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Generalized Wiener Estimation of
Three-Dimensional Current Distribution
from Biomagnetic Measurements

Kensuke Sekihara*, Member, IEEE, and Bernhard Scholz

Abstract—This paper proposes a method for estimating three-
- dimensional (3-D) biocurrent distribution from spatio-temporal
biomagnetic data. This method is based on the principle of
generalized Wiener estimation, and it is formulated based on
the assumption that current sources are uncorrelated. Com-
puter simulation demonstrates that the proposed method can
reconstruct a 3-D current distribution where the conventional
least-squares minimum-norm method fails. The influence of noise
is also simulated, and the results indicate that a signal-to-noise
ratio of more than 20 for the uncorrelated sensor noise is needed
to implement the proposed method. The calculated point spread
function shows that the proposed method has very high spatial
resolution compared to the conventional minimum norm method.
The results of computer simulation of the distributed current
sources are also presented, including cases where current sources
are correlated. These results suggest that no serious errors arise
if the source correlation is weak.

I. INTRODUCTION

HE inherent difficulty in the biomagnetic inverse problem
is that a three-dimensional (3-D) current distribution
must be estimated from a biomagnetic field measured on
a two-dimensional (2-D) surface close to a human head or
body. In such cases, the estimation is ill-posed. To reduce
this ill-posedness, the current distribution to be estimated is
often modeled by using the equivalent current dipole (ECD),
which assumes a highly localized current source [1]. This
ECD model has been applied to biomagnetic data having a
relatively simple field pattern, such as evoked neuromagnetic
fields generated from the primary sensory cortices. However,
when the source current distribution is not localized, or when
no information regarding the spatial extent of the source
distribution is obtained, we cannot rely on ECD modeling.
One method has been developed that does not use a par-
ticular source model and, therefore, can estimate nonlocalized
sources. This method seeks the current distribution that best
fits the measured data with a minimum current norm. Thus,
the method is often called the least-squares minimum-norm
method [2]-{7]. This method has been successfully applied
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in 2-D cases where the biocurrent distribution is assumed to
be confined to a single plane. Its 3-D application, however,
poses a serious problem in that the signal current is estimated
to be closer to the detector coils than its actual location [6],
[7]. In some detector-coil and current-source configurations,
the estimation error is so large that 3-D reconstruction by the
minimum-norm method is almost meaningless. One such case
will be simulated in Section III of this paper.

An approach that tries to avoid the above-mentioned prob-
lem involves adding a weighting term to the least-squares
term [8]. This weighting term has small values for sources
at a particular distance from the detectors and large values for
sources at other distances. That is, the weight favors sources
located at a particular distance from the detector coils, and
such sources are chosen as a final solution. Accordingly, by
controlling such a weight, we can select the distances of the
sources. If we apply such a constraint to an actual cases, some
information on source-detector distances is required a priori.
Consequently, the applicability of such a method in actual
cases is limited because it is usually difficult to obtain such
information.

This paper presents a method that can provide 3-D recon-
struction where the conventional minimum-norm method fails.
It does not require any kind of prior information on the source-
detector distances. It utilizes the principle of the generalized
Wiener estimation with the assumption that the activities of
the biocurrent sources are uncorrelated.

In this paper, following a brief summary of the conven-
tional least-squares method, Section II describes the proposed
method. Section III presents the results of computer simulation
that show the method’s effectiveness and limitations. Here,
after demonstrating the method’s 3-D capability, computer
simulations regarding the influence of noise on the quality
of the reconstructed results are performed. The method’s
point spread function is also calculated, and we explain
how an appropriate pixel interval in-the reconstruction can
be select based on this calculated point spread function.
Then, the results of computer simulation of the distributed
current source reconstruction are presented, including cases
where some correlation exists between the current sources.
Section IV discusses the similarities and differences between
the proposed method and other existing methods. Finally,
Section V summarizes the results. Throughout this paper,
lower-case italic letters in boldface represent vectors and
upper-case italic letters in boldface represent matrices.
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1. METHOD

A. Problem Formulation

Let us define the magnetic field measured by the mth
detector coil at time ¢5 as b,,(tx), and a vector b(¢;) =
(b1(tr), balte), -, bar(tk))T as a set of measured data at
time tx, K = 1,2,---, K. Here, M is the total number of
detector coils, K is the total number of time points, and the
superscript T indicates the matrix transpose. Let us also define
the signal primary current distribution at time ¢;, as a vector
£(tx) = (fi(tr), fo(tr), -+, fan(tx))T. Here, N is the total
number of pixels and the z, y, and z components of the
primary current [9] located at the «th pixel are assigned to
Fai—1)+1(tk)s fai-1)+2(t), and fa(;1)43(ts), respectively.

Next, we define the lead field matrix L, which is a M x
(3N) matrix. Its elements, Lm)g(i_1)+1, Lm,g(i_l)_*_g, and
Ly 3¢:-1)+3, represent the sensitivity of the mth detector to
the z, y, and z components of the primary current at the
sth pixel. The column vector of the lead field matrix defined
by 1, = (L1p,Lop, -+, Larp)T is introduced for later use.
The lead field matrix is expressed using its column vectors
as

L=,z ,13n). ey
Using the lead field matrix, the relationship between b(tz)
and f(tg) is given by

b(t;) = Lf(tr) + n(te) )
where n(ty) is the noise vector. The mth element of this noise
vector is the noise contained in the mth detector measurement
at time t;. The problem that this paper deals with is how
to find the optimum estimate of the signal primary current
source distribution f (tx) at all time instants k = 1,2,---, K,
from a given spatio-temporal data set of measured data b(tz),
k=12---,K.

B. Least-Squares Minimum-Norm Estimation

The conventional method, called the least-squares
minimum-norm method [2]-[7], solves this problem by
minimizing the squared error between the measured and
calculated magnetic field distributions at each time instant.
That is, the current estimate f’(tk) is obtained, at each
time instant ¢, by minimizing the least squares cost
function F = |[b(ts) — b(tx)||%. where b(ty) = Lf(ts).
This minimization has a well-known solution using the
Moore—Penrose generalized inverse L™ [10], namely

£(tx) = L™b(ty). 3)

Here, for underdetermined cases, M < 3N, L~ is given by
L~ = L7(@LL")~.

This least-squares minimum-norm method has been success-
fully applied in 2-D cases where the biocurrent distribution is
assumed to be confined to a single plane. Its 3-D application,
however, poses a serious problem in that the location of
the estimated source current is closer to the detector coils

than its actual location [6], [7]. In some detector-source
configurations, this reconstruction error affects the final results
so seriously that 3-D reconstruction by this minimum-norm
method is almost meaningless. Such a case will be shown in
our computer simulations in the next section.

C. Wiener Estimation

The method proposed in this paper utilizes the minimization
of the following least-squares-error expressed in the source
current space. That is, the cost function

F =3 ) — )P @

k=1

is minimized to obtain the optimum estimate f(t,). Here, f(¢3)
is the true current distribution at time ¢z, and the measured
data b(¢;) is expressed as b(ty) = Lf(#). The solution
which minimizes the above cost function is known to be the
generalized Wiener estimate [11] or the minimum mean square
error estimate [12]. This is expressed as ‘

f(tx) = SLTD b(t). (5)

Here, defining the time average of A as (A), D is the
covariance matrix of the measured data defined as D =
(b(t)bT (tx)), and S is the covariance matrix of the signal
current sources defined as S = (f(tz)f% (t4)). :
When applying (5) to an actual problem, it is usually
difficult to obtain an accurate estimate of the signal-source
covariance matrix S. One method for estimating S has been
proposed by Smith [13] and independently by Sekihara er
al. [14], [15]. In this method, the signal covariance matrix
is estimated using the minimum-norm-based method. That is,
the estimated signal covariance matrix S is obtained from

S=L"(D-C)L)" (6)

where C is the noise covariance matrix defined by C =
(n(tx)nT (tx)). Substituting (6) into (5), we get

f(tx) = L™ (D — C)D " 'b(ts). | @)

The Wiener method using the above equation provides a
2-D current reconstruction better than that obtained by the
conventional minimum-norm method, when the signal-to-noise
ratio of the measurements is low [15]. However, this method
exhibits no improvements over the minimum-norm method
when reconstructing 3-D current distributions, as will be
shown by the computer simulations in the next section.

D. Proposed Wiener Estimation

The Wiener method proposed in this paper estimates the
signal covariance matrix in a different manner. Here, the signal
current elements are assumed to be uncorrelated, ‘i.e., all the
nondiagonal elements of S are assumed to be zero. Then,
estimating the signal covariance matrix is performed in the



SEKIHARA AND SCHOLZ: GENERALIZED WIENER ESTIMATION OF THREE-DIMENSIONAL CURRENT DISTRIBUTION 283

following manner. Using the column vectors of the lead field
matrix, let us rewrite (5) as

Fotk) = Sppl "D b(t) (8)

where Sy, is the pth diagonal element of the signal covariance
matrix. Defining the estimate of Sy, as Spp, we have

gpp = (fp(tk)fp(tk»
= ((Spply Db (t1)) (Spply D™ b(tx)T)
= SﬁplZD_llp.
éssuming that é’pp = Spp, One can obtain the relationship
Spp = 1/(ITD~1,). Thus, the proposed Wiener estimation
becomes

lgD_lb(tk)

- ®
ZD-1I,

fo(te) =
It should be pointed out that no pixel discretization of the
reconstruction volume is needed for this method. That is, the
current elements at an arbitrary point x can be reconstructed.
Here, x is equal to (z,y,z) where z, y, and z are the
continuous spatial coordinates. Let us define j¢(x, ¢x) as the £
component of the current density at x and at time ¢, where §
is equal to either z, y, or z. Let us also define f)(f ,X) as the
forward solution calculated by assuming the £ unit component
of the current element is located at x. Using this b(¢,x), the
estimate of the current component 3‘5 (x,tx) is given by

35(X7 tk) _ bT(ga X)D_lb(tk)

= 576, 0D h(6,x)’ {1

The only difference between this equation and (9) is the
replacement of 1, with B(g,x). Considering that 1, is the
forward solution of the pth unit current element, it is easy
to see that this equation is the natural extension of (9) to its
continuous form. The current density at an arbitrary location
can be reconstructed using (10). Note that (9) and (10) give
dimensionless values and, thus, relative values of a current
source distribution can be reconstructed using these equations.

III. COMPUTER SIMULATIONS

A. General

Computer simulations were performed to show the effective-
ness and limitations of the proposed method. A magnetometer
with 37 channels, each having a first-order gradiometer coil
with a 7.1-cm baseline, was assumed in these simulations.
The gradiometer coils are hexagonally aligned on a plane
defined as a z-y plane having its origin at the center of
the hexagon. The detector coil alignment is shown in Fig. 1.
This alignment simulates the KRENIKON™  biomagnetic
measurement system [16]. The z direction is defined as the
direction perpendicular to the detector-coil-aligned plane, and
the z coordinate is zero at this plane. The values of the
spatial coordinates (z,y, z) are expressed in centimeters. The
horizontally layered infinite half-space conductor model [9]
is assumed for ease in calculation, and the boundary of the
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Fig. 1. Detector coil alignment assumed in the computer simulation.
The asterisks indicate the coil locations. This alignment simulates the
KRENIKON™ biomagnetic measurement system [16].

conductor is assumed to be perpendicular to the z axis. Thus,
only the z and y components of the primary current vectors are
magnetically effective and their z components are assumed to
be zero.

B. Three-Dimensional Reconstruction

The 3-D reconstruction capability of the proposed method
is first demonstrated by comparing it with the other two meth-
ods described in Section II. Two time-varying magnetic-field
sources are assumed to exist: the first source at (—4,1,—3)
and the second source at (3,1, —5). The z and y components
of those sources randomly fluctuate around a zero average and
their root-mean-square (rms) values equal 20 nAm. Here, the
activities of the two sources are assumed to be uncorrelated
with each other. '

Let us choose the time instant at which the  component
of the first source and the y component of the second source
each happen to equal 20 nAm, and the other component of
each source is zero. The source and detector configuration at
this instant is depicted in Fig. 2. The magnetic field data at
this instant is obtained by subtracting the field strength at the
gradiometer’s upper-coil position from that at the lower-coil
position. The simulated measured data is obtained by adding
uncorrelated Gaussian noise with a standard deviation of 20
femto Tesla (fT) to the magnetic field data. This Gaussian
noise simulates the sensor noise, which is the noise generated
from the SQUID’s and the electronics associated with them.
The signal-to-noise ratio (SNR) of this simulated data is
approximately 20. The SNR is defined by the ratio of the
average intensity of the signal magnetic field to the standard
deviation of the noise.

The reconstruction experiments are performed using the
three methods described in Section II. Here, the reconstruction
volume covers —8 <z <8, —8<y<8 and -1 <2< -9.
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Fig. 2. Schematic view of the source and detector configuration assumed in
the computer simulation. Current sources exist at (—4, 1, —3) and (3,1, —5).

It consists of 17 x 17 x 9 pixels. Note that each location
of the two sources are set at the center of a pixel in this
~ computer simulation to avoid unnecessary complexity in the
interpretation of the reconstructed results. The problem that
arises when a source is not located at a pixel center, as well
as the choice of pixel intervals to avoid this problem, are
discussed in Section III-E. An example of erroneous results
is also shown! these results were obtained because a source
was not located at a pixel center and an inappropriately large
pixel interval was used. Distortion-free reconstruction results
for sources not necessarily located at pixel centers are shown
in Section III-F.

First, conventional minimum-norm reconstruction was per-
formed using this measured field data. The results obtained
using (3) are shown in Fig. 3. It should be mentioned that, in
this computer simulation, no regularization technique of any
kind was needed to calculate the generalized inverse in (3).
This is because the condition number of LL”, defined by the
ratio of its largest singular value to the smallest, is small and
nearly equal to 5.4. Fig. 3 displays the reconstructed current
sources on planes equal to z = —1, z = -3, z = —5, and
z = —7. Here, the arrows represent the relative values of the
reconstructed current sources, and the largest arrow represents
the largest source vector in the 3-D reconstruction.
~ In these results, only the uppermost plane, the plane closest
to the detector-aligned plane, contains current elements of
significantly large intensity, while sources in the other planes
are almost negligible. Even in the uppermost plane, only
the source  closest to the detectors is reconstructed. These
results clearly show that the minimum-norm method provides
severely distorted 3-D reconstruction in this case.

Next, the covariance matrix of the measured data D was es-
timated from 1000 data generations; all generated data contains
the simulated sensor noise with the same standard deviation
described above. The (£, m) element of the covariance matrix,
Dy, is calculated using Dy, = % Zszl be(ti)bm (tr ). Here,
be(tr) is the magnetic field measured by the £th channel at the
kth data generation, and K is equal to 1000. This simulates
data acquisition for 1 s with a sampling interval of 1 ms.

The previously proposed Wiener reconstruction, which uses
(7), was applied to the same magnetic field data. The recon-
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Fig. 3. Results of 3-D reconstruction by the least-squares minimum-norm
method. Equation (3) was used, and the SNR of the data is 20. The planes
equal to (@) z = —1, (b) 2z = -3, (¢c) 2 = —5, and (d) z = —7 are
displayed. The arrows represent the relative values of the reconstructed current
sources, and the largest arrow represents the largest source vector in the 3-D
reconstruction.

struction results, almost identical to those shown in Fig. 3,
are shown in Fig. 4. These results show that, in terms of 3-
D reconstruction capability, the previously proposed Wiener
method using (7) provides no improvement over the minimum-
norm method.

Finally, the proposed Wiener reconstruction using (9) was
applied with the data covariance matrix D obtained above.
The results are shown in Fig. 5. Here, both sources are
reconstructed, clearly demonstrating this method’s 3-D recon-
struction capability.

C. Influence of Uncorrelated Sensor Noise

In biomagnetic measurements, noise may be caused either
internally or externally. Internal noise is caused in SQUID’s
and receiver electronics, and it is spatially uncorrelated. The
simulated measured data used in the preceding section was
assumed to have an SNR for this sensor noise equal to 20.
In actual measurements, the SNR may sometimes be lower
than this value, and have values ranging from five to 10,
depending on the number of averaging. In this subsection,
the proposed method is tested for data with lower SNR’s to
determine the method’s tolerance to low SNR. Two sets of
simulated measured data were generated in exactly the same
manner as described in Section III-B, except we assumed that
the standard deviation of sensor noise is equal to 40 fT and
80 fT. This results in SNR’s of these data sets equal to 10 and
five, respectively. Results of the reconstruction using (9) with
these data sets are shown in Figs. 6 and 7.
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Fig. 4. Results of 3-D reconstruction by the previously proposed Wiener
method. Equation (7) was used and the SNR of the data is 20. The planes
equalto (@) z = —1, (b) z = —3, (¢) 2 = —5, and (d) z = —7 are displayed.
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Fig. 5. Results of 3-D reconstruction by the newly proposed Wiener method.
Equation (9) was used, and the SNR of the data is 20. The planes equal to
(@) == —1,(b) = = =8, (c) # = —5, and (d) # = —7 are displayed.

The results from the data with SNR of 10 are shown in
Fig. 6 where the two current sources are clearly reconstructed
but large artifacts appear in the plane = = —7. In Fig. 7, which
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Fig. 6. Results of applying the proposed Wiener method to data with SNR
equal to 10. The reconstructed planes equal to (a) z = —1, (b) z = —3,
(c) z = =5, and (d) z = —7 are shown.
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Fig. 7. Results of applying the proposed Wiener method to data with SNR
equal to 5. The reconstructed planes equal to (a) z = —1, (b) 2 = -3,
(¢) z = =95, and (d) z = —7 are shown.

shows the results from the data whose SNR is equal to five,
the intensities of the two sources are considerably distorted
and the artifacts appearing in the z = —7 plane are more
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pronounced. These results indicate that the results obtained
using the proposed method may contain errors unless the SNR
for the sensor noise is quite high. An SNR of more than 20 is
needed for the source and detector configuration assumed in
our computer simulation. This point will be further discussed
in Section 1V.

D. Influence of Correlated Noise

The biomagnetic data often contains spatially correlated
noise caused by external noise sources. Especially, in neu-
romagnetic measurements, the measured data is sometimes
considerably influenced by noise magnetic fields caused by
spontaneous brain activities not related to the neural activities
under study [17], [18]. The influence of such correlated noise
is different from that of uncorrelated sensor noise discussed in
Section III-C. That is, since the proposed Wiener estimation
cannot discriminate signal sources from noise sources, it recon-
structs noise sources as well as signal sources. Reconstruction
results are generally not affected by the noise sources when
the signal sources are well separated from the noise sources.
However, when strong noise sources are located near a signal
source, reconstrufction results can be affected.

This situation ‘is simulated in Fig. 8. Here, a fluctuating

"noise source whose rms value is equal to 200 nAm is assumed
to exist at (—3,—2, —10) in addition to the two signal sources.
Note that the noise source is 10 times stronger than the signal
sources. The SNR for this external noise field is equal to 1.3.
This SNR is defined by the ratio of the average intensity of
the signal magnetic field to that of the noise magnetic field.
Here, a sensor noise of 20 T is assumed, and the SNR for this
sensor noise is 20. The results in Fig. 8§ show that, although the
two signal sources are clearly reconstructed, the z = —7 plane
contains strong ghost artifaéts caused by the noise source. The
generation of these ghost aftifacts can be understood through
an investigation of the spatial resolution in the z direction
for deep sources. This investigation is presented in the next
section. ’

E. Point-Spread Function

Let us assume that a current source with the unit £ compo-
nent is located at xq where £ indicates = or y. We define the £
component of the estimated current source at X as Q¢ (X, Xo).
Then, Q¢(x, %) can be obtained from

BT(& X)Dilf)(g, XO)

Qelxx0) = Tre D h(e,x)

(11)

where b(¢, %) indicates the forward solution created by a
source with the unit ¢ component at x. This Q(x,Xo)
represents the point spread function (PSF) of the proposed
method, and it expresses the spatial resolution of the proposed
method at Xg. A

The PSF for ¢ = y and xo = (0,0,—5) are plotted in
Fig. 9(a) and (b). Here, to calculate D, 1000 data generations
were performed by assuming a current source at xg and, in
each generation, the uncorrelated sensor noise was added to
set the SNR equal to 20. The plots of the PSF obtained
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Fig. 8. Influence of a strong noise source on the reconstructed results. In
addition to the two signal sources, a fluctuating noise source whose rms
value is 10 times stronger than the signal sources is assumed to exist at
(—3, —2, —10). The reconstructed planes equal to (a) z = —1, (b) z = =3,
() z = =5, and (d) z = —7 are shown.

by the least-squares minimum norm reconstruction are also
shown in Fig. 9(c) and (d). The PSF obtained by the proposed
method has a sharp peak, indicating the method’s high spatial
resolution. Conversely, the PSF obtained using the minimum-
norm method has a very blurred peak in the z-y plane, and
does not even have a peak in the z direction. This shape of
the PSF in the z direction again suggests that the sources
estimated by the minimum-norm method appear too close to
the detector plane.

The cross sections of the PSF of the proposed method in
the z, y, and z directions for sources with four different z
locations are shown in Fig. 10. According to this figure, the
resolution is influenced by the distance of the source from
the detectors. The resolution in the z direction is poorer than
in the other two directions, especially for sources far from the
detectors in the z direction, i.e., for deep sources. These results
indicate that if a large noise source exists far in the z direction
and if the plane just above this noise source is reconstructed,
ghost artifacts are likely to appear due to the noise source in
the reconstructed plane. This is simulated in Fig. 8.

The plots shown in Fig. 10 are useful for determining
the appropriate pixel interval in a reconstruction region. The
reconstructed results shown in Figs. 5-8 use pixel intervals of
0.5 cm in the z and y directions. Since the full width at half
maximum (FWHM) of the PSF in the = or y direction is less
than 0.1 cm for the plane z = —3, this 0.5-cm pixel interval
is too large for the first source located in the z = —3 plane.
Thus, if this source was located between pixel points, it might
not be reconstructed:
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This is simulated in Fig. 11. In this simulation, the simulated
data is generated by assuming exactly the same conditions as
for the results in Fig. 5 except that the first source is located
at (—4,1.3,-3) instead of (—4,1,—3). The pixel interval
remains to be 0.5 cm. In Fig. 11, the intensity of this source is
greatly reduced because the source was located away from a
pixel center and the pixel interval is much larger than the
FWHM of the PSF. Thus, before reconstructing unknown
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Fig. 11. Resuits of the experiments with two sources when one source is not
located at a pixel center and the pixel interval is set to be much larger than
the FWHM of the PSF. The first source is located at (—4,1.3, —3), and the
pixel interval is set at 0.5 cm. Results when the source is located at the pixel
center (—4,1,—3) are shown in Fig. 5.

sources, one should first determine an appropriate pixel inter-
val by calculating the FWHM of the PSF to avoid erroneous
reconstruction results such as those shown in Fig. 11. In the
computer simulation in the next section, distributed sources are
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Fig. 12. The configuration of the current source cluster used for the dis-
tributed source reconstruction experiment.

reconstructed with a pixel interval nearly equal to the FWHM
of the PSF.

F. Distributed Source Reconstruction and
Influence of Source Correlation

In this section, the proposed method’s capability for re-
constructing distributed current sources is tested. Here cluster
of seven current sources located 0.5 cm apart are used as
distributed current sources. All sources are located in a plane
equal to z = —5, and the x and y coordinates of the seven
sources are (—2,1), (=2,1.5), (=2,2), (-2,2.5), (=2,3),
(—1.5,3), and (—1, 3). Here, each source randomly fluctuates
with the rms value equal to 10 nAm. We, at first, assume
that the fluctuations of these sources are uncorrelated with
each other. One thousand data generations are performed
to calculate the covariance matrix. In each data generation,
Gaussian noise equal to 20 fT is added to set the SNR of the
simulated measured data to approximately 20.

The time point at which seven sources happen to have cur-
rent moments equal to (0, 10), (0, 10), (0, 10), (0, 10), (10,0),
(10,0), and (10,0) nAm was chosen for the reconstruction.
This source configuration is depicted in Fig. 12. Results of
the reconstruction at this time point are shown in Fig. 13.
Here, the planes equal to z = —3, z = —5, and z = -7
are reconstructed. The pixel interval is set equal to 0.2 cm,
according to the FWHM of the PSF for z = —5. Each plane
covers —6 <z <2 and —3 <y < 5, and 41 x 41 pixels are
contained in these planes. Note that the positions of the sources
are not always equal to the centers of the pixels in this case.
In Fig. 13, the cluster of the sources are clearly reconstructed,
and no artifacts are observed.

Up to this point, our computer simulation assumes that
the activities of current sources are uncorrelated. However,
this assumption may not always be valid in biomagnetic
measurement. There have been several reports that suggest
the existence of correlated neural activities in a human brain
[19]1-{21]. The distributed current sources therefore are likely
to have some correlation with each other. Next, we evaluate

y (em)

Fig. 13. Results of distributed source reconstruction experiments. The con-
figuration of the current sources are shown in Fig. 12, and the activities of
these sources are uncorrelated. Reconstructed planes equal to (a) z = —3,
(b) z = —5, and (c) z = —7 are shown, and each contains 41 x 41 pixels,
resulting in the pixel interval equal to 0.2 cm.

the method’s tolerance to source correlation using the same
distributed source model.

Let us define the ith source moment as (g2, q;) To calculate
correlated current sources, 16 Gaussian random numbers with
an rms value of 10 nAmm are calculated in each. of the
1000 data generations. They are denoted as r4, rm, and
71,72, --,T14. The moment of the ith source is calculated
as ¢ = arg + (1 — a)rgi—q and ¢ = arg + (1 — a)ry,
where the parameter ¢ controls the mutual correlation among
the moment components of the sources. The mutual correlation
for pth and vth sources is defined as i

B ={ata)/ /(&) {(ag)?) (12)

where {A) indicates the average of A over 1000 data gener-
ations, and ¢ indicates x or y.

Two sets of 1000 data points whose mutual correlation 3
is equal to 0.3 and 0.7 were generated, and the covariance
matrices calculated using these data sets. The same magnetic
field data whose reconstruction is shown in Fig. 13 was again
reconstructed using those covariance matrices. The results are
shown in Fig. 14 for the case of § = 0.3 and in Fig. 15 for
the case of § = 0.7. In Fig. 14, the sources are reconstructed
without ‘any serious artifacts, although a small amount of
distortion is contained in the results. In Fig.‘ 15, however, the
reconstructed source cluster is considerably distorted. These
results suggest that when the source correlation is weak, the
proposed method can reconstruct distributed sources without
any serious artifacts, but the reconstruction results may contain
severe errors when the strong source correlation exists.
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Fig. 14. Results of distributed source reconstruction experiments for weakly
correlated sources. The mutual correlation defined by (12) is 0.3. Recon-
structed planes equal to (a) z = —3, (b) z = —5, and (c) z = —7, are
shown.

IV. DISCUSSIONS

According to the computer simulation in Section HI-C,
the SNR for the internal sensor noise must be over 20 to
implement the proposed method. The achievement of such
a high SNR in neuromagnetic measurements, however, may
be difficult at present. Recently, though, the development
of SQUID biomagnetometers with sensor noise of 2 to 5
fT/v/Hz has been reported [22]-[24]. If we assume a 100-Hz
bandwidth, these noise values correspond to the incident
magnetic field intensity equal to 20 to 50 {T. Typical intensities
of neuromagnetic fields range from 1 pT for alpha rhythm to
100 fT for evoked fields [25]. For measurements of an evoked
field, the SNR for the sensor noise can be improved by signal
averaging: for example, the SNR can be improved ten-fold
by 100-times averaging. Thus, it will not be that difficult to
achieve an SNR of 20 if such a magnetometer is used.

The proposed method may not work well when the SNR
of the uncorrelated sensor noise is extremely high. This is
because the data covariance matrix D becomes nearly singular
in such cases, and D! cannot be calculated. This fact usually
does not affect the practical application of the method because
in most cases of biomagnetic measurements the SNR of the
sensor noise seldom exceeds 50. However, if the method is
applied to extremely high SNR data, one should be careful
about interpreting the results.

In the method proposed in this paper, (9) and (10) are
derived by ignoring any source correlation. When correlation
among the current sources is so strong that it must be taken
into account, i.e., when the off-diagonal terms of the signal
covariance matrix cannot be ignored, the reconstructed results
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Fig. 15. Results of distributed source reconstruction experiments for strongly
correlated sources. The mutual correlation defined by (12) is 0.7. Recon-
structed planes equal to (a) z = —3, (b) z = —5, and (¢) 2 = —7 are.
shown.

obtained using (9) contain distortion as shown in our computer
simulation. The equation that the signal source covariance
matrix S generally must satisfy can be derived in a manner
similar to the derivation of (9). That is, using (5) and omitting
the explicit time notation ¢;, for simplicity, we obtain

S = (ff”) ‘
= SLTD1(bbT)(SLTD"H)T = S(LTD'L)S. (13)

This equation indicates the relationship

st =(1L"D7'L) (14)
where ST is the conditional pseudo-inverse matrix of S [11].
Unfortunately, this conditional pseudo-inverse matrix is not
uniquely determined, and it is impossible to further estimate
S from (14). However, if some kinds of prior information can
be utilized, a reasonable estimate of S may be obtained using
14).

Our computer simulation shows that a reconstruction nearly
free from serious errors can be obtained even using (9), if
the correlation is relatively small. In our computer simulation,
acceptable results can be obtained when the relative source
correlation coefficient defined by (12) is equal to 0.3. This
value, however, depends on the source and detector config-
urations, and cannot be generalized to be valid in all cases.
Thus, the method’s tolerance to source correlation must be
more completely evaluated through applying it to many cases
of actual biomagnetic measurements.

It must be pointed out that (9) is basically the same as
Capon’s method originally proposed in seismic data processing
to obtain high resolution power spectral density estimates
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[26]. In this Capon’s method, one seeks the weight w(p) =
(w1(p), w2(p), -, war(p))T which gives the estimate fp(tk)
using the linear relationship f,(tx) = w7 (p)b(tx). The weight
w(p) is determined in such a way that it minimizes the second
term on the right-hand side of the following equation:

Folts) = wWE Do fy (t6) + > w7 ()g fq (t)-
qF#P

5)

It is easy to show that the solution of this minimization is equal
to w(p) = (IID1)/(ITD~1,). The estimation derived
from this weight is equal to that derived from (9). In this
Capon’s derivation, it is not easy to see that the assumption
that the sources are uncorrelated is implicitly imposed. On the
other hand, in our derivation described in Section II-D, since
(9) is formulated as a special case of the Wiener estimation,
the assumption made to derive this equation is much clearly
understood.

It is interesting to point out a similarity between the pro-
posed Wiener reconstruction and the multiple dipole estimation
using the MUSIC (MUTltiple SIgnal Classification) algorithm
[27], [28]. This algorithm uses the idea of the noise and the
signal subspaces. The signal subspace denoted by Eg is the
space spanned by the eigenvectors corresponding to the signal
eigenvalues of D, and the noise subspace denoted by Ey is the
space spanned by the eigenvectors corresponding to the noise
eigenvalues of D. The original MUSIC algorithm [27] calcu-
lates the MUSIC metric defined by J(p) = 1/(ITENEXL,) at
all voxel locations, and chooses points where the metric has
maxima as the estimated locations of signal sources.

In our method, the time-averaged squared intensity is cal-
culated from Sy, = 1/(L'D~'L,). The eigendecomposition of
the matrix D~* can be expressed as D! = EgAS'EL +
EnAG'EY where As and Ay are the signal and noise
eigenmatrices of D. When the noise is uncorrelated, with its
variance equal to o2, we have the relationship

1II'DTN, = ITEsAS'ELL, + %IZ?ENE}QIP. (16)
When the signal source consists of a few localized sources,
namely a few current dipoles, the first term on the right-hand
side of this equation is significantly smaller than the second
term and can therefore be neglected. Thus

D, ~ %leNE%IP. amn
Therefore, the MUSIC metric J(p) approximates the relative
values of time-averaged current intensity Spp, and thus it is
reasonable to choose the locations of the local maxima of this
metric as the locations of the source dipoles.

The spatial filter imaging technique proposed by Robinson
et al. [29] uses an equation very similar to (9). He has proposed
using the weight w”(p) = (ITD ") to estimate fp. That is,
the current sources are estimated by using

fp(tk) = IZD_lb(tk).

The difference between (9) and (18) is that (9) contains the
scaling term 1/(ITD~'1,). Since this term represents the
average squared-intensity, the spatial filter method is effective

(18)

only when the average current-squared-intensity distribution
is considered to be uniform. It may give inaccurate results if
there is large nonuniformity.

V. CONCLUSION

This paper proposes a method based on the principle of gen-
eralized Wiener estimation for obtaining a 3-D biocurrent dis-
tribution from spatio-temporal biomagnetic data. The method
is formulated under the assumption that current sources are
uncorrelated. Computer simulation shows that this method can
reconstruct 3-D current distribution where the conventional
least-squares minimum-norm method fails. Results of com-
puter simulations taking the influence of noise into account
also indicate that a relatively high SNR of more than 20 is
needed to implement the proposed method. The calculated
point spread function shows that the proposed method has
very high spatial resolution, and the pixel interval in the
reconstruction must be determined according to the full width
at half maximum of the point spread function. The results
of computer simulation of the distributed current sources are
also presented, including cases where current sources are
correlated. The results suggest that the errors due to the source
correlation can be small if the correlation is weak.
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