2007), time-
frequency methods (Dalal et al., 2007), and now NSEFALoc.

Gaussian-damped sinusoidal time courses at specific locations
inside a voxel grid are based on realistic head geometry. Sources
were set to be active only during a post-stimulus period, which
always composed 62.5% of the total data available, while the
remaining 37.5% were pre-stimulus data. Typically 700 total data
points were used, unless specified otherwise.

In some simulations, only Gaussian sensor noise was added to the
projected simulated sources, termed the sensor noise only case.While
this type of simulation is common in simulation testing, this clearly
does not reflect true data which has interference sources somewhere
in source space contributing to covariance across sensors.

In another set of simulations, termed simulated interference cases,
background activity in source space was drawn from the Gaussian
distributions assumed by the model to simulate ongoing brain activity.
These background sources were placed in 30 random locations
throughout the brain voxel grid, active in both pre- and post-stimulus
periods. Their activitywas projected onto the sensors and added to both
Gaussian sensor noise and source activity. These simulated background
brain sources add noise to the sensors in a spatially correlated manner.

In order to test simulation performance using data with more
realistic (and unknown) statistical distributions, a final set of simu-
lations was created termed real brain noise. Real MEG sensor data
were collected from a CTFMEGSystemwith 275 axial gradiometers
while a human subject was alert but not performing tasks or receiving
stimuli. These background data thus include real sensor noise plus
real ongoing brain activity that could interfere with evoked sources
and add spatial correlation to the sensor data. Since throughout this
work averaged data are used, these real data were binned into 100
trials of 700 data points each and averaged. The output signal to noise
ratio (SNR) and the corresponding output signal to noise-plus-inter-
ference ratio (SNIR) were varied. Output SNIR is calculated from the
ratio of the sensor data resulting from sources only to the sensor data
from noise plus interference, as shown in the first equation of the
Results section of Nagarajan et al. (2007b).

Localization accuracy of a single source

A single source was placed randomly within the voxel grid space
and projected to the sensors, and all three types of noise (sensor noise
only, simulated interference, and real brain noise) were added to the
simulated sensor data, at four different levels of SNIR. Twenty
different realizations of random location were tested for each SNIR.
The localization error (in Euclidean distance) between the maximum
peak in the NSEFALoc1 and NSEFALoc2 likelihood maps, as well
as the MVAB and sLORETA power maps (sum of squares of post-
stimulus time points), and the true simulated source location was
measured.

Constructing simulations with three sources

Multiple active sources are more realistic than a single active
source. Moreover, any additional active source acts as interference
toward the ability to localize the first source. Several simulation
parameters were varied across different simulations. (i) Two differ-
ent source configurations were used: one with three sources near
the surface as depicted in Fig. 3 and the other configuration with
three deeper sources. (ii) The orientation of the source was fixed in
half the simulations and allowed to rotate over time in the other
half. (iii) The correlation of two of the three sources with each
other was set to be ρ=0, ρ=0.95, or ρ=1; the third source was
always uncorrelated with the other two sources. (iv) Each combina-
tion of parameters was tested for 10 different randomly generated
source time courses and source orientations. (v) In addition to the
true source contribution to the sensor data, the three cases of sensor
noise only, simulated Gaussian interference or real brain noise were
tested. (vi) SNIR was set at 5 dB, 0 dB, or −5 dB, with corres-
ponding SNR for each case of 10 dB, 5 dB, and 0 dB. Thus, a total
of 1080 simulations were run using all combinations of simulation
parameters.

Model order selection and hyperparameters

The experimenter is faced with choosing the number of tem-
poral basis functions for NSEFALoc methods (i.e. number of
factors in SEFA) and the number of non-localized evoked factor X
in NSEFALoc2; the effect of this choice on performance should be
tested. The hyperparameters are expected to zero-out extra dimen-
sions to a large extent, but this also should be tested. Finally, the
choice of SEFA for computing TBFs from the data should be
compared to other options.

The choice of dimension for X (non-localized evoked factors)
in NSEFALoc2 was run with either 25 or 10 dimensions for A. The
inverse hyperparameter α−1 over the mixing matrix A was nor-
malized to the first hyperparameter for each of 1760 voxels ex-
amined. The localization result for both dimension choices was
examined.

The number of TBFs used in both NSEFALoc methods was
next tested and averaged over many simulations. In all simulations,
three sources are present with fixed dipole orientation. In half, two
of the three sources are perfectly correlated, while the other half of
the simulations has uncorrelated sources; thus either two or three
TBFs are needed, respectively. Performance is characterized as
described in the next subsection and is compared to MVAB and
sLORETA.

From Nagarajan et al. (2007a), SEFA seems to be a very good
way to obtain temporal basis functions of the denoised evoked
activity from real data when the true time course is not known.
However, their use as an input to the NSEFALoc class of models is
tested here. The simulations were the same as in Fig. 7 with three
sources placed and three levels of correlation between two of the

http://bil.ucsf.edu
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three sources, and either rotating or fixed dipole orientation. The
use of SEFA to obtain TBFs was compared with using PCA and
the true time courses. The number of temporal basis functions was
held the same across the three different types of TBFs for each
simulation (fewer were used when sources were known to be
correlated).

Performance evaluation

Performance was measured in two ways: localization ability
and estimation of time course. To assess localization ability, it is
important to take into account source strength, source localization
error, and presence of false positives. Thus, the ROC (receiver-
operator characteristic) method was modified for brain imaging
results as suggested by Darvas et al. (2004), which is a measure of
hit rate versus false positive rate. The free-response ROC (FROC)
curve in particular allows for multiple hits per image (Bunch et al.,
1978).

A local peak is defined here as a voxel that is greater in value than
its 26 three-dimensional neighbors. A hit is defined as a local peak
that is within a specified distance of the true location and above a
certain threshold. A miss is defined as a true source location that has
no hit within the specified distance. A false positive is a local peak
above a certain threshold but farther than the specified distance from
a true source location. A true negative is any voxel that is none of the
above.

FROC curves are generated by varying the threshold and al-
lowable distance error, thus varying the trade-off of sensitivity and
specificity. The following distances were used as allowable locali-
zation error of a local peak to a true location in order to be counted
as a hit: 54

ffiffiffi
3

p
mm, 104

ffiffiffi
3

p
mm, or 154

ffiffiffi
3

p
mm. The threshold was

varied to be 30%, 50%, 70%, or 90% of the maximum value in the
whole image. Thus, a hit rate (HR) and a false positive rate (FR)
were recorded for each of the 12 combinations of threshold/error
for each of the 1080 simulations.

Since these HR versus FR points do not increase monotonically,
as they would if threshold was the only criteria varied, we chose to
use the measure of A′ (similar to use in Zumer et al., 2007). A′ is a
way to approximate the area under the FROC curve for one HR/FR
point (Snodgrass and Corwin, 1988). The larger the area under the
FROC, the better the method is performing, since this means a
higher HR relative to FR for specified thresholds/localization errors.
For each simulation, the 12 computed A′ values were averaged to
give one A′ value per simulation. The NSEFALoc1 and NSEFALoc2
likelihoodmapswere used as the spatial maps to test localization; the
power maps were used for MVAB and sLORETA.

Simulation: effects of number of sensors and time points

Previous studies have shown the advantage of sensor arrays
with larger number of channels (Hamalainen et al., 1993). Like-
wise, increased amount of data points across time usually leads to
improved estimation of unknown quantities. Therefore, the next set
of simulations sought to determine how few sensors and how few
time points were needed to preserve performance.

To test the effect of the number of sensors, simulations were
created similarly to those discussed above with three uncorrelated
sources. Two values of SNIR were created using real brain noise:
0 dB and −10 dB. Ten different realizations of source time course
and orientation were tested for each case. All simulations discussed
previously were created using the full 275 channel array from the
CTF system. Here, only a random subset of sensors was selected,
using 150, 74, or 37 sensors. The numbers 74 and 37 were speci-
fically chosen to correspond to the BTi commercial MEG system
previously installed in the UCSF lab until 2004.

To test the effect of the number of data points, the full set of 275
channels was used, but the available amount of data points was
reduced. All previous simulations have used 700 total data points,
where 62.5% were in the post-stimulus period. The ratio of data
points in the post-stimulus period was kept the same, but the total
number was reduced to 300, 200, 150, 100, or 50 time points.

Real MEG data

Several real data sets were analyzed with the proposed method
and compared to existing methods. For all data, the 275-channel
CTF MEG System in a magnetically shielded room was used to
collect data. All healthy subjects gave written, informed consent to
participate in each study, according to UCSF institutional review
board approval.

Auditory data sets were obtained by presenting 120 repetitions of
a 1 kHz tone binaurally to healthy subjects, at an intertrial interval
of 1.4 s. The trials were averaged locked to stimulus onset. This
auditory stimulus is known to invoke bilateral auditory cortex to be
active simultaneously, known to cause problems for the MVABTs
ability to localize the auditory sources.

We next examine a somatosensory data set in which the loca-
lization of primary somatosensory cortex is relatively easy for all
methods when many trials are available to average. A small dia-
phragm was placed on the subjectTs right index finger and was
driven by compressed air. The stimulus was given 256 times every
500 ms. However, if we limit the available data to only a small
subset of trials, the lower SNR can become limiting for all source
reconstruction methods. We first applied NSEFALoc1, NSEFA-
Loc2, MVAB, and sLORETA to the average of all 256 trials to
assess the performance for the standard (high) SNR case. We then
applied all three methods to the average of only the first 5 trials. To
further test if the performance was consistent across other sets of
just 5-trial averages, we applied the three methods to the 5-trial
average of trials 6–10, 11–15, and 16–20. We then averaged the
results of these four different results. Any location found consis-
tently will show up in the average.

Results

Single source localization

The mean localization errors for a simulated single source are
shown in Fig. 2. Even at the lowest SNIR of −5 dB, NSEFALoc1 and
NSEFALoc2 localized the source to within 5 mm error, which, for
real data, is on the order of the error due to coregistration of MEG
data with the subjectTs MRI. For all values of SNIR, NSEFALoc1
and NSEFALoc2 resulted in reduced error compared to MVAB and
sLORETA. Errors for the sensor noise only case were not shown
since they were zero or essentially zero for all methods for all values
of SNIR.

Examples of multiple sources, including correlated sources

Next, performance of the proposed models was tested for three
simultaneously active sources. Fig. 3 shows performance in two
examples each with either three uncorrelated sources (top half) or



Fig. 2. Average localization error over 20 realizations of a randomly placed single dipole source. Background activity was either simulated interference or real
data. The standard error was typically 1 mm, not larger than 4 mm; error bars were omitted from the plot.
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with 2 of 3 sources correlated (bottom half). All sources were fixed
in orientation across time, with real brain noise added with SNIR of
5 dB. The only difference between the two examples in each half is
the random realization of the source time course. Two examples are
shown to illustrate how a change just in temporal dynamics can
affect localization results. For each example, the log likelihood (or
power) map is above a grouping of plots showing the estimated
time courses (gray) of the three sources overlaid onto the true time
courses (black). Note in the MVAB power maps that the three
sources are labeled with a square, diamond, and circle and the time
courses plots are labeled accordingly. The bottom half of the plots
shows two square sources and a circle source, that indicating the
two square sources are highly correlated.

The uncorrelated-source examples in Fig. 3 (top half) show that
all methods localize all three sources either perfectly or near
perfectly. The spatial peaks for MVAB are so focal they are hidden
by the square, diamond and circle symbols. The sLORETA power
map shows some difficulty in finding the lower left source per-
fectly, but does show a peak nearby. The NSEFALoc1 likelihood
map finds all three sources perfectly, though in Example 2, there is
a possible false positive around (x=−25, z=5). The NSEFALoc2
likelihood map also finds all three sources perfectly, but also with a
possible false positive around (x=−30, z=35). Both NSEFALoc1
and NSEFALoc2 display log-likelihood maps, which leads to their
increased spatial spread relative to the MVAB power map, but of
course does not affect location of peaks.

The top half of Fig. 3 also shows all methodsT ability to estimate
the source time course. These examples show that sLORETA esti-
mates the shape and amplitude verywell for all sources. NSEFALoc2
also estimates the times courses well, although there is some cross
talk in Example 1, diamond source. NSEFALoc1 shows more severe
crosstalk errors. MVAB estimates the time courses reasonably well,
although a slight misestimation of amplitude is seen.

The performance of all methods was further tested when two of
the three sources are highly correlated in time. The lower half of
Fig. 3 shows the results from two simulation examples where two
square sources are highly correlated in time (ρ= .95). The same real
brain noise was added at SNIR=5 dB and all other aspects of this
simulation were the same as the uncorrelated case above, except
that the right square source time course was adjusted to correlate
strongly with the left square source time course. In all cases, the
estimated time course plotted is the one extracted from the true
location, regardless of the localization map peak locations.

These examples illustrate the failure of MVAB for correlated
sources. The MVAB power map in Example 1 finds the uncorrelated
circle source, but largely mislocalizes the first square source and only
weakly finds the second square source. The reduction in power is seen
in the first square time course plot. The MVAB power map for
Example 2 localizes all three sources within a reasonable error;
however, the amplitude of the peak location the two square correlated
sources is much reduced and might not be detected depending on the
threshold, which is also indicated by the large reduction in time series
amplitude. On the other hand, sLORETA is not in theory supposed to
be sensitive to correlated sources; sLORETA finds all three sources in
Example 1 (though one isweak and a center-of-the-head false positive
is of larger amplitude) but, in Example 2, fails to show distinct peaks
for the two correlated source locations. Despite these localization
issues, the time course estimation of sLORETA in both shape and
amplitude was very accurate.

Overall, NSEFALoc2 localizes the sources and estimates source
time courses better than MVAB and sLORETA in these examples of
correlated sources in the bottom half of Fig. 3, while NSEFALoc1
performance is in-between. NSEFALoc1 localizes the sources well
in Example 1, but fails to find the first square source in Example 2,
with a distant false positive instead. The time course estimates
by NSEFALoc1 suffer from quite a bit of crosstalk. Finally, the
NSEFALoc2 likelihood maps localize all three sources clearly with
only a slight localization error in the first square source. Furthermore,
the NSEFALoc2 time course estimation is quite good in both shape and
amplitude, with much less crosstalk errors than NSEFALoc1 even
though the same set of temporal basis functions was used.
Performance evaluation results

The performance of the proposed methods is now shown accord-
ing to the metrics of A′ (area under ROC curve) and time course
estimation. Fig. 7(a) plots A′ for each method, for each value of
source correlation and SNIR, and for all types of interference.
NSEFALoc1 and NSEFALoc2 both show A′ higher thanMVAB and
sLORETA. For the perfectly correlated source cases, NSEFALoc2
localizes sources best for all noise types.



Fig. 3. Performance of all methods in several example simulations. In the top two examples, all three true source locations, marked by square, diamond, and
circle, are uncorrelated with each other. On the bottom half, the true sources labeled with squares indicate location of true sources highly correlated with each
other, while the circle source is uncorrelated with the other two. While the source locations are the same for all examples, the time series are different for each.
Intensity of map corresponds to a normalized log-likelihood map for NSEFALoc1 and NSEFALoc2, and a normalized power map for MVAB and sLORETA.
Below the localization map for each example, black lines indicate simulated time series for each of the three source locations; gray lines indicate estimates of the
source time series at those three locations. The labels of squares, circles, or diamonds are included in each time series plot to indicate correspondence with the
location on the map. The correlation of the true time course and the estimated time course is shown next to the symbol within each time series plot.
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Fig. 4. Performance of NSEFALoc1 and NSEFALoc2 relative to MVAB and sLORETA for a variety of simulated data sets. Each data point is an average of 40
simulations, consisting of two different source locations and either a fixed or rotating source orientation. Standard errors were less than 0.05 for all points (not
shown). (a) A measure of area under ROC curve A' is plotted in 9 subplots as a function of SNIR for sensor noise only, simulated and real brain interference
(across columns), and for each of three source correlation values (across rows). See text for discussion of the A' metric. (b) The correlation of the estimated with
the true time course is plotted for each method.
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The other main test of performance was the ability to estimate the
source time course. The estimated time courses for all methods were
obtained from the true source locations, regardless of whether their
respective localizationmaps found that source as a hit. The correlation
of the true time course with the estimated time course was computed
for each simulation and the averages are plotted in Fig. 7(b). In the
sensor noise only case, sLORETA (dashed) estimates the time course
better than other methods regardless of source correlation, as pre-
viously understood for this method. However, when other source-
space interference or real brain noise is added, this advantage of
sLORETA is lost. Instead, similar to the A′ results, NSEFALoc2
estimates the source time course the best when sources are perfectly
correlated in simulated interference and real brain noise cases.
Model order and basis function selection results

The ability of SEFA to learn the correct dimension of evoked
activity through the hyperparameters is demonstrated in Figs. 11 and
12 (Nagarajan et al., 2007b), and so is not examined further here.

Fig. 4 shows examples of NSEFALoc2 performance while the
dimension (number) of non-localized evoked factors X is varied. The
main plots are ofα−1 (which controls number of evoked factors not at
the voxel of interest) normalized to the first hyperparameter (which is
omitted from the plot). Each linewithin all plots is the value for each of
1760 voxels analyzed. NSEFALoc2 was run with either 25 (left plot)
or 10 (right plot) dimensions for A. From using 25 dimensions, it
seems that the inverse hyperparameters get close to zero after about 10
and that the extra dimensions are not contributingmuch. By using only
10, the values stay roughly the same but do change somewhat.
Furthermore, the localization results (inset in each plot) are roughly the
same yet some differences exist. The left inset (25 dimension result)
shows all three sources with strong likelihood, but the lower source is
blurred with the source above it. The right inset (10 dimension result)
shows all three sources as distinct peaks although the lower source is
weaker, and also has a possible false positive near it.

Fig. 5 compares NSEFALoc1 and NSEFALoc2 with three types
of temporal basis functions: the true source time sources, those
obtained from SEFA (as the models were intended), or from PCA.
The performance metrics of A′ and time course estimation were used
to compare the choice of TBFs. In real brain noise and simulated
interference, using PCA to obtain TBFs resulted in the worst per-
formance for both metrics of A′ and time course estimation. In
comparing SEFA with the true time courses, A′ is not affected, but
time course estimation is worse when using SEFA compared to the
true; however, NSEFALoc2 with SEFA TBFs performs reasonably
close to the true TBFs (while NSEFALoc1 is considerably worse).

Finally, Fig. 6 shows the performance (through the A′ metric and
time course estimation) of all the methods as the number of dimensions
was varied, averaged over many simulations. For MVAB, the x-axis
represents the number of eigenvalues; for NSEFALoc1 and NSEFA-
Loc2, it is the number of temporal basis functions, and it is meaningless
for sLORETAwhose performance does not dependon such a parameter.

Overall, the lines for all methods are relatively flat, indicating
not too large of a dependence on the number of dimension reduc-
tion. The time course estimation in sensor-noise only shows the
clear improvement in using at least three dimensions. The
correlated-source-case (bottom row) in interference or real brain
noise shows the clear advantage of NSEFALoc2 over MVAB for
time course estimation. Interestingly, the A′ metric gets worse for



Fig. 5. Plots of α- 1 hyperparameter for NSEFALoc2. Each line within all plots is the value for each of the 1760 voxels analyzed. The first hyperparameter is
normalized to one but is not shown. Inset in each plot is the localization result with the given number of dimension chosen, and symbols indicate correct location.
All three sources were rotating orientation and uncorrelated with each other, thus six independent time courses contributing to the sensor data. The left plot shows
results when the dimension of Awas set to 10, while the right plot shows the dimension of A set to 25.
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NSEFALoc2 in correlated sources in real brain noise as the number
of TBFs increases; this is probably due to incorrectly trying to fit
the extra components to the wrong location confused by the
correlated sources.

Results as number of sensors and time points is varied

Fig. 8 shows simulation performance resulting from reduced
number of sensors. The top row is for SNIR=0dB and the bottom
row is for SNIR=−10 dB. NSEFALoc1 and NSEFALoc2 did not
Fig. 6. Performance of NSEFALoc1 and NSEFALoc2 as a function of three types o
from SEFA (as the models were intended), or from PCA. (a) A' metric for localiz
show any major degradation in performance for either A′ (left
column) or time course estimation (right column) in the moderate
SNIR value of 0 dB. For the very noisy case of SNIR=−10 dB, A′
begins to decline more with only 37 sensors; time course estimation
for the noisy SNIR=−10 dB is poor for all number of sensors. In
contrast to the probabilistic methods, both MVAB and sLORETA
show decline in performance for bothmeasures in the reduction from
275 to 150 sensors, but then plateaus for fewer sensors. In all cases of
150 sensors or fewer, both NSEFALoc methods outperform MVAB
and sLORETA for both metrics.
f temporal basis function used: the true source time sources, those obtained
ation ability. (b) Time course estimation accuracy (similar to Fig. 7).



Fig. 7. Performance as a function of number of temporal basis functions for simulations with 3 fixed-orientation dipole sources. Source correlations of 0 and 1
were tested. Each data point is averaged over three values of SNIR (5, 0, -5 dB). (a) A' and (b) correlation of estimated and true time course.
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Fig. 9 shows the performance results of all methodswith decreased
number of time points available. The top row is for SNIR=0 dB
and the bottom row is for SNIR=−10 dB. The A′ results (left column)
Fig. 8. A′ and time course estimation as a function of the number of MEG sensors fo
and bottom row shows SNIR=−10 dB using real brain noise. Error bars represen
show that both probabilistic methods outperform MVAB and
sLORETA for all numbers of total data points; A′ performance
begins to decline for 150 or fewer data points. sLORETA is a non-
r simulated data with 3 uncorrelated sources. The top row shows SNIR=0 dB
t standard error.
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data-dependent method, thus the inverse weight is not affected
by number of time points available. The MVAB is dependent on the
data to provide an estimate of the data covariance matrix. Since
the simulations in both top and bottom rows are with relatively
high noise (SNIR=0 dB and −10 dB, respectively), the data
covariance estimate might not change much with decreased data,
since it is already noisy (note the time course correlation does not
reach above 0.5 for any number of data points tested at SNIR=
−10 dB).

On the other hand, the time course estimation results (right
column) show that NSEFALoc1, NSEFALoc2, and sLORETA do
not show a decline in performance with fewer data points and that
all three methods generally perform equally well and better than
MVAB. This is most likely due to NSEFALoc methods not
requiring many data points in the first step of using SEFA to find
temporal basis functions; once the temporal bases have been found,
less data are then needed for localization of these bases.

Somatosensory results

The left panel of Fig. 10(a) shows typical somatosensory-evoked
MEG data with the largest peak at 50ms, expected to be coming from
primary somatosensory cortex in the posterior wall of the central
sulcus. The next four panels of Fig. 10(a) show the localization
performance of NSEFALoc1, NSEFALoc2, MVAB and sLORETA.
All four methods accurately localize activity to the contralateral
primary somatosensory cortex. However, performance changes when
only 5 trials are used in the average. The left panel of Fig. 10(b) shows
the sensor data averaged over trials 1–5 of the same somatosensory
data set. The next four panels of Fig. 10(b) show errors in the
Fig. 9. A′ and time course estimation as a function of the number of total data point
SNIR=0 dB and bottom row shows SNIR=−10 dB using real brain noise. Error
localization in all methods. NSEFALoc1 and NSEFALoc2 show
less error than MVAB and sLORETA, relative to the peak location
found using all 256 trials. We note that other averages of 5 trials
showed varied performance, but that, when averaging four different
sets of 5-trial averages together, both NSEFALoc1 and NSEFALoc2
showed localization closest to the primary somatosensory cortex, as
shown in Fig. 10(c), whereas MVAB and sLORETA mislocalize
this source.

Auditory results

Fig. 11 shows localization results from all methods in four
different subjectsT AEF data sets. NSEFALoc1 finds activation in
bilateral auditory cortex in 4/4 subjects, though extra peaks
appear in 3 subjects, and in Subject 3 the activation is too
superior. NSEFALoc2 finds activation in the bilateral auditory
cortex in 3/4 subjects, with extra peaks in only one subject, and
an additional subject in which only the left auditory cortex is
found. The strongest peak in the MVAB power maps in all 4
subjects is (falsely) in the center of the head, while a weaker
activation on just the right side is seen in one subject. Finally,
sLORETA finds bilateral auditory cortex in 2/4 subjects with extra
peaks in one of the two, and only one side of auditory cortex is
found in two other subjects. The sensor data for Subject 3 show
strong activation on the left side while very weak activation on the
right, thus difficult to find for any method. While it is possible that
the extra peaks seen in any of the methods are true sources co-
activated with the primary auditory cortex, the sensor data do not
give a strong indication of extra sources, so most likely these extra
peaks are false positives. In general, NSEFALoc1 and NSEFALoc2
s for simulated data with 3 uncorrelated sources. The top row of each shows
bars represent standard error.



Fig. 10. Performance of methods using real somatosensory data as a function of the number of trials. Left column shows sensor data averaged over varied number
of trials, while remaining columns show localization performance of NSEFALoc1, NSEFALoc2, MVAB, and sLORETA. Row (a) shows performance of the
three methods applied to the average of all 256 trials. Row (b) shows the localization performance to the average of only the first 5 trials. In order to show
performance over other subsets of 5-trial averages, the spatial maps in row (c) are spatial averages of the localization of 4 different 5-trial averages. See Methods:
simulations, performance metrics, and real data for details. Crosshairs in localization maps show peak location within “active” voxels at the slice of the peak
location, where the threshold for “active” was defined at 90% of the maximum for all maps.
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found more correct source locations relative to less extraneous
peaks than MVAB and sLORETA.

Discussion

Two methods are introduced which localize stimulus-evoked
MEG/EEG sources and estimate their temporal activity in a proba-
bilistic framework. Both model the sources as a linear combination
of denoised temporal basis functions derived from the data using a
variational Bayesian factor analysis method. The methods have
reduced localization error relative to MVAB and sLORETA and are
not as hampered by correlated sources. Additionally, the number or
location of sources does not need to be specified, as in a standard
dipole fitting method. Thus, these methods have clear advantages
over current standard methods.

We showed results forMEGdata only, although the equations can
be easily applied to EEG data with an appropriate lead field. Sources
can be constrained in location and orientation using the subjectTs
cortex defined by a structural MRI. Furthermore, NSEFALoc could
be modified to work with an extended lead field based on spatial
patch bases (Limpiti et al., 2006).

We have shown that the NSEFALoc models are not as sensitive
to temporally correlated sources as the standard formulation of
MVAB. However, it is possible to reduce the MVABTs dependence
on correlated sources through a modified weight matrix computed
subject to additional constraints, if a rough idea of the location of
sources is known (Dalal et al., 2006).
As the number ofMEG and EEG channels has increased in recent
years, the ability to accurately localize sources throughout the brain
has increased (Vrba et al., 2004). However, performing calculations
of high-dimensional data, such as inverting a data covariance matrix,
becomes more difficult and can lead to errors. Meanwhile, the
dimensionality of the underlying neural activity remains the same.
Thus, many variations of PCA and ICA have been used on MEG/
EEG data for removal of noise/artifactual components as well as for
data dimension reduction (Jung et al., 2000; Ikeda and Toyama,
2000). Factor analysis also aims to reduce the dimensionality of the
data to a linear mixture of factors that best account for the data while
accounting for noise at the sensor level. An extended version,
stimulus-evoked factor analysis, has been used here to partition the
factors that are event-related activity from the factors are back-
ground interference. All methods which perform dimension reduc-
tion need a criterion for choosing the reduction number. Using PCA,
a plot of eigenvalues can often give a reasonable intuition for the
dimension of “signal” in the data. ICA has no ordering of compo-
nents. In the method proposed here, there are two variables affecting
model dimension: number of TBFs obtained from SEFA and the
non-localized evoked factors (X) in NSEFALoc2. While a user must
initially select a dimension for these terms, we showed that the use of
hyperparameters in the model provides robustness to this selection
by reducing the influence of unnecessary components.

For simplemodels with latent variables, the posterior distribution
of a desired unknown variable can often be computed directly.
However, for more interesting and realistic models, the posterior is
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often computationally intractable. In these cases, some approxima-
tion must be made. Since both SEFA and NSEFALoc2 models were
computationally intractable as initially developed, we used a varia-
tional approximation for the joint posterior in bothmodels. Themain
alternative to variational methods is sampling methods, such as
Markov Chain Monte Carlo methods (Jun et al., 2005; Gelman and
Rubin, 1996), which extensively estimate points in the distribution.
MCMC is dependent on the sampled points and can be quite com-
putationally costly. Nummenmaa et al. (2007a) do show advantages
ofMCMCover variational methodswhen the posterior distribution is
not unimodal. However, the same researchers also show improve-
ments of variational Bayesian methods over minimumnormmethods
in real data (Nummenmaa et al., 2007b). Variational methods instead
choose to factorize the joint distribution over factors and parameters
assuming conditional independence of the factors and parameters,
also termed the mean field approximation. Variational Bayesian
methods compute the posterior distribution that maximizes the free
energy F, an approximation to the data likelihood L. This appro-
Fig. 11. Performance of methods on real auditory-evoked MEG data sets from two
maps andMVAB and sLORETA are power maps. The thresholds were set to portray
not including other areas).
ximation is an equality when the approximate posterior q equals the
true posterior p.

Several other uses of variational Bayesian methods for the MEG/
EEG inverse problem have been demonstrated. In general, they vary
in how spatial priors, source covariance, and noise covariance are
treated, as well if they are a dipole or distributed source model. Sato
et al. (2004) show how variational Bayesian inversion methods can
be used to improve MEG estimates with the inclusion of fMRI data.
Kiebel et al. (2008) use a variational Bayesian model for dipole
models; one benefit is to contrast competing models of number and
type of dipoles to overcome the usual problem of dipole models in
choosing the number of dipoles. Phillips et al. (2005) demonstrate a
distributed source model that uses multiple source priors and learns
their optimal weighting through hyperparameters. Friston et al.
(2008) extend this further by establishing a multiple prior formu-
lation where any number of source prior covariances can be in-
cluded, but are projected to sensor space, and their corresponding
hyperparameters prune which prior terms are relevant in sensor
healthy human subjects. NSEFALoc1 and NSEFALoc2 results are likelihood
each method optimally (i.e. including as many true sources as possible while
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space, thus avoiding large source-space matrices. Daunizeau and
Friston (2007) use a variational inversion scheme to solve a multi-
scale model for MEG/EEG where the quantity and functional con-
nectivity betweenmesostate sources are learned. Trujillo-Barreto et al.
(2008) have recently proposed amodel that is similar toNSEFALoc in
that it includes a set of temporal basis functions to model the source
activity and accounts for the sensor noise and source noise separately
in a probabilistic graphical model; unknown quantities are also
learned through a VB-EM algorithm. Their method differs in several
ways from NSEFALoc. They demonstrate their method using
wavelet representation for TBFs; alternatively, SEFA could be used
to estimate the TBFs in their model. They estimate source activity at
all voxels at once rather than scanning each voxel at time.

NSEFALoc1 and NSEFALoc2 present a trade-off of computation
time and source estimation accuracy. Throughout the results presented
here, NSEFALoc2 tended to outperform NSEFALoc1. NSEFALoc1
estimates a full-rank noise covariance guided by a Wishart prior
distribution in a single closed-form solution per voxel. NSEFALoc2, on
the other hand, learns more precisely the unknown interference sources
distant from the current voxel being scanned by learning an unknown
mixing matrix with a dimension smaller than the number of sensors.
Thus, more robust estimates of noise covariances can be made with
fewer parameters to estimate, though convergence usually requires
about 20 EM iterations. These EM iterations require longer computa-
tion time: NSEFALoc1 computes estimates across a whole brain
volume of about 11,000 voxels in roughly 5 min, while NSEFALoc2
takes 110 min for the same reconstruction, roughly 0.6 s per voxel on a
standard Linux personal computer with 2.0 GHz processor.

All methodswhich do not have a closed-form solution require the
initialization of the values to be iteratively updated. We have found
that choice of initialization can change the final results somewhat but
not largely, and so we did not extensively examine these effects.
After finding one method of initialization that worked well in a few
test simulations, that set was used for all results shown. Since the
closed-form solution to NSEFALoc1 is easily obtained for each
scanned voxel, aspects of this result were used to initialize quantities
for NSEFALoc2, thus explaining some similarity in performance.

The NSEFALoc algorithms presented in this paper have some
similarity to another algorithm, SAKETINI, recently proposed by us
(Zumer et al., 2007). Both SAKETINI and NSEFALoc solve for
hidden evoked factors, use unknown mixing matrices to model
interference sources, and take advantage of stimulus timing. How-
ever, SAKETINI does not use fixed temporal basis functions, but
instead learns hidden factors at each time point. Since the source
time course estimates from both NSEFALoc and SAKETINI are
effectively a weight matrix multiplying the sensor data, the temporal
smoothness of the source estimates is comparable to the sensor data,
possibly smoother due to noise removal. However, since the source
estimates from NSEFALoc are based on fixed temporal basis func-
tions, additional smoothness could be imposed to these basis func-
tions prior to source estimation; SAKETINI is not as amenable to
these modifications. The analysis of NSEFALoc is similar to the
simulations and real data that SAKETINIwas tested on in Zumer et al.
(2007). A detailed comparison of performance between NSEFALoc
and SAKETINI is forthcoming and is beyond the scope of this paper.

In this work, no specific spatial prior information was used, al-
though it certainly can be incorporated. NSEFALoc only estimates one
dipole at a time, by scanning through the voxel grid, thus estimation of
number of dipoles is not explicitly performed. The likelihood map can
be interpreted as a factorized map of the posterior probability of a
source at each voxel. Thresholding of the likelihoodmap can be viewed
as a posterior probability map thresholding procedure. This posterior
probability map lends itself for statistical analyses across subjects and
conditions, a topic that could be explored in future work.
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Appendix A. Full set of update rules for SEFA estimates

Here, SEFA is computed by using a two-stage procedure to avoid
issues of identifiability betweenB andC, especially in cases of limited
pre-stimulus data. In the limit of no pre-stimulus data, B and C could
be concatenated as the same variable, as interference could not be
distinguished from evoked activity. However, even with sufficient
pre-stimulus data, if B and C are learned simultaneously, an evoked
component present only in the post-stimulus data could inadvertantly
be learned as a column of B due to the identifiability in this model.

To describe the full model in the Bayesian framework, prior
probability distributions are given to these quantities:

p Φð Þ ¼j
n

p /nð Þ; p /nð Þ ¼ N /nj0; Ið Þ; ðA1Þ
p Uð Þ ¼j
n

p unð Þ; p unð Þ ¼ N unj0; Ið Þ; ðA2Þ
p Vð Þ ¼j
n

p unð Þ; p unð Þ ¼ N unj0;ΛSð Þ;

p ΛSð Þ ¼ const:
ðA3Þ

and hyperparameters χ and β are used for the mixing matrices to
help learn their dimension:

p Cð Þ ¼j
kl

p cklð Þ; p cklð Þ ¼ N cklj0; kSð Þkvl
� � ðA4Þ
p Bð Þ ¼j
km

p bkmð Þ; p bkmð Þ ¼ N bkmj0; kSð Þkbm
� � ðA5Þ

Computation of the current model above is intractable due to
the joint probability of the parameters and factors. The variational
approximation is used, which restricts the joint posterior to a pro-
duct of factor distributions, but allows the solution to be computed
analytically. The VB-EM algorithm iteratively maximizes the free
energy F with respect to (w.r.t.) each factorized distribution to, at
least, a local maximum of F, alternating w.r.t. the posteriors q(U|Y)
and q(B|Y). Therefore, the following variational approximations
are made to make the model computationally tractable:

p U;BjYð Þcq U;BjYð Þ ¼ q UjYð Þq BjYð Þ
p Φ;U;CjYð Þcq Φ;U;CjYð Þ ¼ q Φ;UjYð Þq CjYð Þ ðA6Þ

The update rules for the two-stage procedure are given. The
following posterior estimates are obtained for the factors in the
first-stage VBE-step:

q UjYð Þ ¼j
n

q unjynð Þ; q unjynð Þ ¼ N unjPun;Γ
� �

Pun ¼Γ�1PB
TΛSyn; Γ ¼ P

B
TΛS

P
BþKΨ�1

B þ I
ðA7Þ
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In the first-stage VBM-step, the full posterior distribution of the
background mixing matrix B is computed, including its precision
matrix ΨB, and the MAP estimates of the noise precision ΛS and
the hyperparameter β.

q BjYð Þ ¼j
k

q bk jYð Þ; q bk jYð Þ ¼ N bk jPbk ; kSð ÞkΨB
� �

P
B ¼RYUΨB; ΨB ¼ RUU þ bð Þ�1

b�1 ¼ diagð 1
K

P
B

TΛS
P
BþΨBÞ

Λ�1
S ¼ 1

N
diag RYY � P

BRT
YUÞ

�
ðA8Þ

Now that B and Λ S have been learned from the data, the
statistics of these noise sources are assumed not to change.

The second-stage VBE-step results as:

q knjynð Þ ¼ N knjPkn;Γ
� �

;Pkn ¼Γ�1PΩTΛSyn; ðA9Þ

Γ ¼
P
ΩTΛSΩþI ¼ P

ΩTΛS
P
ΩþKΨ�1 þ I

¼
P
C

T

P
B

T

� �
ΛSðPC P

BÞþK Ψ�1
C 0
0 0

� �
þ I

ðA10Þ

In the second-stage VBM-step, the posterior distribution of the
interference mixing matrix C is updated, including its precision
ΨC, as well as the MAP value of the hyperparameter χ. Thus, the
posterior distribution for C is:

q CjYð Þ ¼j
k

q ck jYð Þ; q ck jYð Þ ¼ N ck jPck ; kSð ÞkΨC
� �

P
C ¼ðRYΦ � P

BRUΦÞΨ�
C
1; ΨC ¼ RΦΦ þ cð Þ

c�1 ¼ diagð 1
K

P
C

TΛS
P
CþΨCÞ

ðA11Þ

The matrices, such as RUΦ, represent the posterior covariance
between the two subscripts

RΦU ¼
XN
n¼1

P
fn

Pun
TþNΣΦU RΦΦ ¼

XN
n¼1

P
fn

P
fn

TþNΣΦΦ ðA12Þ

where Σ=Γ−1 is specified as:

Σ ¼ ΣΦΦ ΣΦU

ΣUΦ ΣUU

� �
ðA13Þ

Appendix B. Derivation of NSEFALoc1 estimates

For each scanned voxel, we consider the likelihood function
over all the known data and hidden parameters:

Lr ¼ log p Y;Gr;Λr
1

� �
~log p YjΛr

1;G
r

� �þ log p Λr
1

� �
log p YjΛr

1;G
r

� � ¼XN
n¼1

log p ynjΛr
1;G

r
� �

ðB1Þ

p ynjΛr
1;G

r
� � ¼ N ynjFGrfn;Λ

r
1

� �
p Λr

1

� � ¼ W Λr
1jm;Σ0

� �
~jΛr

1jm=2e
�1
2
Tr Σ0Λr

1

� � ðB2Þ
whereΣ0 and ν are hyperparameters. The graphical model in Fig. 1
indicates that Gr and Λ1

r are independent, and we give a flat prior
on Gr.

We choose ν=K+2 for the distribution to be normalizable.
Whereas Σ0 could be inferred by directly measuring the sample
covariance, instead VBFA is used on the pre-stimulus data (like in
the first stage of SEFA, but applied to the post-stimulus data). From
VBFA on the post-stimulus data,Λ0 is the diagonal sensor precision
and B0 is the interference mixing matrix, so Σ0= (B0B0

T+Λ0
−1)−1.

To solve for Λ1 (assuming G is known), take the derivative of
the likelihood:

AL
AΛ1

¼ A

AΛ1
ð� 1

2

XN
n¼1

yn � FGfnð ÞTΛ1 yn � FGfnð Þ

þN
2
logjΛ1j þ m

2
logjΛ1j � 1

2
Tr Σ0Λ1ð ÞÞ ¼ 0

ðB3Þ

Solving for Λ̂1
−1, and further simplifying to:

Λ̂
�1

1 ¼ 1
N þ m

RYY � FGRΦY þΣ0ð Þ ðB4Þ

Now Λ1
−1 is a function of G (since G was assumed known

when taking the derivative above); an expression for Λ1
−1 not de-

pendent on G is needed. To solve for G (assuming Λ1
−1 is known),

take the derivative of L :

AL
AG

¼ A

AG
N

2
logjΛ1j � 1

2

XN
n¼1

Y� FGfnð ÞTΛ1 Y� FGfnð Þ
 !

¼ 0

ðB5Þ

Using Eq. (B4) and defining S as

S ¼ 1
N þ m

RYY � RYΦR
�1
ΦΦRΦY þΣ0

� �
; ðB6Þ

then Ĝ can be written as:

Gr ¼ FTS�1F
� ��1

FTS�1RYΦR
�1
ΦΦ ðB7Þ

Since the expression for G is now known, this value can be
plugged into Eq. (B4) to find Λ1 independent of G.

Appendix C. Derivation of NSEFALoc2 estimates

In the VBE-step of NSEFALoc2, p(x n|yn) is found by finding
the q(x n|yn) that maximizes the free energy F and therefore best
approximates p(x n|yn), where Θ={G, Λ2, α}. The variational
approximation, similar to the SEFA model in Eq. (A6), that the
parameters and variables are conditionally independent given the
data, is used.

F q;Θð Þ ¼
Z

dX dA q XjY;Θð Þq AjY;Θð Þ½log p YjX;A;Θð Þ
þ log p Xð Þ þ log p AjΛ2;αð Þ
� log q XjY;Θð Þ � log q AjY;Θð Þ�

ðC1Þ
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Maximizing for q(X|Y) yields

log q XjYð Þ ¼ Eq AjYð Þ log p Y;X;AjΘð Þð Þ ðC2Þ

It can be shown that q(X|Y) is also a Gaussian distribution. The
mean of a Gaussian is the value that makes the derivative zero and
the variance of the Gaussian is the slope of gradient, yielding:

p xnjynð Þ ¼ N xnjPxn;Γ
� �

Pxn ¼Γ�1PA
TΛ2ðyn � F

P
GfnÞ

Γ ¼ATΛ2Aþ KΨþ I

ðC3Þ

To find the MAP estimate of G, the derivative of the free energy
is taken:

AF
AG

¼ A

AG
Eq XjYð ÞEq Ajyð Þ log p YjX;A;Gð Þ½ � ¼ 0

A

AG
Eq XjYð ÞEq AjYð Þ � 1

2

XN
n¼1

yn � FGfn �Axnð ÞTΛ2 yn � FGfn �Axnð Þ
" #

¼ 0

ðC4Þ
Plugging in the value for Ā, we obtain:

P
G ¼ FTΛ2F

� ��1
FTΛ2 RYΦ � RYXΨ

�1RXΦ
� �

RΦΦ � RΦXΨ
�1RXΦ

� ��1

ðC5Þ
The rest of the updates are given in NSEFALoc2.
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